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Simple Summary: Tissue biopsy is essential for diagnosis and characterization of a tumor. Recently
circulating tumor cells and other tumor-derived nucleic acid can be detected from blood, which is
called liquid biopsy. Now this concept has been expanded to many other body fluids including
urine. Urine is the least invasive method to obtain a liquid biopsy and can be done anywhere, which
allows longitudinal repeated sampling. Here, we review the latest update on urine liquid biopsy in
urological and non-urological cancers.

Abstract: Tissue biopsy is the gold standard for diagnosis and morphological and immunohis-
tochemical analyses to characterize cancer. However, tissue biopsy usually requires an invasive
procedure, and it can be challenging depending on the condition of the patient and the location
of the tumor. Even liquid biopsy analysis of body fluids such as blood, saliva, gastric juice, sweat,
tears and cerebrospinal fluid may require invasive procedures to obtain samples. Liquid biopsy can
be applied to circulating tumor cells (CTCs) or nucleic acids (NAs) in blood. Recently, urine has
gained popularity due to its less invasive sampling, ability to easily repeat samples, and ability to
follow tumor evolution in real-time, making it a powerful tool for diagnosis and treatment monitor-
ing in cancer patients. With the development and advancements in extraction methods of urinary
substances, urinary NAs have been found to be closely related to carcinogenesis, metastasis, and
therapeutic response, not only in urological cancers but also in non-urological cancers. This review
mainly highlights the components of urine liquid biopsy and their utility and limitations in oncology,
especially in non-urological cancers.
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1. Introduction

Radiological evaluation followed by biopsy for assessment of tumor tissue and patho-
logical confirmation are the main investigatory methods for cancer diagnosis and treatment
planning. Depending upon the location of the tumor, invasive biopsies can be painful with
risk of complication and associated costs. This is particularly the case when lesions are
in vital organs or close to major vessels, thus making biopsy very challenging to access.
Treatment decisions are often made based on the pathological profile of the primary tumors,
which may or may not be the same genomic clone of the metastatic tumor. It is well known
that treatment effect is different between primary and metastatic tumors [1]. Cancer cells
proliferate continuously, through clonal evolution, to adapt to new environments and
exhibit clonal selection by selective pressure from a tumor microenvironment (TME) or
treatment [2]. It is now known that a bulk tumor may consist of multiple clones of the
same cancer cells (with different molecular and phenotypical profiles) that have a different
cancer biology and clonal evolution in response to treatment, also known as intratumor
heterogeneity. Intratumor heterogeneity is a key challenge in cancer treatment, requiring
real-time assessment of tumor genomic information for precision medicine. Tissue biopsy
often takes samples from only a small part of a bulk tumor and thus may not capture
the entire spatial diversity of tumor heterogeneity [3]. Although multi-region sequential
biopsy can be performed in order to address intratumor heterogeneity [4,5], it may be
impractical in clinical practice and limited to the number of samples that can be tolerated
by the patient. At the present time, cancer surveillance and assessment of treatment effect
is dependent on imaging studies. However, they can only capture morphology of the
tumor as a snapshot at a specific time and location, which does not correspond to the whole
characteristics or function of the tumor. Multiple follow-up visits with imaging studies and
possible biopsies significantly reduce patient compliance and quality of life, and it may be
cost-prohibitive. In order to avoid the shortcomings of current imaging and tissue biopsy
modalities but capture tumor heterogeneity, a non-invasive method to monitor tumor-wide
genomic information during tumor progression or treatment responses is needed.

Liquid biopsy can be an answer to these challenges. Body fluids contain large amounts
of substances secreted from cells after they are utilized in intercellular communication
or released upon cell death. They include metabolites, proteins, and nucleic acids which
may reflect the changes or abnormalities of cells in the body. Liquid biopsy refers to
a process of obtaining tumor-derived materials from body fluids. It is a non-invasive
investigative modality suited for repetitive assessment of tumor-related substances for
assessing changes in gene expression patterns and to study the genomic profile of the
tumor. Liquid biopsy (regardless of blood or urine) measures cells or nucleic acids, either
secreted out of the tumor or brushed out of the tumor after being destroyed. Thus, liquid
biopsy involves sampling from the entire tumor and not a specific area of a bulk tumor.
First, in regard to tumor heterogeneity, blood or urine are expected to contain materials
secreted or released from all cells and its quantity is expected to be reflective of the amount
in the bulk of a tumor. Second, since blood or urine capture the secretome from cells, it is
expected to capture the function of the cells. Changes in circulating materials reflect overall
changes in the TME, such as stromal interactions between the cancer and immune cells [6].
Theoretically, liquid biopsy has the possibility to capture everything from the cells in the
TME and is not spatially or longitudinally limited. Finally, based upon the homeostasis of
the body, anything produced and secreted by a neoplasm should be an excess to the body
and should be excreted via the urine; thus, urine is theoretically an ideal medium to detect
a neoplasm-derived material.

