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Radiomics and machine learning 
for the diagnosis of pediatric 
cervical non‑tuberculous 
mycobacterial lymphadenitis
Yarab Al Bulushi1,2,4, Christine Saint‑Martin2, Nikesh Muthukrishnan1, Farhad Maleki1, 
Caroline Reinhold1,2 & Reza Forghani1,2,3*

Non-tuberculous mycobacterial (NTM) infection is an emerging infectious entity that often presents 
as lymphadenitis in the pediatric age group. Current practice involves invasive testing and excisional 
biopsy to diagnose NTM lymphadenitis. In this study, we performed a retrospective analysis of 249 
lymph nodes selected from 143 CT scans of pediatric patients presenting with lymphadenopathy at 
the Montreal Children’s Hospital between 2005 and 2018. A Random Forest classifier was trained 
on the ten most discriminative features from a set of 1231 radiomic features. The model classifying 
nodes as pyogenic, NTM, reactive, or proliferative lymphadenopathy achieved an accuracy of 72%, 
a precision of 68%, and a recall of 70%. Between NTM and all other causes of lymphadenopathy, the 
model achieved an area under the curve (AUC) of 89%. Between NTM and pyogenic lymphadenitis, the 
model achieved an AUC of 90%. Between NTM and the reactive and proliferative lymphadenopathy 
groups, the model achieved an AUC of 93%. These results indicate that radiomics can achieve a high 
accuracy for classification of NTM lymphadenitis. Such a non-invasive highly accurate diagnostic 
approach has the potential to reduce the need for invasive procedures in the pediatric population.

Non-tuberculous mycobacteria (NTM) constitute an emerging infectious entity with increasing annual incidence 
in the pediatric and adult age groups1. In pediatric patients, NTM usually manifests as lymphadenitis, which 
is most often of the cervical lymph nodes2–6. The most common age group affected by NTM lymphadenitis is 
children of 1–5 years of age, and the disease is often indolent1,7–10. The annual incidence of NTM lymphadenitis 
has been reported to reach as high as 3.7 new cases per 100,000 children in children less than 5 years of age1. 
Recent reports have also suggested increased annual incidence in older children with reports of increased annual 
incidence at ages 11–14 years and new clusters of cases in patients aged 8–1511,12. Although the clinical picture 
of most NTM lymphadenitis cases is similar, it is not a straightforward diagnosis given the potential overlap 
with other infectious and non-infectious entities such as pyogenic lymphadenitis, tuberculous lymphadenitis, 
and proliferative lymphadenopathy13,14. The clinical presentation is typically of unilateral lymphadenopathy5,10. 
It is often painless and involves the submandibular and high anterior cervical lymph nodes5,8,10. Superficial skin 
extension has been reported in up to 15% of patients demonstrating spontaneous drainage through a sinus tract5. 
Prodromal symptoms are often absent and have been reported in less than 25% of patients2–6,15. The lack of spe-
cific clinical markers has led to relying on mostly invasive techniques for the diagnosis of NTM lymphadenitis 
in current clinical practice5,13,15–25.

Using current approaches, the diagnosis is usually delayed with up to 8–12 weeks of delay prior to specialist 
management5. It is imperative to exclude other possible organisms, such as TB, to guarantee proper management6. 
Nonetheless, diagnostic approaches such as the Tuberculin Skin Test (TST), Fine Needle Aspiration, or exci-
sional biopsy have limitations in terms of sensitivity and specificity as well as the inadvertent complications of 
invasive testing5,6,18,21,22. The role of Purified Protein Derivative (PPD) has been evaluated with variable reported 
sensitivity of 5–50% for NTM and only improved role if cut off values are lowered which creates confusion in 
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patients where prior TB exposure happened4,6,10,13,26,27. Fine Needle Aspiration (FNA) culture yield is reported 
at approximately 46%, with the predominant role of FNA in cases where malignancy is suspected13,28. A 5 year 
retrospective analysis indicated that as many as 41% of presumed NTM patients are treated with an unproven 
diagnosis3. Even following excisional biopsy and despite 100% specificity, the culture sensitivity has been reported 
to be around 41.8%, and the PCR sensitivity is reported to be 71.6%28. Acid-fast Bacilli (AFB) stains have also 
been utilized with sensitivity in the range of 46–85% and specificity in the range of 80–100%28,29.

