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Abstract: Neuroblastoma is one of the most common pediatric cancers and a major cause of cancer-
related death in infancy. Conventional therapies including high-dose chemotherapy, stem cell
transplantation, and immunotherapy approach a limit in the treatment of high-risk neuroblastoma
and prevention of relapse. In the last two decades, research unraveled a potential use of mesenchymal
stromal cells in tumor therapy, as tumor-selective delivery vehicles for therapeutic compounds and
oncolytic viruses and by means of supporting hematopoietic stem cell transplantation. Based on
pre-clinical and clinical advances in neuroblastoma and other malignancies, we assess both the
strong potential and the associated risks of using mesenchymal stromal cells in the therapy for
neuroblastoma. Furthermore, we examine feasibility and safety aspects and discuss future directions
for harnessing the advantageous properties of mesenchymal stromal cells for the advancement of
therapy success.

Keywords: neuroblastoma; mesenchymal stem/stromal cells; hematopoietic stem cell transplanta-
tion; drug delivery; oncolytic virotherapy; biodistribution; cellular therapy

1. Introduction

In the search for new effective tumor treatments, the potential of different forms of
cellular therapy is more and more unraveled. Different cells of the immune and hematopoi-
etic system are already used to improve the clinical outcome of cancer patients, including
hematopoietic stem cells and T cells engineered to target tumor cells via specific surface
molecules [1,2]. Cellular therapy becomes especially relevant in refractory tumors, in which
conventional therapies are not effective anymore.

One of these metastatic, frequently relapsing cancers is neuroblastoma (NB). Being the
most common extracranial solid childhood tumor, NB accounts for 7–10% of all childhood
malignancies [3,4]. NB tumors originate from cells of the neural crest, a tissue that gives
rise to the sympathetic nervous system during embryonic development [5]. Accordingly,
NB primary tumors mainly manifest in the adrenal glands and sympathetic ganglia, are
highly heterogeneous and occur at a young age [6]. In fact, NB is the most commonly
diagnosed tumor in children under one year of age [7]. About half of NB patients present
with metastasis at diagnosis [8] with bone marrow (BM) involvement in 90% of cases [9].
Corresponding to the heterogeneity of NB tumors, the International Neuroblastoma Risk
Group (INRG) classification system categorizes patients into very low-, low-, intermediate-
and high-risk groups, based on a set of prognostic markers and five-year event-free survival
rates [10]. Next to dissemination status, high-risk prognostic markers include advanced
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age (>18 months), MYCN amplification, and chromosome 11q aberration. Non-high-risk
patients receive a moderate treatment, including surgery and/or chemotherapy [11,12],
which results in survival rates of more than 90% [13]. The survival rate of high-risk patients,
however, remains below 50% [10], and 50–60% of these patients experience relapse [6]
despite intense multi-modal treatment, comprising induction chemotherapy to induce
remission, resection of the primary tumor, myeloablative therapy (MAT) with autologous
hematopoietic stem cell transplantation (ASCT) and radiation therapy, in addition to post-
consolidative immunotherapy accompanied by the differentiation agent isotretinoin [10].
For ASCT, the patient’s hematopoietic stem- and progenitor cells (HSPCs) are mobilized
into the peripheral blood (PB), collected via apheresis, and later reinfused into the patient’s
bloodstream in order to reconstitute the hematopoietic system after MAT. With ASCT as the
standard of care, the efficacy of a single or double transplant, as described by Park et al. [14],
is at present investigated in the HR-NBL2 trial (NCT04221035) of the International Society
of Paediatric Oncology-Europa-Neuroblastoma (SIOPEN). Because NB is a major cause
of cancer-related death in infancy and considering the, sometimes severe, side effects
of conventional treatment [15], there is a demand for research on alternative treatment
strategies to combat NB.

One promising candidate for cellular therapy in NB patients is multipotent mesenchy-
mal stromal cell (MSC). The abbreviation “MSCs” has been used for mesenchymal stem
cells in the past but is nowadays used as a broader term to also include cells whose biologic
characteristics do not meet the definition of stem cells [16,17]. Here, we use the term MSCs
to describe multipotent mesenchymal stromal cells, for which the International Society for
Cellular Therapy (ISCT) suggested the following minimal definition criteria: (i) expression
of CD105, CD73, and CD90, and lack of expression of CD45, CD34, CD14 or CD11b, CD79a,
or CD19 and human leukocyte antigen (HLA)-DR surface molecules; (ii) potential to dif-
ferentiate into osteoblasts, adipocytes, and chondroblasts; and (iii) adherence to plastic
in standard culture conditions [18]. MSCs are present in many tissues, including bone
marrow (BM), adipose tissue (AT), umbilical cord (UC), dental pulp, and placenta [19]. The
source of MSCs influences their phenotype, differentiation and migration potential, and
immunomodulatory capacity [20–23] and is therefore important to consider when applying
MSCs in cellular therapy. The characteristics and (dis-) advantages for clinical applications
of MSCs from frequently used sources (mainly AT- and BM-derived MSCs, in the following
written as AT–MSCs and BM–MSCs, respectively) have been reviewed elsewhere [24,25].

BM–MSCs are of special interest since their native environment presents the primary
or metastatic site for various (hematologic) malignancies [26]. In the healthy BM, MSCs
and other stromal cells such as endothelial cells, osteoblasts, and C-X-C motif chemokine
ligand 12 (CXCL12)-abundant reticular (CAR) cells in the perivascular and endosteal niche
play an important role in maintaining the balance of self-renewal and differentiation of
HSPCs [27–29]. MSCs contribute to the BM hematopoietic niche through cell–cell interac-
tions and secreted factors (e.g., CXCL12 [29], stem cell factor (SCF/Kit-ligand) [30], Wnt
signaling components [31], thrombopoietin (TPO) [32], angiopoietin (Ang-1) [33] and inter-
leukin (IL)-7; reviewed by Ehninger et al., 2011 [28]), and by differentiating into various
other cell types, including adipocytes and osteoblasts [34]. In addition to the ability to
support the hematopoietic system, the most prominent functions of MSCs in cellular tumor
therapy are their immunomodulatory function [35] and their ability to sense inflammation,
which allows them to migrate to damaged tissues, including sites of tumor growth [36].
It is important to note that the function of MSCs can be altered in the disease context, for
example when being influenced by cancer cells to support the tumor [37–43]. In this light,
there is a scientific controversy whether MSCs act tumor-supportive or -suppressive in
physiological conditions (reviewed recently by our group [44] in NB context, suggesting a
primarily tumor-supportive effect) and whether they bear a risk to contribute to disease
progression when used in cellular therapy [45].

