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Chemical transformations, such as ion exchange, are commonly
employed to modify nanocrystal compositions. Yet the mecha-
nisms of these transformations, which often operate far from
equilibrium and entail mixing diverse chemical species, remain
poorly understood. Here we explore an idealized model for ion
exchange in which a chemical potential drives compositional de-
fects to accumulate at a crystal’s surface. These impurities subse-
quently diffuse inward. We find that the nature of interactions
between sites in a compositionally impure crystal strongly impacts
exchange trajectories. In particular, elastic deformations which ac-
company lattice-mismatched species promote spatially modulated
patterns in the composition. These same patterns can be produced
at equilibrium in core/shell nanocrystals, whose structure mimics
transient motifs observed in nonequilibrium trajectories. More-
over, the core of such nanocrystals undergoes a phase transition—
from modulated to unstructured—as the thickness or stiffness
of the shell is decreased. Our results help explain the varied
patterns observed in heterostructured nanocrystals produced by
ion exchange and suggest principles for the rational design of
compositionally patterned nanomaterials.

ion exchange | nanocrystals | elasticity | phase transitions |
nonequilibrium dynamics

Methods of chemical transformation are routinely used to al-
ter the properties of nanocrystals postsynthesis (1). Among

these, ion exchange—the replacement of one ion species by
another in a crystal (2, 3)—is a common and effective tech-
nique for modifying nanoparticle composition. Cation exchange
in particular has been used to produce a variety of heterostruc-
tured nanocrystals, chiefly metal chalcogenides, whose mixed
compositions exhibit diverse morphologies (4, 5). Despite their
utility, the mechanisms which govern the progress of cation
exchange reactions remain unclear. Thus, cation exchange has
likely not attained its full potential as a method for precisely
tuning the composition and spatial organization of species within
nanocrystals.

Experiments probing cation exchange reactions have yielded
several key observations. Kinetic measurements of exchange
among certain cation species suggest distinct behaviors on dif-
ferent time scales: rapid change in the composition at short
times, presumably due to the fast introduction of guest ions
at the nanocrystal surface, followed by much slower change
at long times, thought to reflect internal diffusion of cations
(5–8). Meanwhile, product morphologies vary widely, depending
on the chemical identity of the species involved and on reaction
conditions like stoichiometry (3, 4, 9). In cases where exchange is
only partial, the resulting heterostructures can depend strongly
on the relative sizes of the cations. Exchange of species with
significant lattice mismatch tends to produce graded, alloy-like
structures (as in Zn/CdSe) (5) or spatially modulated patterns
with length scales of several lattice spacings (as in Ag2/CdS) (10–
12), while similarly sized ions instead adopt core/shell or Janus
morphologies (4). However, the limited spatial and temporal
resolution of current experimental techniques has frustrated at-
tempts to build a conceptual framework with which to understand

these intriguing behaviors. For example, it is still not entirely
clear whether ion exchange proceeds primarily via vacancies or
interstitial defects (6, 13, 14). More broadly, the relative contribu-
tions of thermodynamics and kinetics in shaping the (potentially
metastable) final products of cation exchange have yet to be
elucidated in detail.

In contrast to experiments, computer simulations can fully
resolve atomic motions but are limited to short time and length
scales (especially for chemically detailed models). Two previous
simulation studies, which rendered specific materials with a fairly
high level of detail, have yielded some interesting mechanis-
tic insights into cation exchange. Ott et al. (15) performed ki-
netic Monte Carlo (KMC) simulations of CdS→Ag2S exchange,
parametrized based on density functional theory calculations of
defect energies in the bulk crystal. They found evidence for
cooperativity among charged defects and identified this as a key
driver of exchange. Fan et al. (16) instead performed molec-
ular dynamics simulations of PbS→CdS exchange, employing
pseudoligands as a coarse-grained representation of solvent and
ligands which typically decorate nanocrystals. They found that
pseudoligands promote extraction of Pb and that interstitial de-
fects mediate internal impurity transport, at least at the elevated
temperatures necessary to observe significant exchange in the
simulations. However, in both cases the authors were only able to
monitor reactions on time scales far short of complete exchange.
Moreover, neither study explicitly addressed lattice mismatch,
which can produce long-ranged elastic interactions (11, 17, 18).
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Here we report computer simulations of a lattice model for
ion exchange in nanocrystals. We have in mind cation exchange
reactions of metal chalcogenides, but the model does not specify
a particular compound. Instead, we consider a minimal model
which focuses on the key experimental features outlined above:
differing time scales for surface exchange and internal diffu-
sion, and lattice mismatch. Although our approach sacrifices a
significant degree of microscopic chemical detail, the resulting
reduction in computational expense carries benefits that are
unprecedented in numerical studies of ion exchange. First, we are
able to establish equilibrium properties of the microscopic model
not just in reactant and product states but also across the entire
range of intermediate compositions, providing a key reference
for understanding reaction dynamics. Second, we can propagate
exchange trajectories all the way from reactants to products,
without heating the system unrealistically or artificially biasing
its evolution. Finally, we can thoroughly sample ensembles of
nonequilibrium exchange trajectories, enabling conclusions and
comparisons that are statistically robust.