Certain signs have been proposed as potential imaging markers of NTM lymphadenitis. On limited case 
series, findings such as asymmetric lymphadenopathy, peripherally enhancing centrally cystic nodes, and often 
minimal surrounding inflammation with overlying skin thickening have been detected in the majority of reported 
cases of NTM lymphadenitis on cross-sectional imaging16,24. NTM lymphadenitis has also been associated with 
hypoechogenicity and intranodal liquefaction on ultrasound19. These imaging findings are not considered spe-
cific; therefore, diagnostic models rely on the clinical and invasive test results5,16–19,21–25. More reliable and repro-
ducible noninvasive image-based biomarkers that can increase accuracy for the diagnosis of NTM lymphadenitis 
would therefore be of great interest. Figure 1 illustrates an example of a visually difficult to distinguish NTM 
lymphadenitis from a pyogenic lymphadenitis.

Radiomics refers to the use of medical images as mineable data and high-throughput extraction of quantitative 
features from those images for analysis and clinical decision support30–33. Machine learning can be a powerful 
tool for constructing prediction algorithms using such extracted features34–36. Radiomics aims to analyze and 
extract various complex quantitative features, many of which may not necessarily be evident or used based on 
qualitative image analysis alone30,37–44. Several studies have demonstrated the potential utility of image-based 
radiomic biomarkers for the evaluation of different malignancies. Recently more publications discussing the 
utility of radiomics and machine learning for the evaluation of lymph nodes have demonstrated the utility of 
such approaches33,45–57. Lymph node radiomic features have been suggested to be highly predictive of malignant 
versus benign etiology33,45,46,48,50,54,58. One study carried out in the pediatric population reported a sensitivity 
of up to 82.4% and a specificity of 86.2%48. Radiomic markers were also reported to be of high accuracy in the 
differentiation of the etiologies of lymphadenopathy, including a reported sensitivity of 91% and specificity 
of 93% for identifying malignant versus benign lymphadenopathy33. Also, the combination of primary tumor 
radiomics and lymph node radiomic markers has been found to have a potential added value for the prediction 
of management outcome and prognosis in lung cancer, cervical cancer, and head and neck cancers47,49,51,53,59.

The aim of this study is to develop and evaluate a radiomics-based machine learning classifier for noninva-
sive distinction of non-tuberculous mycobacterial lymphadenitis from other forms of lymphadenopathy in a 
pediatric cohort.

Results
The classifiers designed to distinguish NTM, reactive, and proliferative lymphadenopathy achieved an aver-
age accuracy of 72%, precision of 68%, recall of 70%, F1-score of 67%, and area under the curve of 90%, when 
applied to samples in the test set. We observed no improvement in performance for the model when using 3- and 
5-milimeter extensions of the contours. Table 1 shows the results for this model.

For distinction of NTM lymphadenitis from all other causes of lymphadenopathy, on the test set, the model 
achieved a precision of 65%, recall of 80%, accuracy of 82%, NPV of 91%, and area under the curve of 89%. The 
model performance from training on the extended contours are presented in Table 2. The ROC curve resulting 
from the original contours and the 3 mm extended contours were not found to be significantly different with 
a p value of 0.2114. Similar results were achieved when comparing the ROC curves resulting from the model 
developed using the original contours and the model developed using 5-milimeter extended contours with a p 
value of 0.1906.

For the distinction of NTM lymphadenitis from pyogenic lymphadenitis, on the test set, the model achieved 
a precision of 92%, recall of 92%, accuracy of 88%, NPV of 72%, and area under the curve of 90%. The model 
performance from training on the extended contours are presented in Table 3. The ROC curve resulting from 

Figure 1.   An example of a NTM Lymphadenitis diagnosis (A) and a pyogenic lymphadentis (B).
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the model developed using the original contours and the model developed using 3-milimeter extended contours 
had a p value of 0.3166. Also, comparison of the ROC curves for the model developed using the original contours 
and the model developed using 5-milimeter extended contours had a p value of 0.3131.

For distinction of NTM lymphadenitis from reactive and proliferative lymphadenopathy, on the test set, the 
model achieved a precision of 75%, recall of 83%, accuracy of 85%, NPV of 91%, and area under the curve of 
93%. The model performance from training on the extended contours are presented in Table 4. The comparison 
of the ROC resulting from the model developed using the original contours and the model developed using the 
3-milimeter extended contours led to a p value of 0.0333. The comparison of the ROC curves resulting from the 
model developed using original contours and the model developed using the 5-milimeter extended contours 
led to a p value of 0.0126.