Because of these advantages, liquid biopsy is expected to become a powerful tool in
oncology not only for diagnosis and prognosis, but also for surveillance and assessing
therapeutic effects. Liquid biopsy initially referred only to circulating tumor cells (CTCs)
(although with a short half-life) but now extends to other components released by tumors
like cell-free circulating nucleic acids (NAs) such as DNA, messenger RNA (mRNA),
microRNA (miRNA), non-coding RNA, extracellular vesicles (EVs or exosomes) and tumor
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educated platelets (TEPs). Liquid biopsy corresponds to tumor burden and measurement
of ctDNA appears to be even more beneficial in the metastatic setting (with levels < 5 CTCs
per 7.5 cc correlating to better progression free survival and overall survival) [7]. For the
same reason, high false negative rates (FNR) are seen when lower levels of tumor-derived
products are seen in body fluids. For example, cell-free DNA (cfDNA) can be poor in
quality secondary to inflammation or infections that result in high false positive rates.
Droplet digital polymerase chain reaction (ddPCR) has become one of the most sensitive
methods for detection of somatic mutations by improving cfDNA extraction methods,
thereby optimizing the yield of cfDNA [8–11]. Although liquid biopsy can be performed
with various body fluids, such as blood [12], CSF [13,14], pleural fluid [15,16], gastric
juice [17,18], or saliva [19,20], we will focus on urine, as it can be easily and non-invasively
collected without use of any special techniques or instruments and in copious amounts.
Table 1 illustrates the specifics of standard tissue biopsy and its comparison with blood
and urine as liquid biopsy. While several reviews have been published on urine as a source
of liquid biopsy for cancer, most of them have mainly focused on genitourinary cancers.
Chen et al. focused on urine liquid biopsy technologies and its use in cancer, glomerular
disease, and tuberculosis [21], while Yu et al. focused on prostate and bladder cancer [22],
and Hentschel et al. on bladder, prostate, and cervix cancer [23]. This review seeks to
highlight the components of urine liquid biopsy and its utility and limitations in oncology,
mainly in non-urological cancers.

Table 1. Advantages and disadvantages of standard tissue biopsy versus blood liquid biopsy versus urine liquid biopsy.

Standard Tissue Biopsy Blood Liquid Biopsy Urine Liquid Biopsy

Components

Cell structure, grade, stromal and
immune cells, Lymphovascular
invasion, DNA seq, RNA seq,
gene signatures

CTCs, cell free nucleic acids, exosomes,
tumor educated platelets

Cell free DNA, urinary mRNA,
miRNA, lnc RNA, other snc
RNA, exosomes

Advantages

• Standard of care
• Standard technique,

low FNR
• Histological information

and immunohistochemical
profiling excellent

• Minimally invasive procedure
• Early detection and molecular

profile assessment
• Intratumor heterogeneity
• Real time monitoring of

cancer evolution
• Corelates with tumor burden
• Identifies genetic markers of

treatment and treatment resistance
• DNA fresh and not modified by

storage technique
• Quick turnaround testing time

for ctDNA
• ctDNA more beneficial in

metastatic setting

• Noninvasive procedure
• Early detection and molecular

profile assessment
• Intratumor heterogeneity
• Large quantities available and

centrifuged for concentrates
• High DNA yield
• Identifies genetic markers of

treatment and
treatment resistance

• Good for longitudinal follow up
• ucfDNA can potentially help in

localizing “cancer of
unknown primary”

Disadvantages

• Invasive procedure,
involves patient risk

• Lacks assessment of
intratumor heterogeneity

• Time period of
analysis fixed

• Repetitive invasive
biopsies cumbersome

• Early detection of cancer
not possible

• DNA quality highly
variable in FFPE

• Variable quantity of DNA
based on sampling methods,
high risk of
DNA degradation