Model
Our model resolves compositional change on a scale that is
microscopic but not atomic. We associate a binary variable σR =
∓1 with each site R of a finite lattice, roughly equivalent to
dividing a nanocrystal into N unit cells that have either exchanged
or not. σR =−1 thus indicates local majority of the incoming
cation (labeled B and colored red in figures), while σR =+1
indicates majority of the outgoing species (labeled A and colored
blue). In this way, we represent crystal structure at the scale of
its simplest repeating units (a few Å), slightly coarser than in
previous simulation studies.

Exchange is driven by a difference Δμ= μB − μA between
the chemical potentials of A and B cations, i.e., an effective
energy −(Δμ/2)

∑
R σR. This thermodynamic bias could repre-

sent a difference between ion concentrations in a nanocrystal’s
solution-phase environment, a difference in their solubilities
(possibly mediated by dissolved ligands), and/or a difference in
their lattice energies (19). In typical experiments, conditions for

ion exchange are strongly favorable, so we set the magnitude of
Δμ to be much larger than the thermal energy kBT . We found
that exchange trajectories were insensitive to the precise value of
Δμ for |Δμ|/kBT � 100.

Trajectories of this model advance through discrete, reversible
events in which the state of one or more lattice sites changes.
At a site Rb on the nanocrystal’s boundary, one cation type
can be exchanged for another (σRb →−σRb ), with a rate kex
that depends on the system’s compositional configuration {σR}.
The nanocrystal’s interior evolves through diffusive steps that
swap the states of adjacent lattice sites (σR → σR′ ,σR′ → σR,
where R and R′ are nearest neighbors), with configuration-
dependent rate kdiff. Such a swap may represent a series of
microscopic barrier-crossing events, perhaps involving transient
vacancies or interstitials (6, 13, 14); we resolve only the net
transport of ion density. See Fig. 1A for illustrations of these
events. The rates kex and kdiff are formulated to satisfy detailed
balance with respect to the equilibrium probability distribution
of the nanocrystal’s compositional state. Because they depend on
configuration {σR}, their values generally change as the reaction
proceeds. Similar to previous simulations by Ott et al. (15), these
stochastic rate processes are numerically realized with a KMC
algorithm (Materials and Methods).

Ion Exchange Dynamics
If governed only by a difference in chemical potential (and
not by configuration-dependent energies), the model exchange
dynamics would amount to simple diffusion in a domain bounded
by a sink. A trajectory exemplifying this noninteracting case is
shown in Fig. 1B for a hexagonal lattice in two dimensions (2D).
A corresponding plot of the net composition over time is shown
in Fig. 2A. With |Δμ| � kBT , A→B exchange at the perimeter is
extremely facile and nearly irreversible. Mirroring experimental
observations (5–8), the nanocrystal’s outermost layer is trans-
formed immediately. Interior swap moves, which do not change
the system’s net composition c = (

∑
R σR/N + 1)/2, leave the

energy unchanged in this simple case. Neither facilitated nor

A B

Fig. 1. (A) Schematics illustrating exchange at the surface of a nanocrystal (Top) and diffusion within a nanocrystal (Bottom). Note that kex and kdiff depend
on the compositional state of the nanocrystal before and after the corresponding event; the value of kex is therefore different for the two surface exchange
events shown. (B) Representative configurations taken along KMC exchange trajectories for a statically uncorrelated model (noninteracting); a model with
nearest-neighbor interactions (Ising); and a model with the nonlocal, mechanically mediated interactions of Eq. 2 (elastic).
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Fig. 2. Net composition versus time averaged over 100 KMC trajectories
of (A) the noninteracting model with Δμ/kBT = −10, (B) the Ising model
with kBT/J = 2 and Δμ/J = −10, and (C) the elastic model with kBT/ε = 0.2
and Δμ/ε = −20. In each case, N = 271. Inset in A shows the same data
with composition on a logarithmic scale, emphasizing the approximately
exponential decay of the composition. Insets in B and C show the same data
with time on a logarithmic scale. The steplike decay of composition apparent
in B, Inset, reflects monolayer-by-monolayer advancement of the B-rich shell
into the crystal interior. Adapted with permission from ref. 20.

hindered, diffusion proceeds slowly, transporting B inward and
A outward with a high degree of randomness at this length scale.