This review aims to evaluate the potential use of MSCs in therapy for NB. It outlines
results obtained both in animal models and in clinical trials studying the use of MSCs
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as delivery vehicles for anti-cancer agents and for supporting hematopoietic stem cell
transplantation (HSCT) after MAT. Important factors influencing the efficacy of these
treatments will be discussed, including the biodistribution of systemically applied MSCs
and the risk of an adverse effect on tumor progression. Finally, existing knowledge gaps
will be summarized in combination with an assessment of possible future directions.

2. MSCs as Delivery Vehicles

To lower the chemotherapeutic burden and reduce side effects for patients, a new
addition to classical NB treatment might be the tumor-targeted delivery of anti-cancer
agents and oncolytic viruses (Figure 1 1©)—the inflammation-sensing nature of MSCs
allows effective recruitment of modified MSCs to tumor sites and potentially even to micro-
metastases, a common source of relapse. Additionally, due to a lack of MHC recognition
patterns, MSCs are immunologically inert, allowing the use of allogeneic cells [46]. This
locally acting therapy has therefore the potential to be less toxic than systemically applied
conventional chemotherapy. In the context of NB, MSC-delivered chemotherapeutic agents
(paclitaxel), soluble factors with an anti-cancer effect (TNF-related apoptosis-inducing
ligand (TRAIL), IFN-β, IFN-γ, IL2), microRNAs (miR-124), and oncolytic viruses have
been studied so far. While the overall aim of tumor-targeted delivery is a strong localized
anti-tumor effect, there are additional advantages of MSCs as the delivering units which are
further described in the following section, e.g., their immunomodulatory effects (especially
relevant for oncolytic virus delivery) or a sustained supply of the anti-cancer agents
through stable expression by MSCs. Importantly, treatment resistance, which presents a
major obstacle for example in anti-cancer therapy with TRAIL, can be overcome when
using MSCs as delivery vehicles [47].
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Figure 1. Overview of procedures and potential risks in therapeutic MSC applications. 1© MSCs derived from the patient
(autologous) or a donor (allogeneic) are culturally expanded, optionally equipped with an anti-cancer agent or oncolytic
virus, and injected into the patient. 2© The systemic application can entail lung entrapment (intravenous application) or
microvascular occlusions (intra-arterial application). 3©MSC homing to the bone marrow can also be achieved by intra-bone
injection. The purpose of MSCs in the BM niche is to support hematologic recovery and prevent graft-versus-host disease
(GvHD) in case of an allogeneic transplant, but they can at the same time diminish a desirable graft-versus-tumor (GvT)
effect. 4© Inflammation-sensing properties allow MSCs to migrate and deliver drugs to the tumor tissue but bear the risk of
tumor support. 5© Even when MSCs get entrapped in the lungs or fail to reach their target tissue for other reasons, their
expected effects can often be observed nevertheless. Indirect effects, e.g., signals of apoptotic MSCs to immune cells [48],
could be responsible for that.
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2.1. MSCs Delivering Anti-Cancer Agents

One of the anti-cancer agents investigated in this context is TNF-related apoptosis-
inducing ligand (TRAIL), which causes apoptosis primarily in tumor cells by binding to its
cognate death receptors (DR4 and DR5) [49]. While the soluble, truncated form of TRAIL
has a short half-life in the bloodstream and bears the risk of inducing resistance, MSCs as
delivery vehicles allow a continuous expression of the full-length form of TRAIL at the
tumor site. A recent pre-clinical study showed the ability of TRAIL-expressing MSCs to kill
classical and primary NB cell lines in vitro and to successfully migrate to tumor sites in vivo,
although a reduction of NB tumor growth in xenotransplantation experiments could only be
reached in combination with the anti-cancer drug bortezomib [46]. Interestingly, researchers
artificially increased the tumor-tropism of TRAIL-expressing MSCs toward GD2-positive
glioblastoma by equipping them with a truncated anti-GD2 chimeric antigen receptor
(CAR) [50], a strategy that has similarly been used for selectively targeting CAR T cells to
GD2-expressing NB cells [51]. Another approach for TRAIL delivery utilized exosomes
derived from TRAIL-engineered murine BM–MSCs, which significantly reduced tumor
volume and induced necrosis in a melanoma mouse model [52].

Other approaches make use of engineered interferon (IFN)-expressing MSCs. IFN-β
was one of the first anti-cancer agents to be engineered into BM–MSCs as drug delivery
vehicles, which subsequently decreased tumor growth in vivo [53]. The potential of IFN-β
to inhibit tumor growth is mediated by immunostimulatory [54], antiangiogenic [55], and
antiproliferative effects [56]. In NB, the survival of tumor-bearing mice was significantly
increased when IFN-β-expressing murine BM–MSCs were delivered intraperitoneally [57].
Similarly, IFN-γ is known to decrease tumor proliferation and neoangiogenesis [58], but
systemic application in clinical trials failed due to associated toxicities [59]. Research
using IFN-γ-expressing BM–MSCs as delivery vehicles demonstrated decreased tumor
growth and increased overall survival of NB tumor-bearing mice after intratumoral injec-
tion [59]. The effect was shown to be mediated by polarizing host macrophages into the
pro-inflammatory M1 phenotype. However, increased IFN-γ expression was shown to
impair the hematopoietic support function of BM–MSCs in mouse models [60], suggesting
that this therapy could have unfavorable side effects on the already impaired BM of high-
risk NB patients. While these studies do show the effectiveness of anti-cancer agents when
being delivered by MSCs, the reproducibility in humans is not ascertained because one of
the most prevalent clinical administration routes is intravenous instead of intraperitoneal
or intratumoral [61].