• Investigational setting
• High FNR
• Lack of standardized technique for

cfDNA and cellular genomic DNA
• ctDNA quality and

extraction methods.
• Short half life of CTCs (1–2.4 h) in

peripheral blood

• Investigational setting
• No histological assessment
• Effect of hydration status

and medications
• ucfDNA integrity sensitivity

and specificity issues
• Artifacts from

microchip analysis
• Variations in assay

protocols/sample handling
• Measurement of urinary

RNAs challenging
• Lack of large multicenter studies

CTC: Circulating tumor cells; FNR: False negative rate; lnc RNA: Long non-coding RNA, sncRNA: small non-coding RNA; ucf DNA: urine
cell-free DNA; RT-PCR: Reverse transcription polymerase chain reaction; FFPE: Formalin fixed paraffin embedded; ctDNA: circulating
tumor DNA.
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2. Urine Liquid Biopsy Components

Urine is a biological fluid consisting of organic and inorganic compounds; salts; cells
like leucocytes, renal cells, urothelial cells, prostate cells, and exfoliated tumor cells; and
tumor cell-free nucleic acids. Tumor-derived DNA, mRNA, and miRNA can be obtained
via whole urine sample, centrifugation to obtain urine sediment, or filtration to obtain
urinary supernatant and cells [24]. With recent technological advances, it has become
possible to extract and analyze minute amounts of NAs from body fluids. It is easy to
collect large amounts of urine for larger samples of urinary NAs. Urinary NAs are expected
to provide very useful clinical information that may reflect tumor heterogeneity.

2.1. Urinary DNAs

While the exact mechanism of origin of circulating tumor DNA (ctDNA) and its fil-
tration by the kidneys remains unclear, some hypotheses of origin include: (i) from dying
cells, exfoliated either in urine (bladder and prostatic cells) or from circulation (ii) from
CTCs and (iii) via active release [25]. Urine contains DNA as a result of renal clearance of
blood. Only molecular substances smaller than 6.4 nm in diameter and molecular weight
not greater than 70 kDa can pass through the lumen of a nephron [26]. This corresponds to
about 100 base pair (bp) DNA in size [27]. Since the size of a mononucleosome exceeds the
size of the nephron barrier pores, they cannot pass through the nephron. Only protein and
NAs can pass through and are excreted in the urine. Many studies of urine liquid biopsy
have reported the correlation between urinary DNAs and urological malignancies, such as
cancers of the bladder [28,29], prostate [30], and kidney [31], as a result of directly shedding
breakdown products in the urine. Isolating DNA fragments in urine is technically easier
than blood since urine contains less protein [32]. On the other hand, NA-hydrolyzing
enzymes that breakdown DNAs are easily activated in urine. DNA hydrolase deoxyribonu-
clease I and II (DNase I and II) are present both in urine and blood and are more active
in urine. DNase I is a major DNA hydrolase released from the pancreas. The amount of
DNase II is less than DNase I in urine although it is more potent.

DNA methylation changes, which are considered one of the primary events in carcino-
genesis, can be identified by DNA-sodium bisulfite in the urine. This method selectively
deaminates unmethylated cytosines to uracil but methylated forms of cytosines escape the
bisulfite reaction, allowing them to be analyzed by polymerase chain reaction (PCR)-based
technology to target specific functional locations like CpG islands where methylation genes
are expressed. However, there is great variability in its sensitivity and specificity. GSTP1
methylation is a biomarker for prostate cancer [33] and ONECUT2 (One Cut Homeobox 2)
is for upper ureteral carcinoma [34]. However, due to its low sensitivity, DNA methylation
is recommended only in combination with other biomarkers.

Urinary cell-free DNA (ucfDNA) originates directly from dying cells exfoliated in
urine and gives important information regarding DNA derived from cancer cells and is
considered to be more representative than the tissue biopsy of a tumor [35]. There are no
standard protocols for isolation or detection of ucfDNA to date, but it can be detected by
conventional PCR-based assays or by using commercially available kits [36]. Recently, next
generation sequencing (NGS) has been used for better sensitivity [37]. ucfDNA has mainly
seen utility in urological cancers and was first described by Sidransky et al. in 1991 with the
presence of p53 mutations in the urine sediment of patients with muscle invasive bladder
cancer [38]. ucfDNA has also been investigated for EGFR mutation in non-small cell lung
cancer [39], with elevated levels seen in Stage III and IV. Elevated levels of ucfDNA p53
mutations have been demonstrated by Lin et al. in hepatocellular carcinoma and could be
potentially explored for screening [40]. Su et al. reported that KRAS mutation was detected
in higher incidence in urine compared to serum (35%) or plasma (40%) among patients
with colorectal cancer or colonic polyps [41]. KRAS gene G12/13 mutation has also been
found in ucfDNA by the NGS approach of patients with colorectal cancer [42].
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2.2. RNA-Based Biomarkers