Cation exchange dynamics are made interesting by interac-
tions, which correlate the composition of different sites, in space
and in time, and can generate surprising collective behaviors.
We consider two kinds of site–site interactions that have figured
importantly in studies of alloy thermodynamics (21). One is
spatially local,

EIsing =−J
∑

〈R,R′〉

σRσR′ , [1]

where the sum is restricted to nearest neighbors on the lattice and
J is a constant. This Ising-like interaction describes short-ranged,
material-specific chemical preferences for sites of the same type
(J > 0) or of opposite type (J < 0), and its influence on the time
dependence of phase change has been investigated extensively
(21–24). The other energetic contribution is mechanical in origin,
accounting for the elastic stress inherent to mixing solid materials
with different lattice constants (25–27). We adopt a simple and
general description of these elastic forces, in which neighboring
sites of the lattice prefer a bond length that depends on the
identities of their occupants (17). Integrating out fluctuations in
lattice geometry yields an effective energy for the composition
variables

Eelastic =
ε

2

∑
R,R′

σRVelastic(R,R′)σR′ , [2]

where ε is a positive constant proportional to the Young’s modu-
lus (17). The effective elastic interaction potential Velastic(R,R′),
whose form is detailed in Materials and Methods, decays gradually
and nonmonotonically with distance (Fig. 3). While Eelastic is
minimum for unmixed states (pure A or pure B), at interme-
diate compositions it can favor spatial patterns that are richly
modulated (Fig. 4A) (17). Its consequences for the dynamics of
compositional phase change have, to our knowledge, not been
thoroughly explored, especially for nanoscale systems.

An effort to mimic a specific real material would include
both Ising and elastic contributions, but here we consider their
impact separately (either J = 0 or ε= 0). Our exploration of
the combined case (both J and ε nonzero) suggests a similar
range of behaviors. In both scenarios we set kBT to be small
compared to characteristic energy scales, consistent with the
high strength of covalent bonds in crystalline solids compared
to thermal energy at room temperature. Ising interactions, for
J > 0 and well below the critical temperature, greatly impede the
overall kinetics of exchange, as illustrated in the trajectory shown
in Figs. 1B and 2B. In this case, rapid exchange at the perimeter
is followed by much slower advance of a sharp A/B interface
toward the center of the nanocrystal. Since A species can only
be removed from the nanocrystal at its boundary, this process

Fig. 3. Effective elastic interaction potential Velastic(R, R′) as a function of
R′ for two different values of R for an N = 271 hexagon-shaped nanocrystal
with a triangular lattice structure. The site R is colored white and is outlined
in black. The color of each other site R′ indicates the value of Velastic(R, R′).
R is located (Left) at the center of the nanocrystal and (Right) on an edge. In
both cases, the magnitude of the elastic potential is significant even when
R and R′ are separated by several lattice spacings. Adapted with permission
from ref. 18.
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Fig. 4. (A) Representative configurations taken from bulk simulations of the elastic model at equilibrium (17). Across a range of net compositions c,
unstructured (Uj , j = 1, 2) and superlattice (Sj , j = 1, 2) phases, as well as coexistence between these phases (Uj + Sj , S1 + S2), can be observed. (B) Seven-site
plaquettes associated with different phases, together with corresponding values of the order parameter s and the color assigned to the central site of each
plaquette. All other plaquettes are unclassified and assigned s = 0. (C) Representative configurations along the course of a KMC exchange trajectory of the
elastic model shown in the original color scheme (Top) and in the plaquette color scheme (Bottom). Perimeter atoms were omitted in the plaquette color
scheme renderings. Configurations were taken at times t ≈ 2.98 (Left), 25.6 (Middle), and 74.8 (Right) in units of ε−1/2 (setting units of mass and distance
to unity). (D) Fractional population fα of each phase α over time in KMC trajectories of the elastic model with N = 721. Solid-color lines represent individual
trajectories; the thick lines with black outlines represent averages over 100 independent trajectories.

requires that A atoms enter and cross the B-rich shell as high-
energy impurities. The costly creation of these defects is rate-
limiting at the temperatures of interest and is especially hindered
at smooth regions of the A/B interface where many favorable
interactions must be disrupted simultaneously. Experiments on
lead chalcogenide nanocrystals in which Pb2+ is exchanged for
Cd2+ show strong kinetic trapping after exchange of the first few
monolayers (14, 16, 28, 29), akin to our simulated trajectories
and consistent with the bulk immiscibility of PbS and CdS (30).
This exchange scenario is strongly foreshadowed by equilibrium
thermodynamics of the Ising model at subcritical conditions (31).
Whether in bulk or in a nanocrystal, nearly pure phases dominate
here, and the line tension of the A/B interface is high, ensuring
strong segregation and high barriers to impurity transport.

The relationship between thermodynamics and exchange ki-
netics is more subtle for the elastic model. In previous work
(17, 18) we have broadly examined the equilibrium behavior of
this model (reviewed in Fig. 4A), which features microscopically
patterned superlattice phases (denoted S1 and S2), in addition
to unstructured phases (U1 and U2) with Ising-like symmetry
breaking. Stabilities of these phases, and states of coexistence
between them, are unusually sensitive to boundary conditions.
In particular, the spatially modulated phases S1 and S2 dominate
at intermediate composition and low temperature for periodic

bulk systems but are unstable when boundaries are free to deform
heterogeneously. At equilibrium the nanocrystals studied in this
paper, due to their free boundaries, exhibit superlattice structure
with a probability that is negligibly small, vanishing in the limit
of large crystal size (18, 20). In the nanocrystal’s nonequilib-
rium exchange trajectories, however, superlattice patterns are
pronounced. As shown in Fig. 1B, motifs of S1 and S2 emerge
shortly after the perimeter transforms and dominate the crystal’s
interior as exchange continues. These trajectories appear not to
involve U1/U2 interfaces (i.e., A/B interfaces), and they proceed
to completion much more rapidly than for the case of Ising
interactions (Fig. 2 B and C).