Other promising results were obtained by researchers who previously proved an
anti-cancer effect of BM– and AT–MSCs loaded with the chemotherapeutical compound
paclitaxel [62]. In order to overcome various translational limitations of their previous
model, such as high good manufacturing practice (GMP) standard and limited drug
concentration at the tumor site, their following study utilized paclitaxel-loaded micro-
fragmented adipose tissue (MFAT), which has a high content of MSCs [63]. Implanted next
to the primary tumor site after surgical resection in an NB mouse model, MFAT functioned
as a scaffold containing MSCs that released the drug over a prolonged period of time,
preventing NB relapse. Similarly, delivery of paclitaxel in BM–MSC-derived exosomes
demonstrated successful homing, penetration, and anti-tumor efficacy in a mouse model
of pancreatic cancer [64].

Furthermore, recent in vitro work indicated the potential use of a nervous system-
specific microRNA, miR-124, in order to induce differentiation in NB cells [65]. Co-culture
experiments with miR-124-expressing AT–MSCs indeed demonstrated decreased prolifer-
ation and increased apoptosis as well as differentiation of NB cells. The same effect was
observed with exosomes derived from these MSCs, opening new interesting research lines
of a cell-free treatment approach (also discussed below in the chapter “Cell-Free Approach
Using Extracellular Vesicles”).

Another approach using MSCs as delivery vehicles is the engineered expression of IL2,
a cytokine frequently used in cancer therapy due to its stimulatory effect on CD8+ T cells
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and NK cells [66]. Interestingly, an in vitro study with AT–MSCs engineered to express
IL2 described opposing effects of these MSCs depending on culture method [67]: While
in direct co-culture, a reduction in NB cell proliferation was observed, the opposite effect
(increased proliferation) was the case when culturing NB cells in conditioned medium of
IL2-expressing MSCs. Furthermore, induced expression of IL2 in MSCs concomitantly
upregulated transcription and protein expression of pro-tumorigenic factors such as MMP2
and TGF-β1 in MSCs.

There are currently no clinical trials investigating the use of MSCs for the delivery of
therapeutic agents in NB patients. Clinical trials in the context of other tumors are listed in
Table S1A–C. Results from these studies are not (yet) available.

2.2. MSCs Delivering Oncolytic Viruses

Next to the above-mentioned anti-cancer agents, MSCs are also used as delivery
vehicles for oncolytic viruses. The latter are virus strains that are either naturally non-
virulent in humans or genetically engineered to ensure that they replicate selectively in
tumor cells (reviewed by Fukuhara et al. [68]). This strategy has several advantages in
addition to the targeting effect. Firstly, the immunosuppressive properties of MSCs facilitate
a balanced immune response, which is crucial for the success of oncolytic virotherapy:
A too strong “anti-viral” immune response needs to be avoided in order for the virus to
lyse the tumor cells efficiently. After lysis, tumor-specific antigens are released and provoke
an “anti-tumor” immune response [69]. The immunomodulatory function of MSCs could
thus help to delay the immune response against the virus sufficiently, allowing a decent
anti-tumor response. Secondly, in contrast to systemic injection of oncolytic virus, the use
of MSCs hides the virus from the immune system before it becomes active and causes a
local inflammatory response despite the immunosuppressive environment created by the
tumor. This non-systemic immune response allows the application of several treatment
rounds [70].

Oncolytic adenovirus-infected MSCs have a viability window of 48–72 h after infec-
tion [71] and studies in ovarian cancer have shown that this time period is sufficient to
reach the tumor site [72]. The feasibility of oncolytic virus-infected MSC products has been
proven pre-clinically [73] and showed only small, self-limiting side effects, such as fever,
chills, and discomfort in exploratory studies in NB patients [71,74] (Table 1A,B). In the first
study, multi-dose systemic infusion of irradiated oncolytic virus-loaded MSCs (“CELYVIR”)
led to complete response (CR) in one out of four patients and even reduced metastatic
lesions in the BM of that patient [71]. In the second study, 5 out of 12 patients achieved
a positive clinical response (either complete, partial, or stabilization) [74]. Interestingly,
in both studies, MSCs had been irradiated before transfusion into the patient in order to
avoid tumor-supportive effects of MSCs.

Further beneficial effects of the CELYVIR treatment in NB therapy were proven in a
phase I/II clinical trial of adult and pediatric patients with a variety of relapsed/refractory
tumors [70] (Table 1C). After intravenous application of CELYVIR, two out of four NB pa-
tients in this study showed disease stabilization. Furthermore, persistent detection of viral
RNA in the blood of most pediatric patients indicated a successful delivery and replication
of the virus at the tumor site. An increasingly higher number of circulating lymphocytes
was found in patients that responded to the therapy, suggesting the importance of an active
immune system [70]. Another study with CELYVIR identified the T-cell count of patients
prior to therapy, a lower pro-inflammatory profile (including lower expression of IFN-γ,
IL6, IL8, IDO, and VEGFα) and expression of adhesion molecules (CXCR1, CCR1) on MSCs
as factors predicting response to the therapy [74]. Furthermore, immune infiltration and
T-cell diversity are suggested to play an important role [75]. Interestingly, a study compar-
ing the effect of CELYVIR with syngeneic and allogeneic MSCs in mouse models found a
similar effect of both, proposing a potential use of donor-derived MSCs for oncolytic virus
delivery in patients in future clinical trials [76].
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Table 1. Overview of studies and clinical trials (registered on clinicaltrials.gov; accessed on 20 January 2021) investigating the potential use of MSCs as delivery vehicles for oncolytic
viruses in neuroblastoma.