Discussion
In our study, we have demonstrated that radiomic features can distinguish NTM lymphadenitis from other causes 
of lymphadenopathy with accuracy of 82% and an area under the curve of 89%. The detailed analysis has also 
revealed that NTM can be distinguished from the most common causes of pediatric lymphadenopathy, reactive 
and proliferative etiologies, with accuracy of 85% and an area under the curve of 93%. One of the most challeng-
ing clinical and radiological assessments is to distinguish NTM lymphadenitis from pyogenic lymphadenitis. 
The latter can be potentially treated noninvasively in contrast to the surgical excision required for NTM lym-
phadenitis. Although our sample size for pyogenic lymphadenitis was limited, the model has achieved accuracy 
of 88% and an area under the curve of 90%.

The prevailing lack of specific imaging markers and shortcomings of the invasive diagnostic techniques for 
NTM lymphadenitis highlights the need for additional noninvasive diagnostic methods for nodal evaluation. 

Table 1.   The performance of the classifier for distinguishing non-tuberculous mycobacterial, reactive, or 
proliferative lymphadenopathy. Reported results indicate the mean and standard deviation (in brackets) across 
100 runs.

Precision Recall F1 Accuracy AUC​

Contours-original 0.68 (0.08) 0.70 (0.09) 0.67 (0.08) 0.72 (0.07) 0.90 (0.04)

Contours-3 mm extension 0.64 (0.09) 0.66 (0.10) 0.63 (0.09) 0.69 (0.08) 0.87 (0.05)

Contours-5 mm extension 0.64 (0.09) 0.66 (0.10) 0.63 (0.09) 0.69 (0.08) 0.87 (0.05)

Table 2.   The distinction of NTM lymphadenitis from other causes of lymphadenopathy. Reported results 
indicate the mean and standard deviation (in brackets) across 100 runs.

Precision Recall F1 Acc NPV AUC​

Contours-original 0.65 (0.10) 0.8 (0.12) 0.71 (0.08) 0.82 (0.05) 0.91 (0.05) 0.89 (0.05)

Contours-3 mm extension 0.63 (0.12) 0.68 (0.12) 0.65 (0.10) 0.80 (0.06) 0.87 (0.05) 0.85 (0.06)

Contours-5 mm extension 0.55 (0.10) 0.69 (0.13) 0.61 (0.09) 0.76 (0.05) 0.87 (0.06) 0.81 (0.07)

Table 3.   The distinction of NTM lymphadenitis from pyogenic lymphadenopathy. Reported results indicate 
the mean and standard deviation (in brackets) across 100 runs.

Precision Recall F1 Acc NPV AUC​

Contours-original 0.92 (0.07) 0.92 (0.08) 0.92 (0.06) 0.88 (0.09) 0.72 (0.25) 0.9 (0.14)

Contours-3 mm extension 0.89 (0.09) 0.85 (0.10) 0.87 (0.07) 0.80 (0.10) 0.56 (0.26) 0.84 (0.13)

Contours-5 mm extension 0.89 (0.08) 0.81 (0.11) 0.84 (0.07) 0.77 (0.10) 0.48 (0.22) 0.78 (0.15)

Table 4.   The distinction of NTM lymphadenitis from reactive and proliferative lymphadenopathy. Reported 
results indicate the mean and standard deviation (in brackets) across 100 runs.

Precision Recall F1 Acc NPV AUC​

Contours-original 0.75 (0.11) 0.83 (0.12) 0.78 (0.08) 0.85 (0.05) 0.91 (0.06) 0.93 (0.04)

Contours-3 mm extension 0.69 (0.13) 0.72 (0.12) 0.70 (0.10) 0.80 (0.06) 0.86 (0.06) 0.87 (0.06)

Contours-5 mm extension 0.63 (0.12) 0.73 (0.12) 0.67 (0.09) 0.78 (0.05) 0.86 (0.06) 0.83 (0.07)



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2962  | https://doi.org/10.1038/s41598-022-06884-3

www.nature.com/scientificreports/

Imaging has been frequently reported as a tool for pre-operative planning rather than diagnosis5,6. A report of 
ultrasound imaging features of NTM lymphadenitis found several prevalent findings pertaining to NTM such 
as decreased nodal echogenicity in 100% of the cases, central cystic changes in 92% of the patients and unilateral 
involvement in all but two of the reported cases. The study, however, did not compare the results of such findings 
to other entities of cervical lymphadenopathy and these signs remain non-specific19. Other imaging findings that 
have been described in several reports are the presence of ring-enhancing lymphadenitis with central heteroge-
neity or necrosis. However, these are also non-specific and can be seen in pyogenic lymphadenitis or metastatic 
lymphadenopathy16,18,22–24,60,61. On CT, it has been reported that in up to 90% of patients with NTM, there is a 
relative lack of moderate or severe surrounding soft tissue stranding, but this can also be seen in other entities 
such as other indolent infections or proliferative lymphadenopathy16,17,24. Cutaneous extension has been found 
to represent a more specific sign, present in 10 out of 12 patients by Robson et.al. and in 4 out of 6 patients by 
Hazra et al.18,24 but require evaluation in larger cohorts.