In order to quantify transient superlattice patterns in nanocrys-
tal KMC simulations, we introduce an order parameter s that
locally distinguishes among the four phases of the elastic model
(Materials and Methods). As illustrated in Fig. 4B, the instan-
taneous value of s at each lattice site R is determined by the
compositional arrangement of the seven-site plaquette compris-
ing R and its nearest neighbors. The proportion of phase α=
U1,S1, . . . can then be judged by the fraction fα of sites with
the corresponding value of s. This designation also allows a vivid
rendering of KMC trajectories, with each site colored according
to its current value of s (rather than the value of σR). Fig. 4C
shows an exchange trajectory visualized in this way, emphasizing
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the extent and shape of each phase’s domain as the reaction
proceeds. The clearly evident decay of U1, through S1 and S2, to
U2 is demonstrated quantitatively in Fig. 4D by plotting fα as a
function of time for a large number of exchange trajectories. The
proportion of U1 rapidly decays to nearly zero, and the popula-
tions ofU2, S1, and S2 increase accordingly. A much slower decay
of superlattice phases follows, accompanied by terminal growth
of fU2 to 1. Although transient, modulated spatial order is thus
long-lived during cation exchange of our simulated nanocrystals.

Why do superlattice phases characteristic of the bulk elastic
model appear in our out-of-equilibrium nanocrystals, despite
their thermodynamic instability under these boundary condi-
tions? We argue that the rapid dynamics of exchange at the
perimeter—the first step in all our exchange trajectories—
produces an effective, transient change in boundary conditions
experienced by the crystal’s interior. The stiffness of the
exchanged shell mimics the influence of a bulk periodic
environment, which favors modulated order. An adiabatic
exchange dynamics, in which the nanocrystal adjusts completely
after each small change in net composition, would begin in a
similar fashion, accommodating impurities at the perimeter.
However, in that reversible case, continued accumulation of B
atoms would result in not a shell but instead compact domains
of U1 and U2 whose interface spans the nanocrystal. Such
shell disintegration is prohibitively slow on the time scale of
nonequilibrium exchange at large |Δμ|, so that our irreversible
trajectories follow a qualitatively different route.

Equilibrium Phases of Core/Shell Nanocrystals
We scrutinize this shell hypothesis by using constrained equilib-
rium Monte Carlo (MC) simulations (see Materials and Methods)
to compute equilibrium averages (denoted as 〈· · · 〉fixed-shell) of fα
when the properties of a nanocrystal’s shell are systematically
varied. We first consider a multilayer shell consisting of B sites
surrounding a core containing Ncore = 721 sites with fixed net
composition c = 1/2 (i.e., half A and half B). A and B atoms may
swap positions within the core, but the identity of the shell sites
is held fixed. Fig. 5 A and B show configurations representative
of this constrained equilibrium for several shell sizes, along with
〈fα〉fixed-shell in the nanocrystal core as a function of shell thickness.
In the absence of a shell, the core is predominantly composed of
U1 and U2 phases. As layers are added to the shell, regions of S1

and S2 gradually become larger, and those of U1 and U2 become
smaller. At six layers, fα is roughly equal for all α. When an
additional layer is added, U1 and U2 phases abruptly vanish, and
S1 and S2 phases dominate, hinting at a phase transition. Demon-
strating the existence of a phase transition in the thermodynamic
limit is complicated by our inability to vary the shell thickness
continuously in this model. As an alternative, we vary the stiffness
of a shell with fixed size, which we choose here to be a single
atomic layer. (In practice this is accomplished by changing the
spring constant Kshell between bonds connecting shell sites; see
Materials and Methods for more details.) The resulting plots of fα
versus Kshell (Fig. 6A) exhibit the same general behavior, but the
transition point can be located with much higher precision. The
fraction of U1, U2 drops precipitously (and that of S1, S2 sharply
rises) atKshell ≈ 17 forNcore = 1,657. An underlying phase transi-
tion would manifest as a peak in the related fluctuation quantity
〈f 2U 〉fixed-shell − 〈fU 〉2fixed-shell (where fU = fU1 + fU2) whose height
grows with system size, diverging in the thermodynamic limit.
Fig. 6B shows simulation results consistent with this scenario. The
transient superlattices in our nonequilibrium simulations thus
appear to be stabilized by a nearby equilibrium phase transition.