Several types of RNA are present and measurable in the supernatant of the urine.
RNA molecules are biochemically unstable and sensitive to heavy metal ions, alkaline pH,
and RNA-hydrolyzing enzymes. There are abundant RNA hydrolases in urine, such as
RNA-hydrolyzing enzyme (RNase II) and Ribonuclease I, which hydrolyze both RNAs
and DNAs. Despite this mechanism, mRNAs are still detectable in the urine because they
are somewhat protected from degradation by extracellular vesicles, ribonucleoproteins,
and lipoproteins [43]. Through alternate splicing of mRNA, many genes generate different
isoforms of protein products in cancer. Thus, mRNA, being a protein coding transcript,
represents a good biomarker for establishing the correlation between information in DNA
and proteins. Several methods to isolate urinary mRNA have been described, including the
QIAamp Circulating Nucleic acid kit (Qiagen) [44], RNeasy kit (Qiagen [45]), and Quick-
RNA MicroPrep Kit (Zymo Research) [46], and miRNeasy kit (Qiagen) [47]. After isolation
of mRNA, molecular biology methods such as quantitative-PCR, droplet digital PCR, or
Next Generation Sequencing are required to search or determine NAs. Currently, the Xpert
BC Monitor test [48] and 2-Gene mRNA Urine test [49] are used for bladder cancer and
prostate cancer, respectively. Since these kits have been used predominantly for urological
cancer, further studies are needed to expand their application for non-urological cancers.

2.2.1. Urinary microRNAs

Compared with mRNA that can be easily degraded by RNA-hydrolyzing enzymes, mi-
croRNA is more resistant to nucleases and remains relatively stable in urine [50]. MicroRNA
are a class of short single strand RNAs (22–24 nucleotides in length) and are involved in cell
proliferation, differentiation, stress response, inflammation, and cell death [51–58]. They
epigenetically inhibit the translation of target mRNA into proteins [59]. They are known
to play roles in different mechanisms of cancer progression, including carcinogenesis,
angiogenesis, and metastasis [51]. MicroRNA is encapsulated and bound to RNA-binding
protein, which stabilize it to the point that it withstands several cycles of freeze and thaw
and remains stable at room temperature for long periods of time. They can be evaluated
in different fractions such as non-centrifuged urine, urine sediment, supernatant, and as
part of exosomes [60]. Since some microRNAs released from cancer cells are also highly
expressed in activated T-cells, some suggest that monitoring circulating microRNA released
from the host immune cells can be used as a biomarker in predicting cancer progression [61].
Furthermore, given the possible association between circulating microRNA and cancer
immunity, studies on circulating microRNA are expected to lead to the future development
of new therapeutic agents through immunomodulation. MicroRNAs represent a new
source of reliable biomarkers that can be diagnostic, prognostic, and predictive during
therapy of cancer patients and has been widely studied in prostate [62], renal [63], and
urothelial carcinoma [64]. MicroRNA can be quantified by reverse transcription-PCR
(RT-PCR), Northern blotting, in situ hybridization, gene expression microarray, or NGS
technology but also with commercially available isolation kits including the miRNeasy
Mini kit (Qiagen) [65], ZR urine RNA isolation kit (Zymo Research) [66] for bladder cancer;
Acid phenol–chloroform plus Silica columns (BioSilica Ltd.) [67], Urine Exfoliated Cell
and Bacteria RNA Purification Kit (Norgen) [68] for prostate cancer; TRIZOL reagent
(Invitrogen) [69] and miRNeasy Serum/Plasma kit (Qiagen) [70] for gastric cancer.

2.2.2. Long Non-Coding RNAs (lncRNAs)

Long non-coding RNAs (lncRNAs) are transcripts with length greater than 200 nu-
cleotides encoding no protein and are gene regulators involved in many biological functions
and dysregulated in various cancers [71]. Expression of lncRNAs is associated with a broad
range of cellular processes, such as cell growth, survival, migration, invasion, and differen-
tiation [72]. More recently, studies have investigated their possible role as biomarkers in
cancer by highlighting the role of lncRNAs in carcinogenesis through impairment of cell
cycle arrest and apoptosis [73]. Many lncRNAs are exosome-derived in urine and have
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been found to be more protected by RNAse activity. The gold standard method for lncRNA
detection is quantitative RT-PCR [74]. Prostate cancer antigen 3 (PCA3) was the first
lncRNA identified in 1999 mapped on chromosome 9q21–22 and found to be overexpressed
in greater than 95% of prostate cancers [75]. The human urothelial carcinoma–associated 1
(UCA1), a 2314-bp lncRNA located on human chromosome 19, has been found to be upreg-
ulated in many cancers, such as hepatocellular cancer [76], colorectal cancer [77], gastric
cancer [78], esophageal squamous cell carcinoma [79], and epithelial ovarian cancer [80].