Quantitative assessment of pediatric lymphadenopathy utilizing texture or radiomic features has not been 
extensively studied. One report of nodal texture analysis in pediatric patients found a sensitivity in the range 
of 82.4–88.8% and a specificity in the range of 72.4–86% for detecting malignant lymph nodes48. Although 
there have been studies using radiomics or texture analysis for evaluation of neoplastic cervical lymph nodes in 
adults33,47,49,51,53,58,59, to our knowledge, our study is the first to assess radiomic features of NTM lymphadenitis. 
In addition, our analysis includes comparisons with pyogenic lymphadenitis, reactive and proliferative lymphad-
enopathy with a much larger sample size. Our results, although preliminary, are very promising, suggesting an 
important potential role of radiomic analysis in evaluation of pediatric NTM. One advantage of the radiomic 
approach is the non-invasive nature and utilization of available imaging studies without the need for a special 
examination or an invasive procedure.

In addition to evaluating the performance of radiomic models based on features extracted from the lymph 
nodes, our study also includes an analysis of the effects of expanding the contours to include the immediate 
perinodal soft tissues, an approach that is not frequently or consistently evaluated in radiomic studies. The ROC 
curves comparison revealed only a significant difference with the extended contours for the model used to dis-
criminate NTM from the reactive and proliferative groups. All other comparisons resulted in a non-statistically 
significant performance drop. Based on this series, there was not a significant or consistent improvement in 
performance and the overall observations demonstrated a negative trend of the impact on performance by 
extending the contours, suggesting that proper contouring is required for optimal model performance in the 
paradigm investigated.

This study has a few limitations. The principal limitation is the sample size, which is an inevitable issue when 
studying such an uncommon clinical entity, yet our study has the largest cohort of NTM lymphadenitis patients 
with CT scans in comparison to prior reports on this topic. Another limitation is the fact that all cases come 
from one center. Reproducing the results when applied at a different institution will help validate the findings. 
The data was obtained from two scanners and cases with minor artifacts were included. Both factors introduce 
some heterogeneity to the data set which could highlight some practically relevant strength to the findings and 
their future generalizability. Lastly, we did not evaluate performance and potential combined models using 
radiomics and clinical characteristics which has the potential to further improve diagnostic performance and 
an important topic for future investigations.

In summary, this preliminary investigation demonstrates high accuracy of radiomics for discriminating NTM 
from other etiologies of lymphadenopathy in pediatric patients. If validated in larger cohorts from diverse institu-
tions, this approach could provide the basis of an important non-invasive clinical decision support tool for this 
patient population, potentially improving diagnostic accuracy and diminishing the need for invasive procedures.

Material and methods
Patients.  This study was conducted in accordance with applicable legislation, Declaration of Helsinki, and 
the Tri-Council Policy Statement for Ethical Conduct for Research Involving Humans, as well as in respect of the 
requirements set out in the applicable standard institutional procedures of the Research Institute of the McGill 
University Health Centre Research Institute. Approval was obtained by the McGill University Health Centre 
Research Ethics Board (REB# 2018-4460). Patient informed consent was waived by the McGill University Health 
Centre Research Ethics Board due to the retrospective and minimal risk nature of the study and because it would 
be impracticable to obtain informed consent with waiver of informed consent.

We conducted a retrospective analysis of CT scans of pediatric patients aged 0–18 years who presented with 
lymphadenopathy to the Montreal Children’s Hospital between January 2005 and December 2018 (patient age 
distribution illustrated in Fig. 2). The studies were identified by a search of the PACS database in conjunction 
with the electronic health record (EHR). Out of 180 scans identified for potential analysis; 37 were excluded 
as follows: 8 scans were excluded as patients did not have a final definitive diagnosis, 6 scans were identified as 
post-treatment or follow up scans, 9 scans did not follow the standard protocol or had extensive artifacts limit-
ing the assessment of nodal contours and 14 did not have any size significant lymph nodes as per the strict size 
criteria discussed below.