The observed relationship between shell stiffness and mod-
ulated order can be explained from an understanding of the
stability of superlattice phases in periodic bulk systems at
equilibrium. In a fixed volume with regular shape, the coexistence
of solid phases with different lattice parameters carries a cost

A

B

Fig. 5. (A) Configurations taken from equilibrium MC simulations of
a nanocrystal whose shell composition is fixed at c = 0, while the core
fluctuates with net composition c = 1/2. Results are shown for Ncore = 721
and for three different shell thicknesses. Interior core sites are colored
according to the plaquette scheme; the outermost core sites and the shell
sites are translucent and colored according to the original scheme. Note the
coexistence between U1 and U2 for zero shell layers; between U1, S1, S2,
and U2 for six shell layers; and between S1 and S2 for eight shell layers. (B)
Average fractional population 〈fα〉fixed-shell of the different phases versus
shell thickness, measured in atomic layers, for a core size of Ncore = 721.
Note the crossover between predominantly unstructured coexistence and
predominantly superlattice coexistence that occurs around six shell layers.

that is extensive in system size (absent topological defects
in lattice connectivity) (17, 18). The unstructured phases U1

and U2 of the elastic model in 2D have maximally different
values of the area per lattice site A, so their coexistence is
considerably disfavored. The superlattice phases S1 and S2

are more similar to one another in this respect and hence
can dominate at intermediate composition. A nanocrystal
with free boundaries can undergo collective elastic distortions
which relax this energetic cost, stabilizing the coexistence of
unstructured phases. Adding a large or stiff shell to the nanocrys-
tal hinders such deformations and thus favors superlattice
phases.

In Fig. 7 we view nanocrystal exchange trajectories through
this mechanical lens, focusing on the local area per site AR at
each position R (see Materials and Methods for more details).
Fig. 7A shows the deviation ΔAR = AR − A of this quantity
away from its spatial average A= N−1 ∑

R AR, for a few config-
urations taken from a single KMC trajectory; its instantaneous
variance ΔA2 = N−1 ∑

R(ΔAR)2 is plotted in Fig. 7B. The
spatial distribution is its most heterogeneous at short times: the
shell is highly compressed compared to the core, reflecting the
dominance of B sites at the perimeter of the crystal and A sites
in the interior. As time progresses, this mechanical heterogeneity
becomes less dramatic, as reflected in the decay of ΔA2. Addi-
tionally, we observe distinct regions with characteristic values of
ΔAR. These regions align precisely with domains of the different
compositional phases α. The growth of S1 and S2 phases (which
have areas intermediate that of U1 and U2) relaxes strain at the
core/shell interface, yielding the observed decrease in ΔA2. The
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Fig. 6. (A) Average fractional population 〈fα〉fixed-shell of the different
phases as a function of shell stiffness Kshell for a single-layer shell and core
size of Ncore = 1,657. Note the sharp change in 〈fα〉fixed-shell occurring at
Kshell ≈ 17, consistent with a first-order phase transition. (B) Variance of the
fraction fU of unstructured phases (U1, U2) versus Kshell for different system
sizes (here N refers to the size of the core). Peaks become narrower and
higher with increasing system size, consistent with a first-order transition.
Peak positions shift to higher Kshell as system size increases due to the
decreasing ratio of shell size to core size.

corresponding constrained equilibrium average 〈ΔA2〉fixed-shell =
N−1 ∑

R〈(AR − 〈A〉fixed-shell)
2〉fixed-shell decreases with increasing

shell thickness (Fig. 7C), reflecting how the shell hampers spa-
tially varying elastic deformation of the core. Comparison of Figs.
5B and 7C shows that 〈ΔA2〉fixed-shell also closely tracks changes in
〈fα〉fixed-shell. Local area distortions are thus strongly tied to local
composition.

Stability of Transient Modulated Structures
If Δμ, the driving force for ion exchange, is maintained indef-
initely in our KMC simulations, then pure-A nanocrystals will
inevitably transform into pure-B nanocrystals with only transient
modulated structure. If, however, the driving force is removed
before exchange is complete, such transient patterns can serve as
an initial conditions for long-lived composition modulation. To
demonstrate this, we have performed KMC simulations in which
exchange moves are disallowed after a certain time, modeling
relaxation of incompletely transformed nanocrystals. In Fig. 8,
we show a series of snapshots from one such trajectory. The
images shown are typical of relaxation trajectories initialized
from configurations in which U1, S1, S2, and U2 domains are all
present. As expected from equilibrium considerations, unstruc-
tured U1 and U2 domains do grow at the expense of modulated
S1 and S2 ones. Nevertheless, regions of modulated order per-
sist within the nanocrystal interior. Their occurrence primarily
between flanking unstructured domains at opposing sides of the
nanocrystal is consistent with the thermodynamic stability of S1

and S2 phases in the presence of a stiff nanocrystal shell, as
discussed in Equilibrium Phases of Core/Shell Nanocrystals and
demonstrated in Figs. 5 and 6.