2.2.3. Other Urinary Small Non-Coding RNAs (sncRNAs)

Small non-coding RNAs are usually shorter in length by about 18–200 nucleotides.
While mRNAs are highly susceptible to nucleases, sncRNAs, which are smaller in size, form
stable complexes in urine, making them more resistant to nuclease [81]. They include small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Piwi-interacting RNA (piRNA)
and tRNA-derived small RNA (tsRNA). They have diverse roles, which in conjunction with
other molecules involve gene regulation through RNA interference or RNA modification.
SncRNAs circulate as part of nucleoprotein complexes or membrane-coated microparticles
such as exosomes [82]. Their role as a biomarker of cancers remains unclear [83].

3. Utility of Urine for Liquid Biopsy

While urine is a relatively cell-free biofluid, it contains large numbers of complex sub-
stances, including protein, circulating NAs (DNAs and RNAs), and extracellular vesicles
(EVs). Since the yield and sensitivity of urine cfDNAs are comparable to blood cfDNAs,
attention has been directed to urine sampling as an alternative body fluid source in lieu of
blood to monitor clinical course and follow-up therapeutic effects [84]. Genomic abnormal-
ities detected from urine NAs are shown to be useful in both urologic and non-urologic
cancers. It has been shown that the sensitivity of cfDNA/ctDNA in urine is comparable
to blood among patients with multiple cancers, such as urothelial carcinoma [85], breast
cancer [84], colon cancer [41], and lung cancer [37]. One of the major advantages of using
urine is its non-invasive nature of collection compared to tissue or blood, especially in
patients requiring repeated sampling to monitor cancer progression and/or therapeutic
effects [86]. Urine can be collected in large quantities, which solves one of the major prob-
lems with tissue biopsy or other liquid biopsy materials that often suffer from a limited
number of samples. It is more patient-friendly since the collection of urine can be done
anywhere as opposed to access to other body fluid or tissue which needs to be done in
clinics or hospitals. Even in clinic settings, obtaining sufficient blood draws can be a
challenge in some populations including geriatric patients, intravenous drug abusers, or
anyone with thin veins [87]. Sampling cerebrospinal fluid (CSF) or gastric juice is even
more invasive, and sophisticated techniques are required for their collection. Therefore,
liquid biopsy using urine is expected to significantly reduce labor and cost as well as
patients’ pain. Due to these advantages, urine liquid biopsy has been investigated for
cancer screening, monitoring of cancer progression or recurrence, and the efficacy of chemo
and radiation therapy.

3.1. Urinary Liquid Biopsy for Urological Cancers

Most of the studies regarding urine liquid biopsy have been performed on urological
cancers, since many of the substances secreted from urological cancer are likely to drain
directly into the urinary tract [27,88]. First morning urine contains the highest number of
cells and cellular debris from the urological tract exfoliated in urine at night [89]. Both
low-molecular-weight DNA (<100 bp) and high-molecular-weight DNA (≥1 kbp) can
be detected in urine [84]. Urinary protein biomarkers for early detection of prostate
cancer and bladder cancer have already been established and approved by the FDA, such
as Nuclear Matrix Protein 22 (NMP22), Urovysion Fluorescence In Situ Hybridization
(FISH), and Prostate Cancer gene 3 (PCA3) [90]. As a matter of fact, several tests based on
urine liquid biopsy have been already included in the National Comprehensive Cancer
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Network (NCCN) Guidelines for Prostate Cancer Early Detection since 2020. These tests
are Mi-Prostate scores that include measurements of PCA3 and TMPRSS2:ERG fusion
gene expression in the urine, IntelliScore and SelectMDx, which may reduce the number
of unnecessary biopsies [91]. In addition to ctDNA/cfDNA, the other NAs, such as
mRNA [44,92], lncRNA [93], microRNA, piRNA [94], and circRNA [95], have been reported
to be useful as biomarkers in urological cancers. The first commercial exosome-based
prostate Intelliscore test for prostate cancer became available in 2016 [96]. Several urinary
lncRNAs, such as FR0348383, MALAT1, and DD3 (PCA3), have been reported as better
biomarkers in prostate cancer compared to serum prostate-specific antigens (PSA) [97,98].
Given its quality and accuracy, detection of urinary PCA3 has been approved by the FDA
as a diagnostic tool for prostate cancer [98]. PCA3 levels have also been associated with
tumor volume burden and extracapsular extension and provide prognostic information
before a radical prostatectomy [99]. Urothelial carcinoma associated 1 (UCA1) is one
of the most well studied genes in bladder cancer, and urinary lncRNA of UCA1 was
often detected in patients with bladder cancer [100,101]. Currently, there are two clinical
trials evaluating urine as a source for liquid biopsy. NCT04432909 is a prospective multi-
center, single-blinded study to evaluate the utility of UroCAD for urothelial carcinoma
diagnosis and follow-up in 500 participants (https://clinicaltrials.gov/ct2/show/NCT0
4432909, accessed on 19 May 2021). Patients with urothelial carcinoma prior to resection
are compared with the patients being treated for other diseases but without any tumor to
determine the sensitivity and specificity of UroCAD analysis, which will be compared with
cytology and FISH. Another trial was reported at the American Society of Clinical Oncology
Genitourinary (ASCO-GU) 2021 meeting by Zhang et al. from Shanghai, China, which is a
prospective clinical trial that compares blood and urine liquid biopsy using PredicineCARE
NGS 152 gene assay with the gold standard of tissue biopsy in 59 treatment-naïve bladder
cancer patients. The mutation profiles of urine samples (sensitivity of 86.7%) were found
to be very similar with tissue biopsy compared to blood liquid biopsy samples (sensitivity
of 10.3%). At this point, we were unable to identify any current ongoing clinical trials in
non-urological cancers. With increasing evidence, it is conceivable that detection of not
only DNA and miRNA but also oncogenic lncRNAs in urine might enable early cancer
diagnosis and can be promising therapeutic targets for patients with genitourinary cancer.