Phase Anti-Cancer
Agent

Properties and Dose of
MSCs

Administration
Route Nr. of Patients Disease

Context Key Findings Publication/Status ClinicalTrials.gov
Identifier Year

Delivery of Oncolytic Viruses in MSCs

A n/a
ICOVIR-5, an

oncolytic
adenovirus

autologous irradiated
BM-MSCs (“CELYVIR”),

2–4 doses of each
0.1–0.9 × 106 cells/kg

“infused
through a

central line”

n = 4, single-arm
study

Therapy-
resistant NB

patients

CR (>3 years) in 1 out of 4
patients, virus detected in

BM biopsy

García-Castro
et al. [71]

n/a (exploratory
study) 2010

Very low systemic toxicity

B n/a
ICOVIR-5, an

oncolytic
adenovirus

autologous irradiated
BM-MSCs (“CELYVIR”),

4–70 doses of each
150–2640 × 106 cells

“systemic
infusion”

n = 12,
single-arm

study
NB

In vitro assays: adhesion
molecules like CXCR1 and
CCR1 significantly higher

in MSCs of responders

Melen et al. [74] n/a (compassionate
use program) 2016

Mild and auto-limited
virus-related toxicities;

none had grade 3+
toxicities

Clinical response (SD, PR,
CR) in 5 out of 12 patients

C I/II
ICOVIR-5, an

oncolytic
adenovirus

autologous irradiated
BM-MSCs (“CELYVIR”),

2 × 106 cells/kg
(children) or

0.5–1 × 106 cells/kg
(adults)

intra-venous

n = 9 (pediatric),
n = 7 (adult);
single-arm

study

Metastatic and
refractory

tumors,
including NB

Adenoviral replication
detected by PCR in 7 out
of 9 pediatric patients but

in none of the adults

Ruano et al. [70] NCT01844661 2013

SD in 2 out of 4 patients

Increasingly higher
numbers of circulating

lymphocytes (B and T) in
responders compared to

non-responders

No grade 2–5 toxicities
were reported.

IL12–Interleukin-12, MTD–maximum tolerable dose, DLT–dose-limiting toxicities, OS–overall survival, SD–stable disease, PR–partial response, CR–complete response.

clinicaltrials.gov
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Two other clinical trials studying oncolytic virus delivery by MSCs in the context of
other tumor types are listed in Table S1D,E.

3. MSCs in Hematopoietic Stem Cell Transplantation

High-dose chemotherapy is an important part of the standard-of-care treatment for
high-risk NB patients because it allows efficient elimination of tumor cells and thus reduces
the risk of relapse caused by minimal residual disease (MRD) [10]. To ensure hematopoietic
recovery after MAT, HSPCs are reinfused after the chemotherapy by means of ASCT [77].
MSCs might have the potential to provide an overall functional BM niche after MAT
by supporting the engraftment of HSPCs in the BM hematopoietic niche and repairing
the damaged tissue [78], (Figure 1 3©). Enhanced in vivo HSPC long-term engraftment
facilitated by MSCs was first demonstrated in mouse models [79], and this supportive
potential is at present investigated in multiple clinical trials (Table 2). Here, a distinction
must be made between the use of either autologous, allogeneic, or third-party MSCs to
support the engraftment of either autologous or allogeneic HSPCs. Furthermore, it is
important to note that third-party MSCs can also be infused at a later time to treat graft-
versus-host disease (GvHD) after allogeneic HSCT [80,81].
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Table 2. Overview of clinical trials registered on clinicaltrials.gov; accessed on 20 January 2021 investigating a potential benefit of MSCs in HSCT in neuroblastoma.

Phase Details Properties and Median
Dose of MSCs Nr. of Patients Disease Context Key Findings Publication/Status ClinicalTrials.gov

Identifier Year

allo-MSCs

A I

Allogeneic MSCs
co-transplanted

with haplo-HSCT
and subsequent

DLI

Allogeneic BM-MSCs,
0.75 × 106 MSC/kg

n = 5 (all received
MSCs, no control)

NB (re-
lapsed/refractory)

2 of 5 patients achieved
long-lasting remission (40

and 42 months)
Toporski et al. [82] NCT00790413 2008

Neutrophil recovery in all
children (median 13 days),

platelet recovery in 4/5
children (12 days)

Rapid immune
reconstitution of NK- and

T cells

No primary aGVHD, but
4/4 patients had

secondary GvHD after DLI

B I

Allogeneic MSCs
co-transplanted

with haplo-HSCT
and DLI

Allogeneic MSCs, no
details or dose mentioned

MSC(+): n = 9,
MSC(-): n = 17

NB (re-
lapsed/refractory)

Primary engraftment in
96% (25/26) of the patients Illhardt et al. [83] NCT00790413 2018

GvHD: no significant
differences between MSC

and non-MSC group

DLI–donor lymphocyte infusion, haplo-HSCT–haploidentical HSCT, aGvHD–acute graft-versus-host disease.

clinicaltrials.gov
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3.1. Allogeneic MSCs

By far the most frequent application of MSCs during HSCT is that of “allogeneic”
MSCs. In the context of ASCT, allogeneic MSCs have been co-infused to treat HSPC
engraftment failure. Both a case report of acute myeloid leukemia (AML) patient with
incomplete engraftment and BM failure [84] and a phase II clinical trial in patients with
hematologic malignancies [85] have demonstrated successful hematopoietic reconstitu-
tion after infusion of allogeneic MSCs, defined by neutrophil-, granulocyte-, and platelet
recovery (Table S2A,B).

Allogeneic MSCs are predominantly used during allogeneic HSCT in the treatment
of various malignancies. Of note, in the case of NB, allogeneic HSCT is only investigated
for relapsed patients, with the desired graft-versus-tumor (GvT) effect as a possible indica-
tion [86], and is thus far less frequently applied than ASCT [87]. Possible complications of
allogeneic HSCT are induction of GvHD due to donor T-cell reactivity against the recipient
and insufficient engraftment of HSPCs, resulting in the delayed recovery of the hematopoi-
etic system. MSCs can be co-transplanted in order to (i) alleviate the risk of GvHD due
to their immunomodulatory functions and (ii) facilitate donor HSPC engraftment [88].
A single-arm study by Lazarus et al. in 46 patients with hematologic malignancies proved
the safety and feasibility of such allogeneic MSC co-transplantation [89].