Results in 3D
All the results we have presented thus far have been for 2D
systems (which have the advantage of being easily visualized).
Nanocrystals in the laboratory are of course mostly 3D entities.
We therefore also performed simulations of a 3D version of our
elastic model (Fig. 9). The results broadly agree with those in 2D:

A

B

C

Fig. 7. (A) Configurations taken from a KMC exchange trajectory of the
elastic model with sites colored according to local area deviation. Configu-
rations were taken at times t ≈ 2.98 (Left), 25.6 (Middle), and 74.8 (Right).
Compressed regions at the exterior correspond to B-rich regions, while
expanded areas in the core correspond to A-rich regions; different shades
of color track regions populated by different phases. (B) rms deviations of
ΔAR (spatially averaged) versus time. Gray lines represent individual KMC
trajectories (with N = 721), while the black line represents the average over
100 trajectories. (C) rms deviations (averaged over both space and sampled
configurations) from equilibrium MC simulations of fixed-shell nanocrystals
(with Ncore = 721) versus shell thickness. Note the drop between six and
seven shell layers, corresponding to the transition from a state in which all
phases coexist (at six layers) to a state of two-phase coexistence involving S1

and S2 only (at seven layers.)
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Fig. 8. Configurations along a relaxation trajectory of the elastic model, in
which exchange moves were turned off after a time tinit ≈ 7.84. Configura-
tions are shown for times t − tinit ≈ 0 (first panel), 125 (second panel), 193
(third panel), and 221 (fourth panel).

rapid surface exchange is followed by slower internal rearrange-
ments (Fig. 9B) characterized by spatially modulated patterns
(Fig. 9A). These patterns are more complicated than in 2D.
Rather than characterizing them in detail, here we have simply
identified unstructured regions (U1, U2) and labeled everything
else as “unclassified.” As we show in Fig. 9C, these unclassified
regions dominate over unstructured phases at equilibrium in the
presence of a sufficiently stiff shell. Thus, despite differences
in the precise compositional morphologies that elastic forces
produce, the impact of lattice mismatch on model ion exchange
trajectories is similar in 2D and 3D.

Modulated compositional order has been realized experimen-
tally in CdS nanorods via partial cation exchange, which can yield
alternating stripes of Ag- and Cd-rich domains (10, 32). The equi-
librium state of this mixed-cation system likely involves a single

Ag-rich domain, separated from a Cd-rich domain by a single
interface (11), yet stripes persist over times at least as long as
experimental observation. Density functional theory calculations
suggest that such patterns may be stabilized by lattice mismatch
(11), whose elastic consequences are the essential ingredient of
our model. We tested whether similar patterns could be obtained
in our computational approach by changing the aspect ratio of 3D
nanocrystals. In Fig. 10, we show the results of KMC simulations
of an elongated nanocrystal. Fig. 10 A and C show configurations
taken from ion exchange and relaxation trajectories, respectively
(the latter involving only swap moves, as described in Stabil-
ity of Transient Modulated Structures). Fig. 10 B and D show
corresponding plots of c(z ), the composition along the long
(z) axis of the nanorod averaged over the x and y dimensions.
Ion exchange dynamics in our elastic model is seen to generate
transient concentration modulation along the long axis of the
nanorod. Subsequent relaxation of these modulated configura-
tions in the absence of a driving force for exchange can produce
long-lived stripes of alternating composition, closely resembling
those observed in experiments. In SI Appendix, Fig. S1, we show
that similar stripes arise at equilibrium in core/shell nanorods.

Discussion
Our model, while fairly simple, has proven able to reproduce
some key features of cation exchange reactions. We have shown
how a strongly favorable driving force for exchange creates an

A

B C

Fig. 9. (A) Configurations taken from an elastic model exchange trajectory of a 3D nanocrystal, whose atoms reside on a simple cubic lattice (with both
nearest- and next-nearest-neighbor bonds). Here we set kBT/ε = 1.5 and Δμ/ε = −200. Configurations were taken at times t ≈ 2.58 × 10−26 (first panel),
1.12 × 10−4 (second panel), 0.0741 (third panel), and 0.579 (fourth panel). A atoms are colored blue; B atoms are colored red and are rendered as translucent
for clarity. Note the spatially modulated patterns (columns of blue atoms) that develop over the course of time. (B) Fractional population fα of U1 and U2

phases versus time. The unclassified population 1 − fU here includes contributions from spatially modulated phases as well as the compositionally disordered
phase. Thin, solid-color lines represent individual KMC trajectories with N = 1,728; thick lines outlined in black represent averages over 100 trajectories.
(Inset)The short-time behavior on a logarithmic scale. (C) Average fractional population of phases in equilibrium MC simulations of fixed-shell nanocrystals,
as a function of (single-layer) shell stiffness Kshell for a core size Ncore = 1,331 and a fixed core composition c = 1/2. The predominantly A and predominantly
B phases (U1 and U2) are present for small values of Kshell but are absent for large values.
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Fig. 10. (A) Configurations taken from an elastic model exchange trajectory of an elongated 3D nanocrystal with dimensions 10 × 10 × 50. As in Fig. 9,
we set kBT/ε = 1.5 and Δμ/ε = −200. Configurations are shown for times t ≈ 0.0724 (first panel), 7.23 (second panel), 11.8 (third panel), and 13.5 (fourth
panel). (B) Composition profile along z, averaged over the x and y dimensions, for several times along the trajectory of A. The vertical line at c(z, 0) = 1.0
signifies a uniform composition of c = 1 (all sites blue) at time t = 0. (C) Configurations taken from a relaxation trajectory of a partially ion-exchanged
nanorod. The leftmost configuration, used to initialize the relaxation trajectory, was taken at time tinit ≈ 12.5 from the exchange trajectory of A and B.
The relaxation portion of this trajectory consisted only of diffusion moves that do not change the net composition. Configurations were taken at times
t − tinit ≈ 0 (first panel), 1.93 (second panel), 9.54 (third panel), and 11.3 (fourth panel). (D) Composition profile along z, averaged over the x and y
dimensions, for several times along the trajectory of C.