3.2. Urinary Liquid Biopsy for Non-Urological Cancers

There are numerous studies identifying common mutations in each type of cancer, such
as EGFR mutation in lung cancer, that guide us in assigning a cell of origin to a biomarker
like cfDNA. We have summarized these molecules detected in urine and the cancer type
in Table 2. In addition, given the strength of liquid biopsy in longitudinal follow-up, we
may discover a unique/novel biomarker for a particular patient of a particular cancer type
that may become a strategy in the future. It is speculated that urinary RNAs may be also
associated with clinical outcomes in patients with various types of cancers [102,103].

Table 2. Application of urine liquid biopsy in non-urological cancers.

Study,
Reference
Number

Cancer Type
Early Stage,

Advanced or
Metastatic

No of
Patients

Molecules
Assessed

Methodology/
Quantitative

Analysis

Clinical
Application of
Urine Biopsy

Sensitivity
in Urine

Reckamp [37] NSCLC Advanced
Stage 63

ctDNA for
EGFR T790M

mutation
ddPCR, NGS

Predictive
response to
Rociletinib
(EGFR TKI)

75%

Husain [104] NSCLC Advanced
Stage 8

ctDNA for
EGFR T790M

mutation
ddPCR, NGS

Predictive
response to

Osimertinib (III
generation
EGFR TKI)

86%

https://clinicaltrials.gov/ct2/show/NCT04432909
https://clinicaltrials.gov/ct2/show/NCT04432909
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Table 2. Cont.

Study,
Reference
Number

Cancer Type
Early Stage,

Advanced or
Metastatic

No of
Patients

Molecules
Assessed

Methodology/
Quantitative

Analysis

Clinical
Application of
Urine Biopsy

Sensitivity
in Urine

Wu [105] NSCLC
Advanced

Stage
& Metastatic

50
TP53 and

EGFR
mutation

PCR, NGS
Detection of
driver gene
alterations

60%

Liu [106] NSCLC Early stage 74 DNA
methylation

Methylation
specific PCR

Early detection
after incidental

finding of nodule
on CT chest

73%

Zhang [107] Breast Early stage 200 ctDNA for
PIK3CA ddPCR Prognostic and

predictive 77%

Ritter [108] Endometrial
& Ovarian Early stage 10 MiR-10b-5p

RT-qPCR,
Human
miRNA
V21.0

microarray

Early detection 50%

Kao [69] Gastric Early stage 50 MiR-21-5p
Quantitative
stem loop RT-

PCR
Predictive NA

Iwasaki [70] Gastric Early stage 197 MiR-6807-5p
MiR-6856-5p

miRNeasy kit
(Qiagen),
miRNA

microarray

Early detection
and

Prognostic
63.4%

Su [41] Colorectal Advanced
stage 20

cfDNA
KRAS

mutation
RT-PCR Early detection 95%

NSCLC: Non-small cell lung cancer; ddPCR: Droplet digital polymerase chain reaction; NGS: Next generation sequencing; RT-PCR: Reverse
transcription polymerase chain reaction; ctDNA: circulating tumor DNA.