A total of 249 lymph nodes from 143 scans of eligible patients met inclusion criteria (Table 5) for radiomic 
analysis. The patients were divided into four distinct groups, with one or multiple nodes analyzed from each 
patient. The groups were as follows (n = Total number of nodes): Proliferative nodes (n = 60, nodes proven to 
be involved by lymphoproliferative disorders), Reactive nodes (n = 99, reactive in the absence of known lym-
phoproliferative disorder, bacterial or mycobacterial nodal infection), NTM lymphadenitis (n = 71), Pyogenic 
lymphadenitis (n = 19, nodes proven to be involved by bacterial lymphadenitis). Figure 3 illustrates the distribu-
tion of patients and lymph nodes.
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All proliferative lymph nodes were obtained from pathologically proven cases. The minimum acceptable size 
criterion for inclusion was kept at 15 mm to ensure that normal/reactive lymph nodes in a patient with known 
lymphoproliferative disorder are not included; a size criterion of 10 mm maximum short axis was used for all 
other categories (Supplementary Material A). We excluded lymphadenopathy in relation to head and neck or solid 
organ metastases due to lack of nodal pathology confirmation and heterogeneity of such a cohort of patients. The 
reactive nodes were obtained from scans performed for other non-neoplastic head and neck conditions with no 
evidence of clinical or radiological pathological nodal involvement. NTM lymphadenitis patients were included 
based on strict microbiologic and histologic criteria and/or confirmed histopathology combined with typical 
clinical context, including the microbiologic exclusion of other etiologies; subcategorization based on these two 
criteria was also performed. Pyogenic lymph nodes were all confirmed by isolation of the causative organism 
from the involved nodes as well as typical clinical presentation and course. Patients who underwent specific 
treatment prior to the imaging study, such as nodal incision and drainage or nodal excision, were excluded; 
follow-up scans after such procedures were also excluded. Patients without definitive pathological or serologic 
diagnosis and patients with overlapping clinical course were excluded as well.

CT scan parameters.  Patients were scanned using two Discovery CT750HD scanners (GE Healthcare) 
with 64 detectors, using a helical acquisition extending from the external auditory canal to the carina, after 
administration of IV contrast with a delay of 30 s. The studies were performed according to the Montreal Chil-

Figure 2.   Patient age distribution.

Table 5.   Inclusion criteria.

Group Scan parameter Node and size criteria Clinical/pathological confirmation

NTM

As per MCH standard CT protocol
Field of view (FOV) includes the entire neck, 
particularly the involved node(s)
Lack of artifacts that obscure more than 20% of 
nodal margins

10 mm shortest axial dimension Scans included all cervical nodal stations
Exclusion of other etiologies

Proliferative lymphadenopathy

As per MCH standard CT protocol
Field of view (FOV) includes the entire neck, 
particularly the involved node(s)
Lack of artifacts that obscure more than 20% of 
nodal margins

15 mm shortest axial dimension (Given that 
some nodal biopsies were performed for 
non-cervical lymphadenopathy we opted for a 
higher size cut off on this category)

Clinical and Histopathologic confirmation of 
the diagnosis

Reactive lymph nodes

As per MCH standard CT protocol
Field of view (FOV) includes the entire neck, 
particularly the involved node(s)
Lack of artifacts that obscure more than 20% of 
nodal margins

10 mm shortest axial dimension Lack of active nodal infection or malignancy

Pyogenic lymphadenitis

As per MCH standard CT protocol
Field of view (FOV) includes the entire neck, 
particularly the involved node(s)
Lack of artifacts that obscure more than 20% of 
nodal margins

10 mm shortest axial dimension Isolation of the causative organism from the 
involved node(s)



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2962  | https://doi.org/10.1038/s41598-022-06884-3

www.nature.com/scientificreports/

dren’s Hospital standard protocol with axial reconstructions at a slice thickness of 2.5 mm. CT angiograms of 
the neck, non-contrast scans, scans with incomplete inclusion of the regions of interest, or scans with extensive 
artifacts that impair delineation of nodal margins were all excluded. A total of 143 scans were analyzed. For 
additional details on CT scan acquisition parameters, please refer to Supplementary Material B.