effective nonequilibrium boundary condition that shapes trans-
port of material between the solution and the nanocrystal in-
terior. Nanocrystal morphologies during reaction—observed to
vary widely in experiments depending on cation identity—result
in our models from the interplay between such nonequilibrium
boundary conditions and the nature of interactions between
the exchanging species. Elastic interactions, in particular, lead
to rich spatial patterns in the composition, akin to modulated
patterns observed in experiments (10, 11). Although our work
was inspired by cation exchange within nanocrystals, our model
could also apply to nanoparticle superlattices; in that context
one could envision sites corresponding to individual nanocrystals,
the length of whose DNA-mediated bonds could be tuned by
pH, for example (33). Our results would then suggest altering
the properties of the perimeter of such assemblies as a way
of biasing spatial organization of the interior. Additionally, our
finding that sufficiently stiff or large shells stabilize modulated
phases in the nanocrystal core may explain the recent observation
of labyrinth structures in a related elastic model of spin-crossover
nanoparticles (34). Nanocrystal superlattice and spin-crossover
systems, which are often extended in only 2D, may serve as ideal
settings in which to test the detailed predictions of our 2D elastic
model simulations.

As a model of cation exchange in particular, our model clearly
has shortcomings. It does not resolve anion and cation sublattices
and hence omits potentially important electrostatic interactions
(15). Additionally, it has fixed lattice connectivity and hence
cannot describe dislocations or account explicitly for interstitials
or vacancies. One could imagine remedying this in part by intro-
ducing defect states (potentially carrying a net charge) in addition
to the A and B states or by allowing bonds between adjacent sites
to break or form. Importantly, our model entirely ignores the
ligands which passivate semiconductor nanocrystals and whose
density on different facets could affect the rate of surface ex-
change. A more elaborate model might account for their effect
implicitly—perhaps by modifying the rates of surface exchange in

the KMC scheme based on the facet and ligand type—or might
represent them explicitly as fluctuating species which modify kex
by their interactions with surface sites. Despite these limitations,
the success of our model in capturing the basic phenomenology
of nanocrystal compositional change can serve as a foundation
for future, more microscopically detailed investigations.

Materials and Methods
Energy Function. The total energy E(C) of a configuration C = {σR} is
given by

E(C) = Eelastic(C) + EIsing(C) − (Δμ/2)
∑

R

σR. [3]

In simulations of the Ising model, we set the parameter ε in the elastic energy
to zero; similarly, in simulations of the elastic model, we set the parameter
J in the Ising energy to zero.

In simulating the noninteracting model, we set Δμ/kBT = −10. For our
Ising model simulations, we set kBT/J = 2 and Δμ/J = −10. This tempera-
ture is well below the triangular-lattice Ising model critical temperature (35).
Simulations of the 2D elastic model used kBT/ε = 0.2 and Δμ/ε = −20. For
simulations of the 3D elastic model, we used kBT/ε = 1.5 and Δμ/ε = −200.
The choice of temperatures for elastic model simulations would place our
systems in the low-temperature regions of the corresponding bulk phase
diagrams, where modulated phases are thermodynamically stable (17, 20).

Elastic Interaction Potential. The effective elastic potential Velastic(R, R′) is
determined by integrating out the mechanical fluctuations of an elastic
model which resolves atomic motions. To be concrete, we take the small-
mismatch limit of that model’s Hamiltonian (17, 18):

Helastic/ε = 2
∑

R,α̂(R)

(
α̂ · (uR − uR+aα̂)

−
1

2
(δσR + δσR+aα̂) − (σ̃0/N − δa)

)2
,

[4]

whereα(R) are bond vectors which may vary by site (surface sites have fewer
bonds than interior sites), σ̃0 =

∑
R σR, δσR = σR − σ̃0/N, a is the lattice

parameter, and δa = a − lAB (where lAB = (lAA + lBB)/2 and lAA and lBB are
the rest lengths of A–A and B–B bonds, respectively). The displacement
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variables uR measure deviations of atoms from their perfect lattice sites R.
The energy scale ε = KΔ2/2 depends on the spring constant K of harmonic
bonds between sites, as well as the lattice mismatch Δ = (lAA − lBB)/2.
Integrating over the harmonic mechanical fluctuations is equivalent to
minimizing H with respect to δa and uR. The former simply contributes
an additive constant to the free energy, which we ignore. The latter yields
minimum-energy displacements for a given configuration of composition
variables,

uR =
1

2

∑
R′

(
D−1C

)
R,R′

σR′ . [5]