3.2.1. Urine Liquid Biopsy in Lung Cancers

Conventional tissue biopsies are particularly cumbersome and carry potential risk
for significant morbidity to lung cancer patients since they can cause pneumothorax and
significant bleeding within the airway. Various urine liquid biopsy components have
been investigated for patients with non-small cell lung cancer (NSCLC) and have been
reported to reduce costs by improving detection of EGFR T790M mutations and reducing
the complications associated with tissue biopsy [109]. Reckamp et al. studied 63 patients
with advanced EGFR-mutant NSCLC and found that the sensitivities of tissue, plasma, and
urine were 73%, 82%, and 75%, respectively, for T790M detection in these complementary
specimens [36]. They also found a significant decrease in T790M MAF in urine in patients
treated with Rociletinib (an EGFR tyrosine kinase inhibitor (TKI)), highlighting a potential
of using urine for follow-up. These findings were confirmed in another study by Husain
et al. who found that early kinetics of ctDNA in the urine of eight patients treated with
Osimertinib, a third generation anti-EGFR TKI, correlated with tumor response [104]. These
studies demonstrate that urine testing successfully identifies EGFR mutations in patients
with advanced stage/metastatic NSCLC and has high concordance with tumor tissue
and plasma and can be used as a viable approach for assessing EGFR mutation status.
In advanced NSCLC, Wu et al. demonstrated a good correlation and complementarity
between genomic profiles of cfDNA extracted from plasma, sputum, and urine compared to
tissue [105]. In early-stage NSCLC, the analysis of DNA methylation at cancer-specific loci
in urine were shown to help characterize nodules after screening via computed tomography
(CT) [106]. Thus, various studies have demonstrated the utility of urine liquid biopsy not
only as a diagnostic but also a prognostic and predictive marker in NSCLC.
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3.2.2. Urine Liquid Biopsy in Breast, Gynecological, and Gastrointestinal Cancers

Some have investigated the role of urine liquid biopsy in early breast cancer. In a
prospective study, Zhang et al. compared serum and urine ctDNA levels using a droplet
digital PCR (ddPCR) technique of 200 breast cancer patients and healthy volunteers [107].
The authors found 3.5-fold higher levels of ctDNA as well as wild-type PIK3CA genotype
in early breast cancer patients compared to healthy volunteers. These results demonstrate
that urinary ctDNA is capable of discerning between healthy populations while providing
early disease detection, especially in high-risk individuals. Zhang et al. also evaluated a
decline of urinary ctDNA following initial treatment and found a 6.8-fold decrease [107].

Among the tested 10 microRNAs, miR-10b-5p was identified as a candidate biomarker
for endometrial and ovarian cancer [108]. It was found to be elevated in patients with
endometrial cancer compared to healthy women; however, its relevance in ovarian cancer
remains unelucidated. MiR-200c-3p was found to be enriched in the urine of endometrial
cancer patients, paving the way for the development of a non-invasive biomarker for
early detection [110]. Abnormal lncRNA UCA1 expression has been linked to adverse
clinicopathological characteristics including lymph node metastasis, chemoresistance, and
poor overall survival in both cancers [80,111].

Identification of biomarkers for gastric cancer still remains a challenge. The most
frequently used tumor markers include CEA, CA19-9, CA72-4, CA50, pepsinogen, and
alfa fetoprotein, however their sensitivity and specificity are poor and hence not specific
to a diagnosis of gastric cancer. Hung et al. reported that miR-376c promotes gastric
cancer cell proliferation and migration, and it was increased in urine and plasma of gastric
cancer patients [112]. Kao et al. detected miR-21-5p levels in the urine of gastric cancer
patients pre- and post-op at one and three months and found that its levels consistently
decreased following gastric surgery [69]. MiR-6807-5p and miR-6856-5p were also found
to be significantly increased in the urine of gastric cancer patients but fell to almost non-
detectable levels following gastric resection [70]. These results appear promising for both
early detection and prognosis of patients with gastric cancer.

KRAS mutations were detected from the cfDNAs in the urine of advanced col-
orectal cancer patients. This was the first reported urinary cfDNA as a biomarker in
a non-urological cancer, proving that the kidney barrier in humans is permeable to DNA
molecules large enough to be analyzed by standard genetic technologies [113]. Su YH et al.
compared the concentration of DNA in different body fluids and found that it was similar
in urine compared to serum, but it was significantly lower in plasma than in either urine or
serum (p < 0.05). They also reported that when DNA was derived from 10 µL of body fluid
in each mutation assay, the mutated KRAS DNA detection was comparable among serum,
plasma, and urine. However, in patients with colorectal cancer, when a larger amount of
body fluid (200 µL) was used the detection rate of the KRAS gene in urine was significantly
higher (95%) than in serum (35%) or plasma (40%). These findings suggest that inhibitory
factors (such as DNase) in serum and plasma might be less abundant in urine, and that
urine does not usually contain large molecules, such as protein, that can interfere with PCR
amplification compared to blood or serum, as they are filtered by the kidneys [41].