In NB, clinical trials investigating HLA-mismatched haploidentical HSCT accompa-
nied by donor lymphocyte infusion (DLI) utilized this approach of MSC co-infusion. In
a first report, hematologic recovery and immune reconstitution for NK- and T cells was
successful in 5/5 patients and none experienced primary GvHD. The precise contribution
of MSCs to these results, however, cannot be assessed since this single-arm study did not
contain a control group without MSC co-infusion. MSCs did not prevent a secondary,
DLI-induced GvHD, which was, however, accompanied by a favorable GvT effect [82]
(Table 2A). In a subsequent study [83] (Table 2B), one of two cohorts did not receive MSC
co-transplantation—interestingly, primary HSPC engraftment was equally successful in
both cohorts (25/26 patients). Furthermore, no significant difference in the development of
grade II-IV GvHD or in event-free survival was found between the two cohorts. These re-
sults imply that expected beneficial effects of MSCs (prevention of GvHD and enhancement
of hematopoietic engraftment) were minimal in this case. Of note, a favorable GvT effect,
as observed in the previous study [82], was in this case insufficient for preventing relapse,
which occurred in 75% of the patients. The authors hypothesized that the discrepancy in
GvT effects might be due to a high tumor burden in the second study and that induction of
remission prior to transplantation is, therefore, important [83]. Another explanation could
be a difference in the treatment regimen of allogeneic MSCs in terms of dosage and MSC
tissue source, but the latter has not been described in detail by Illhardt et al. [83].

Further evidence for the potential of allogeneic MSCs to support engraftment after al-
logeneic HSCT and their anti-GvHD effect can be deduced from studies and clinical trials in
patients with other malignancies—no beneficial effect of allogeneic MSC co-transplantation
on neutrophil- and platelet recovery or GvHD, similar to the result of Illhardt et al. [83],
was observed in a pilot clinical trial with pediatric patients of acute leukemia undergoing
unrelated UCB transplantation [90] (Table S2C). Two studies with allogeneic BM–MSCs
co-transplanted with UCB [91] or BM-/PB-derived HSPCs [92] reported successful preven-
tion of grade III-IV acute GvHD upon MSC co-transplantation, but likewise, no significant
effect of MSCs on HSPC engraftment was observed [91] (Table S2D,E). Importantly, the
latter study described a significantly increased relapse rate in the MSC-group compared to
the control group, despite a comparably low dosage of MSCs [92]. More promising results
regarding the improvement of HSPC engraftment were obtained in three clinical studies
investigating the use of “off-the-shelf”, UC-derived MSCs in small cohorts of patients with
hematologic diseases undergoing UCB transplantation [93–95] (Table S2F–H). Compared
to a control group, the patients receiving MSC co-transplantation showed a significantly
faster recovery of neutrophil- and platelet counts [94]. In all three studies, no significant
effect of GvHD prevention was apparent from MSC co-transplantation [93–95].
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When co-transplanting MSCs, the most common administration route is intravenous
injection. An alternative strategy, intra-bone injection, has been studied in the last few
years in three clinical trials. These studies (Table S2I–K) are still active and results regarding
safety and effectiveness of this approach or the superiority compared to intravenous
administration are not available yet. Goto et al. [96] (Table S2K) recently reported that no
adverse events related to intra-BM injection of MSCs were observed and therefore assessed
this treatment strategy to be safe and feasible. Grade II-IV GvHD did not develop in any of
the MSC-treated patients, while it did occur in 50% of the control group. No significant
improvement of neutrophil- or platelet recovery could be observed compared to the control
group [96].

Finally, third-party MSCs can also be of use ex vivo, without being transplanted into
the patient [97,98]. They have been shown to stimulate ex vivo expansion of allogeneic
HSPCs derived from UCB, which then had a favorable effect on platelet- and neutrophil
recovery in patients upon transplantation compared to non-expanded HSPCs [99]. Inter-
estingly, MSC-derived extracellular vesicles (EVs) present an efficient cell-free alternative
for enhancement of HSPC ex vivo expansion (Ghebes et al., accepted for publication [100],
and recently reviewed by Budgude et al. [101]). Further details regarding the experimental
results of each study mentioned in this section as well as other ongoing clinical trials (rows
L–N) can be found in Table S2.

3.2. Autologous MSCs

Autologous MSCs are not frequently used in clinical settings yet due to potential
damage by prior high-dose chemotherapy [102–105] and treatment delays due to the need
for ex vivo expansion, which can be intolerable for patients with aggressive diseases [70].
Two studies in breast cancer [106] and malignant lymphomas [107] have explored co-
infusion of autologous MSCs during ASCT. In a phase I/II clinical trial with advanced
breast cancer patients, intravenous co-infusion of autologous BM–MSCs was shown to
entail rapid neutrophil- and platelet recovery (8 days and 8.5 days, respectively) without
any infusion-related immediate or delayed toxicity [106] (Table S2O). Importantly, 4 out of
32 patients had BM metastases at the time of BM aspiration and tumor cells were detected
during ex vivo expansion of MSCs. In two of those four patients, the tumor cell number
could not be reduced during the expansion protocol and MSCs were not reinfused. In a
controlled clinical trial with lymphoma patients, autologous MSCs were co-infused during
ASCT and led to an improved early lymphocyte recovery (ELR) compared to standard
ASCT without MSCs [107] (Table S2P). The positive effect in this study was especially
apparent when the number of reinfused HSPCs or lymphocytes was low—in these cases,
MSC co-transplantation improved ELR 2.4- and 1.7-fold, respectively, compared to a group
that did not receive MSCs [107]. This is an interesting observation because mobilization and
collection of a sufficient amount of HSPCs from PB is a common obstacle in NB treatment
(unpublished results from our group; [108]). Additionally, it has been demonstrated in
non-human primates that intra-bone co-transplantation of autologous MSCs and HSPCs
leads to improved engraftment of HSPCs [109].