Image analysis, node selection, and segmentation.  Eligible scans were downloaded in DICOM for-
mat and de-identified prior to subsequent analysis. Each study was reviewed by an attending radiologist, and 
1–4 nodes were selected for radiomic analysis based on the inclusion criteria described in Table 5. When appli-
cable, the selected nodes corresponded to the subsequently biopsied or excised lymph nodes. Segmentation was 
performed using the open-source software 3D Slicer (Version 4.10.2)62. Prior to radiomic features extraction, 
manual contouring was first performed by a senior (fourth post-graduate year) diagnostic radiology resident 
(Y.A.B) and then reviewed (and modified if necessary) by a head and neck radiologist with 9 years (at the time 
of review) of post-fellowship experience (R.F.). These contours along with node-inclusive expanded contour 
margins (by 3 mm and by 5 mm) were exported from each selected lymph node for radiomic analysis.

Radiomics analysis and machine learning classifier development.  Radiomic feature extraction 
for the primary contour was performed using the 3D Slicer integrated Pyradiomics extension63. This led to a 
1231-dimensional numerical feature vector for each node, including first-order, second-order, and texture fea-
tures. For an unbiased assessment of model performance, nodes from 20% of patients were selected for model 
evaluation (testing) and the rest of the nodes for model training. This was accomplished by a random assignment 
of nodes for each patient to either training set or test set. Since using a large number of features for model build-
ing could potentially lead to model overfitting35, the following steps were taken—using data in the training set—
to reduce data dimensionality: First, all features with a zero variance were filtered. Second, we used a univariate 
feature selection for each remaining feature. The top 100 features with the most significant scores, corresponding 
to the 100 smallest p values, were selected. This was performed to find the most discriminative features, i.e. fea-
tures with a significant difference across categories. Finally, a recursive feature elimination approach using a sup-
port vector classifier (SVC) with a linear kernel was used to select the ten most discriminative features as meas-
ured by feature importance values. Using the ten selected features, a Random Forest (RF) classifier was trained 
using a nested cross-validation with 5-inner and 5-outter folds34. A grid search of hyper-parameters (including 
the number and max depth of trees) was conducted with the reduced features to optimize model performance. 
Then—to achieve a reliable estimate of the generalization error—the optimal model was evaluated using the 
test data, i.e. data not being used in feature selection and model training steps. Due to the stochastive nature 
of machine learning model development, we repeated this process to built 100 models to achieve statistically 
reliable results. Then we reported average sensitivity, specificity, accuracy, precision, negative predictive value 
(NPV), and the area under the receiver operative curve (AUC) as performance measures. Figure 4 illustrates the 
methodology for image analysis. Using this methodology, a classification model was built to distinguish NTM, 
reactive, and proliferative nodes. We also built three binary classifiers for the primary contours to distinguish 
NTM related lymphadenitis (1) from reactive, proliferative, and pyogenic lymphadenopathy combined; (2) from 
pyogenic lymphadenopathy, and (3) from reactive and proliferative lymphadenopathy. For all experiments, the 

PACS database and
EHR search

180 poten�al scans were iden�fied

NTM Lymphadeni�s
Pa�ents met the inlusion criteria (Table 5)
A total of 71 lymph nodes met the 
selec�on criteria

Prolifera�ve 
Lymphadenopathy

Pa�ents met the inlusion criteria (Table 5)
A total of 60 lymph nodes met the 
selec�on criteria

Reac�ve
Lymphadenopathy

Pa�ents met the inlusion criteria (Table 5)
A total of 99 lymph nodes met the 
selec�on criteria

Pyogenic
Lymphadeni�s

Pa�ents met the inlusion criteria (Table 5)
A total of 19 lymph nodes met the 
selec�on criteria

37 scans were
excluded

14 - Lack of size significant node
9 - Techinical inadequacy
8 - Lack of defini�ve diagnosiss
6 - Post-treatment and follow up scans

Figure 3.   Study subjects—figure identifies the breakdown of the patient diagnosis. Specific selection criteria are 
described in Table 5.
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same procedure was followed to develop models using 3- and 5-milimeter extended contours of the nodes as 
well as the original contours. The ROC curves between the performance of the original and extended contours 
were compared using the test proposed in DeLong et al. to verify any significant improvement64. The analysis was 
conducted using Scikit-learn package (version 0.22.1) in Python (version 3.7.6)65,66. Supplementary Material D, 
and E provide additional model details regarding hyper-parameter range, and train and test sample distribution, 
respectively.

Data availability
We have provided three excel sheets (ContoursOriginalForReviewers.csv, Contours3mmForReviewers.csv, and 
Contours5mmForReviewers.csv) containing the extracted radiomic features for the reviewers. These sheets 
contain all 249 nodes, the corresponding patient, diagnosis, and the 1231 pyradiomics features.
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