4. Limitations of Urinary Liquid Biopsy

By definition, urine is generated by the kidney and there are many components that
may not get filtered in the urine compared to blood. Therefore, urine liquid biopsy has
been more intensively studied in genitourinary cancers and is one of the major limitations
in non-urological cancers. Since urine is a dynamic body fluid, concentrations change
with hydration status, renal pathology, urine volume, and effect of medications. Hence,
concentrations will most likely not be reliable with a high degree of variability within
the urine composition and will require an absolute amount or centrifugation. Therefore,
measuring 24 h urine volumes would be the gold standard to assess hydration status. Mea-
suring creatinine ratios or specific gravity remain as other possibilities and potentially more
feasible alternatives. Despite being a useful tool for diagnosis, prognosis, and a predictive
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marker for treatment response, a major limitation of urine cfDNA-based tests includes
lack of specificity. Increased levels of cfDNA are seen in non-malignant conditions such
as trauma, inflammation, pregnancy, autoimmune conditions like lupus, and infections
such as tuberculosis. Due to these very reasons, cfDNA-based tests lack application in the
clinical setting [36]. Mutation rates in individuals may be influenced by environmental and
physiological factors [114], and spontaneous mutations known to typically contribute to
cancer development can occur with increasing age but may not directly cause cancer. There
is also less abundance of mRNA in urine, a lack of stable targeted molecules, along with
possible contamination of cellular RNA during sample preparation [115]. Thus, utilization
of urine liquid biopsy in pre-symptomatic stages may yield false positive results and
overdiagnosis of cancer. With regards to methodology, microchip analysis is an efficient
method to screen for urine biomarkers; however, challenges when applying this method
include repetitive sequences in the discovery phase miRNAs when designing probes or
primers (due to short length of nucleotides), which may result in artifacts [108] masking
the results of microchip analysis. Varied analytical methods include NGS, RT-PCR, and
microarray, which can lead to aberrational findings [116]. Variations exist in assay protocols
and sample handling despite the same analytical method performed. More importantly,
why certain specific RNA extraction kits are used for detection of biomarkers in different
studies depending on the cancer site, remains elusive. Lack of large multicenter studies
remain the major reason for precluding its adoption in clinical practice.

While there are several limitations to urine as liquid biopsy, it can also be used to our
advantage. The biggest advantage of urine is that an unlimited amount can be collected.
Instead of an absolute value, urine samples can be collected as a set quantity per day and
quantified as a fraction of the total quantity (especially in patients suffering from excessive
diuresis). Ideally, it would be beneficial to confirm the presence of sufficient amounts
and quality of ctDNA to identify the most appropriate ctDNA quantification methods to
maintain uniformity and improve the sensitivity of ctDNA detection to anticipate drug
resistances by urine biopsy. In addition to looking into ctDNA, we can look into smaller
nucleic acids such as messenger RNA, micro-RNA, circular RNA, transfer RNA, or even
RNA in exosomes. Analyzing exosomes in the future can become an important strategy as
cells communicate through exosomes. More recently, with newer tools like SiRe NGS panel
testing [12] or the TargetPlex FFPE Direct DNA library preparation kit [117] being applied
to patient blood and tissue samples with advanced-stage NSCLC, we cannot help but
speculate that these more cost-effective methods may gain more widespread application in
urine liquid biopsies in the future. Considering the positive effects on biomarker studies
and beyond, we hope that funding bodies will take steps to complement the current
emphasis on these novel studies and support programs for reproduction studies of existing
findings to validate their clinical utility.

5. Conclusions and Future Perspectives

Changes in genomic and genetic material in the urine potentially precede changes
in imaging and can detect minimal tumor burden of urological and non-urological can-
cers. There still remains a need for standardized methods and normalization procedures.
Despite the non-invasive nature of sample collection and its potential benefits, this newer
urine-based approach still requires large-scale research for validation by large cohorts
prospectively. Although a promising innovation, an important question that remains to
be answered is whether urine biomarkers offer better profiling for disease recurrence and
whether urine biomarker elevation-driven interventions translate into better outcomes.
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