4. Safety and Feasibility of MSC Therapy in NB
4.1. Safety of MSC (Co-) Infusion

When applying MSCs as a drug delivery vehicle or to improve HSCT outcome,
safety and toxicity are crucial to consider. The studies reviewed here (Tables 1 and 2,
Tables S1 and S2) demonstrate the safety and tolerability of MSC (co-)infusion by means
of the absence of infusion-related toxicities, no increase in relapse frequency, and no
occurrence of transfusion-related mortality (TRM). Furthermore, a systematic review from
2012 [110] evaluated 36 clinical trials with patients of various clinical conditions, eight
of which were randomized control trials, and found no association between MSCs (both
autologous and allogeneic) and adverse effects such as infusion-related toxicity, organ
system complications, infection, death or malignancy; only an association to transient fever.
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However, none of these clinical trials included cancer patients. Thus, additional potential
adverse effects specific to the tumor context have to be taken into account when discussing
the safety of MSC therapy in NB.

4.2. Influence of MSCs on Tumor Progression

In the context of various cancers, MSCs have been demonstrated to act tumor-
supportive [40–42]. In NB, we have described an MSC subpopulation that is specifically
present in metastasized BM, for which a tumor-related function is conceivable [105]. In a
recent review, we have compiled evidence for tumor-supportive and -suppressive functions
of MSCs in NB and other cancer types [44]. Based on these insights, it is important to rule
out the risk of unintentionally supporting tumor progression before the clinical application
of MSC therapy (Figure 1 4©). Relevant factors influencing whether the MSCs’ effect is
tumor-supportive or -suppressive might be dose and timing of MSC infusion [111] and
tissue origin of MSCs [112]. A systematic review by Christodoulou et al. revealed that
UC–MSCs entail a smaller risk of unintentional tumor support than BM– or AT–MSCs [112].
According to a hypothesis of Klopp et al. [111], injection of MSCs into organisms with
existing tumors is more likely to entail tumor-growth inhibition, while co-injection of MSCs
and tumor cells bears a higher risk of promoting tumor progression. In that case, the risk of
the therapeutic use of MSCs in HSCT and as delivery vehicles for patients with established
tumors would be minimal. In line with this hypothesis [111], investigations in animal
models found no tumor-aggravating effect of intra-cardially administered allogeneic MSCs
on precancerous lesions [113] or when using MSCs as a delivery vehicle for IFN-γ in an NB
mouse model [59]. While an in vitro study with MSCs engineered to express IL2 did show
conflicting results regarding tumor progression, [67], the tumor-targeted production of anti-
tumor agents in MSCs is likely to overcome any (potential) endogenous tumor-supporting
effect of MSCs in vivo.

The risk of unintentional tumor support in HSCT is especially relevant in the context
of autologous, BM-derived MSCs because BM metastases increase the risk of altered,
potentially tumor-supportive MSCs [105], and BM aspirations can contain contaminating
tumor cells [106]. Allogeneic MSCs, therefore, present a more promising alternative to
a tumor-independent graft. In the context of HSCT in NB, there is to date no evidence
for adverse effects of MSC therapy on tumor progression, because this analysis was not
among the outcome measures of relevant studies [82,83]. In earlier years of HSCT, the
standard treatment procedure used to be a full allogeneic BM transplant [114], which
naturally entailed a co-transplantation of allogeneic MSCs to the recipient, as opposed to
peripheral blood stem cell (PBSC) transplants applied nowadays, no increase in relapse
frequency was found between BM- compared to PBSC transplants in a phase III trial with
patients of hematologic malignancies [115], suggesting that allogeneic MSCs do not pose a
significant risk. However, a clinical trial studying allogeneic MSCs co-transplanted with
allogeneic HSCT for hematologic malignancies determined a three-fold increased relapse
rate of patients that were co-transplanted with HLA-matched sibling MSCs [92].

One option to diminish the risk of a tumor-supportive role of MSCs is irradiation of
MSCs prior to infusion. Low-dose irradiation between 2 Gy and 15 Gy has been shown
to diminish the immunosuppressive properties and induce anti-tumoral effects of murine
BM–MSCs in vivo, determined by reduced tumor volume and prolonged survival of
glioma-bearing mice [116]. MSC irradiation was also applied in studies utilizing MSCs
as a delivery vehicle for oncolytic viruses to treat NB [70,71,74], but at a higher dose
(30 Gy). Whether this irradiation dose entails similar tumor-suppressive functionalities
of MSCs has not been determined. Interestingly, the authors did find the migratory
capacity of MSCs to be decreased upon 30-Gy irradiation, but this did not seem to impede
the success of virotherapy since irradiated MSCs of responders versus non-responders
had similar (reduced) migratory capacities [74]. Another approach of controlling the
MSCs’ pro- versus anti-tumorigenic behavior is via their immunomodulatory capacities—
by stimulating either toll-like receptor (TLR) 4 or 3, a priming of MSCs toward a pro-
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inflammatory MSC1- or an immunosuppressive MSC2 subtype, respectively, has been
shown to be possible, similar to the TLR-based classification of monocytes into M1- and M2
subsets [117]. A subsequent study in an ovarian cancer xenograft mouse model showed
that indeed infusion of human MSC1 subtypes attenuated tumor growth, while MSC2
subtypes increased tumor growth [118].

4.3. Cell-Free Approach Using Extracellular Vesicles

An alternative way to minimize the risk of tumor-supportive effects of MSCs and
overcome limitations in the biodistribution of systemically applied MSCs is the use of
MSC-derived extracellular vesicles (EVs), which partly represent the protein, lipid, and
nucleic acid content of their parent cell [119]. Both human and murine MSC–EVs were
shown to reverse BM radiation damage in a mouse model [120] and human MSC–EVs
successfully reached radiation-damaged BM [121] and areas of acute kidney injury [122]
in mice. Furthermore, EVs of TRAIL-engineered MSCs showed anti-tumor activity in a
melanoma mouse model [52] and EVs obtained from different cell types were shown to
function as potential delivery vehicles for oncolytic viruses [123,124]. One case study has
also proven the feasibility of applying MSC-derived EVs in humans—a patient suffering
from GvHD had no severe side effects of the EV treatment, and GvHD symptoms were
significantly improved within two weeks [125].

4.4. Influence of Administration Route on MSC Migration

The biodistribution of MSCs is a crucial aspect when assessing the feasibility of
their therapeutic use. In animal studies, MSCs are often injected intraperitoneally, subcuta-
neously, or even intratumorally, which yields superior homing efficiencies than intravenous
administration [57,126,127]. While a few clinical trials in adult tumors also apply intraperi-
toneal (Table S1B,D) or intratumoral (Table S1A) administration of MSCs, the most feasible
route in pediatric patients is a systemic administration through the vascular system. In the
case of intravenous administration, a major part of MSCs gets entrapped in the lungs and
only a small percentage reaches the actual target tissue [48,128,129]. This might be caused
by the MSCs’ size and nuclear shape after ex vivo expansion [130,131], and their interaction
with adhesion molecules in different tissues [132]. Intra-arterial injection diminishes this
first-pass effect but bears the risk of microvascular occlusions [130,133]. Interestingly, intra-
bone co-transplantation of MSCs was shown to enhance HSPC engraftment, even at BM
sites distant to the site of transplantation, in non-human primates [109]; an administration
route that is also clinically evaluated in cancer patients [96] (Table S2I–K).

Notably, MSCs are often undetectable after systemic administration but, nevertheless,
immunomodulatory effects can be observed. This suggests that the MSCs’ immunomodu-
latory function is mediated by an indirect mechanism, for example via the polarization of
macrophages toward the immunosuppressive M2 subset by MSC-derived factors such as
indoleamine 2,3-dioxygenase (IDO) and chemokine ligand 2 (CCL2), and/or by phagocytic
uptake of MSC debris after induced apoptosis [48,134–136] (Figure 1 5©).

4.5. MSC Engraftment in the BM after HSCT

Research results obtained in mouse models confirm the ability of MSCs to migrate to
wounded microenvironments [36] and radiation-damaged tissue [137,138]. However, both
autologous and allogeneic MSCs might not permanently engraft in the BM [84,91,96,139,140].
In many HSCT studies, the level of MSC engraftment is not assessed, and it can be difficult to
do so due to restrictions in sampling options and detection methods [90]. Interestingly, excep-
tions with successful engraftment are seen, for example, upon allogeneic BM transplantation
in the treatment of osteogenesis imperfecta (OI) [141] and in allogeneic MSC transplantation in
the treatment of severe acute anemia (SAA) [142], both of which resulted in successful, albeit
low, MSC engraftment levels for up to three months. Leibacher et al. suggested that allogeneic
MSC engraftment might depend on the existence of “empty niches” [143], which are created
in the context of OI and SAA due to stromal/BM defects underlying those diseases. In the
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context of HSCT, this condition might be met when parts of the stromal compartment have
been affected/eliminated by MAT. A comparison of high-dose chemotherapy-treated and
untreated BM of patients with hematologic malignancies indeed demonstrated a functional
impairment of the stromal compartment [102,103]. Similarly, MSCs were shown to be highly
sensitive to the chemotherapy compound paclitaxel [104] and to be reduced in quantity after
induction therapy in NB patients [105]. Another factor influencing engraftment could be the
dose of MSCs, with higher doses increasing the chance for successful engraftment [142].

However, even if MSCs do not engraft (or are at least not proven to engraft), they exert
beneficial functions nevertheless, as demonstrated in the above-mentioned studies and
trials (Table 2; Table S2), suggesting that even a temporary presence of donor MSCs has
some effects and/or that indirect mechanisms via other cell types are involved, as discussed
in the previous paragraph. The latter effect would make permanent MSC engraftment
redundant and explain the, often impossible, post-transplantation detection of MSCs.

4.6. Tumor-Tropism of MSCs upon Use as Delivery Vehicles

Similarly, the question arises whether therapeutically engineered MSC products reach
NB tumor sites effectively for the delivery of anti-cancer agents (Figure 1 4©). The tumor-
tropism of MSCs from different sources has been studied in animal models and one patient
study (an overview is shown in Table 3 and Table S3). The success of tumor homing
depends greatly on the administration route (as discussed above) and likely on other
factors such as tissue origin, surface molecule expression, cell cycle phase, and passage
number [21,144,145]. Tracking of MSC migration is facilitated in animal models for example
by firefly luciferase-labeled cells [36] but presents a challenge in human patients in terms of
tissue penetration, GMP standards, and costs. Non-invasive options for cell tracking with
clinical potential (involving e.g., MRI/PET scans) have been reviewed by Hong et al. [146].
There is to date no literature available from clinical trials examining the tumor-tropism
of MSCs in NB patients. A phase I clinical study with prostate cancer patients aiming to
investigate specifically the tumor-tropism of allogeneic MSCs infused the MSCs prior to
prostatectomy, which allowed for assessment of MSC presence in the resected tumor tissue.
No graft DNA was detectable in the tumor tissue of all seven patients, and the study was
prematurely terminated [147]. A therapeutic effect of MSC-delivered anti-cancer agents and
oncolytic viruses, however (see Table 1 and Table S1) suggests at least a transient presence
of MSCs at the tumor site [59,70]. Homing efficiencies could be improved by modifying
MSCs through genetic engineering or cell surface modifications prior to transplantation
(reviewed by Krueger et al. [148]). For example, modifying MSCs to induce/increase the
expression of adhesion molecules such as CCR1 and CXCR1 might improve their tumor-
homing efficiency, as suggested by studies in glioma [149] and with oncolytic virus-loaded
MSCs in NB [74]. This effect might be evoked by improved chemotaxis towards the source
of their respective ligands, CCL5 and IL8, both of which are produced by (NB) tumors
and/or the tumor microenvironment [40,150,151]. Furthermore, the migratory capacity of
MSCs was shown to be influenced by the cell cycle [21], which suggests that the selection
of cells in the G1 phase or experimental modulation of the cell cycle could entail improved
migration efficiencies.

For NB and other malignancies that arise in or metastasize to the BM, specific targeting
of this secluded niche is especially crucial. Strategies currently under development are
extensively reviewed by Mu et al. [152] and include but are not limited to (i) drug-carrying
liposomes and micro-/nanoparticles, which are phagocytosed by BM macrophages or
(ii) which are modified to bind with high affinity to the bone mineral; furthermore (iii)
antibody-conjugated immunocytokines such as IL2 can be targeted to antigens of the
neoangiogenic tumor vasculature in the BM, an approach currently evaluated in a phase
I/II trial for solid tumors [153]. Whether it is possible to similarly apply such approaches
to modify MSCs (or MSC-derived exosomes) as the drug carrier to enhance BM-tropism
remains to be elucidated. Alternatively, MSC targeting to the BM could be achieved by
overexpression of CXCR4, which has been demonstrated in mouse models to specifically



J. Pers. Med. 2021, 11, 161 14 of 23

enhance migration and engraftment of AT–MSCs into the CXCL12-abundant BM [154,155].
Another interesting approach is to convert the MSC cell surface glycoprotein CD44 into its
sialofucosylated glycoform, called hematopoietic cell E-selectin/L-selectin ligand (HCELL),
which then binds to vascular E-selectin within specialized BM vasculature and improves
BM infiltration [156].

Table 3. Overview of studies investigating tumor-tropism of MSCs in neuroblastoma.

Model MSC Origin Labeling
Method

Administration
Route

Maximum
Follow up

Detection in
Tumor Publication

NB xenograft
model in

NOD/SCID
mice

human, BM Radiolabeling IP 48 h Yes Cussó et al.
[126]

TH-MYCN
transgenic

mouse
human, AT Near-IR IP, IV 24 h Only i.p. Kimura et al.

[127]

TH-MYCN
transgenic

mouse
mouse, BM GFP IP 2 weeks Yes Maniwa et al.

[57]

IP–intraperitoneally; IV–intravenously, AT–adipose tissue, BM–bone marrow.

4.7. Influence of Ex Vivo Expansion of MSCs

One obstacle when considering the therapeutic use of MSCs is the need for cultural
expansion to reach the target therapeutic dose (Figure 1 1©), which typically ranges around
1–2 × 106 cells per kilogram body weight, and becomes especially critical with increasing
MSC donor age [157]. The majority of data on the clinical use of MSCs is thus obtained
based on ex vivo expanded MSCs. Even though early experiments in mouse models found
a similar effect of non-expanded MSCs on HSPC engraftment compared to that of culture-
expanded MSCs [158], plastic adherence during ex vivo expansion and the culture medium
used might change the phenotype and functionality of these MSCs [159–161]. For example,
altered Wnt signaling [98], adhesion molecule expression, and size of MSCs after culture
expansion have been observed [130,133], which might lead to lung entrapment and the risk
of microvascular occlusions after intravascular injection (Figure 1 2©). Supporting these
considerations, primary murine MSCs have been shown to lose their BM homing ability
following culture [144]. Similarly, niche damage repair, intra-bone HSPC transplantation
efficacy, and long-term engraftment of primary BM–MSCs have been shown to be superior
to their ex vivo expanded counterparts [162]. An interesting approach to circumvent the
adverse effects of ex vivo expansion is the reprogramming of MSCs into a “revitalized”
state using specific transcription factors [163]. These modified MSCs have been shown
to regain their hematopoietic support function, as determined by improved repopulation
capacity upon transplantation of HSPCs co-cultured with these MSCs into a mouse model.

5. Future Directions and Concluding Remarks

An overview of the current applications of MSCs in tumor therapy and associated
risks and challenges is given in Figure 1. Current limitations when using MSCs as delivery
vehicles for anti-cancer agents include the low bioavailability after systemic administration.
In NB, targeting not only the primary tumor but especially the BM metastases is of critical
importance to effectively eliminate the minimal residual disease, which is the main cause for
relapse [164]. This has successfully been shown in one NB patient in a study with oncolytic
virus-loaded MSCs (“CELYVIR”) [71] and raises hope that such BM targeting is feasible.
Various ways of improving tumor-tropism of MSCs have been suggested, including genetic
engineering [50,156] or radiation of MSCs [165] to enhance their migration to the BM or
tumor site.
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In the context of HSCT, MSC co-transplantation can have beneficial effects. Homing
to the BM and engraftment therein need to be studied in detail in order to understand
the mode of action and the resulting consequences on treatment outcome. Indirect, im-
munomodulatory effects on other immune cells, independent of successful MSC engraft-
ment, have been suggested to be responsible for the beneficial effects of MSCs, especially
in preventing GvHD upon intravenous injection [48].

For both the delivery of anti-cancer agents and co-transplantation in HSCT, potential
tumor-supportive effects of MSCs remain the biggest risk, especially in the case of BM-
derived autologous MSCs in NB. Irradiating MSCs prior to infusion [70,71,74,116] and MSC-
derived EVs as a cell-free alternative [52,120–125] could reduce the risk of unintentionally
supporting tumor progression. The use of EVs furthermore presents a potential alternative
to provide the beneficial effects of MSCs to the BM or tumor site [121].

In conclusion, the interest in applying MSCs as an adjuvant to cancer therapy has risen
fast in the last years due to scientific successes in preclinical in vitro and animal model
studies. Especially for high-risk NB patients, who have a poor prognosis despite an intense
multi-modal treatment, oncolytic virotherapy might be a valuable addition to conventional
therapy. MSC-mediated delivery of other anti-cancer agents in the NB context, however, is
currently only evaluated in preclinical studies and requires further research before it can be
safely applied in the clinic. Similarly, co-transplantation of allogeneic MSCs during HSCT
has barely been studied in NB patients and requires further evaluation in larger controlled
clinical trials.
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in HSCT in context of hematological diseases and cancer. Table S3: Overview of studies investigating
tumor-tropism of MSCs in other solid tumors.
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