The effective energy function Eelastic that results from evaluating Helastic at
those displacements is

Eelastic =
1

2

∑
R,R′

σR

(
S −

1

4
CT D−1C

)
R,R′

σR′ , [6]

where the matrices D, C, and S are given by

DR,R′ =
∑
α̂(R)

α̂(δR,R′ − δR′ ,R+aα̂)α̂, [7]

CR,R′ =
∑
α̂(R)

α̂(−δR,R′ + δR′ ,R+aα̂), [8]

SR,R′ =
1

4

∑
α̂(R)

(δR,R′ + δR′ ,R+aα̂). [9]

We identify an effective pair potential as

Velastic(R, R′
)/ε =

(
S −

1

4
CT D−1C

)
R,R′

. [10]

Velastic, which is sensitive to the nanocrystal’s boundaries, was evaluated and
tabulated for all site pairs (R, R′) in advance of each simulation.

Form of Rate Constants. The rate of an event depends on the initial and
final configurations C and C′ through the energy function E. We chose rate
constants

kex = k0
exe−β(E(C′)−E(C))/2 [11]

kdiff = k0
diffe

−β(E(C′)−E(C))/2, [12]

that are consistent with the Boltzmann distribution, satisfying kex(C →
C′)/kex(C′ → C) = e−β(E(C′)−E(C)) as a condition of detailed balance (and
similarly for kdiff). The bare rate constants k0

ex and k0
diff set the fundamental

time scales for exchange and diffusion. The mechanism of ion exchange
depends only on their ratio, which we set as k0

ex/k0
diff = 1 for simplicity.

Surface dynamics are nonetheless much faster than diffusion for this case, as
suggested by experiments (5–8), due to the large chemical potential differ-
ence driving exchange. Accordingly, our results are qualitatively insensitive
to the value of this ratio so long as k0

ex/k0
diff � eΔμ/(kBT).

KMC Algorithm. KMC trajectories were generated using the Gillespie al-
gorithm (36). Specifically, given an initial configuration, we determine all
possible exchange and diffusion moves and compute their rate constants.
Denoting the rate constant of event i (out of n total) as ki , we compute
ktotal =

∑n
i=1 ki . We then generate a number r uniformly at random from

the interval [0, ktotal] and execute the event j for which
∑j−1

i=1 ki ≤ r <∑j
i=1 ki . Finally, we update the time t → t + Δt, where Δt is sampled from

the exponential distribution P(Δt) = ktotal exp (−ktotalΔt). Repeating this
process many times yields a single trajectory.

Order Parameter. Consider a site R with nearest neighbors {N}, and denote
the mutual nearest neighbors between R and N as {N′}. The order parame-
ter s associated with R is defined as

s(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, if σR = σN = −1 for all N

−1, if σR = 1 and σN = −1 for all N,

OR σR = −1 and σN = −σN′ for all N, N′

1, if σR = −1 and σN = 1 for all N,

OR σR = 1 and σN = −σN′ for all N, N′

2, if σR = σN = 1for allN

0, otherwise.

[13]

Calculation of Local Area Deviations. In the small-mismatch limit to which
we restrict ourselves, the minimum-energy displacements {uR} are uniquely
determined by the compositions {σR} according to Eq. 5. From the displace-
ments, we can measure local deviations from the average crystal area (in 2D)
due to heterogeneous composition configurations. Specifically, we compute
the local area deviation associated with site R as

ΔAR =
1

Za2

∑
α̂(R)

|uR+aα̂ − uR + aα̂|2 − 1, [14]

expressed in units of a2. Here Z is the coordination number of the lattice,
which is 6 for all calculations presented.

Equilibrium MC Simulations of Fixed-Shell Nanoparticles. Equilibrium config-
urations were generated at fixed net composition using Kawasaki dynamics
(37). Proposed moves consist of attempts to swap the identities σR, σR′ of
two randomly selected sites R, R′ within the nanocrystal core. Such moves
are accepted with probability (38)

P(C → C′
) = min

[
1, e−β(E(C)−E(C′))

]
. [15]

A single MC sweep consists of Ncore attempted moves.
In each equilibrium fixed-shell simulation, core sites were initialized with

random identities consistent with a net core composition of c = 1/2. Systems
were then equilibrated by running 105 MC sweeps without collecting data.
After the equilibration period, configurations were recorded every sweep
for 105 sweeps. Reported observables were averaged over these configura-
tions.

Stiff-shell nanocrystals were modeled by changing the spring constant of
the bonds connecting shell atoms; explicitly, terms in Eq. 4 corresponding
to shell–shell bonds were multiplied by a factor Kshell/K before the energy
minimization described previously to obtain Velastic(R, R′).

To mitigate potentially large surface contributions to quantities like fα,
equilibrium observables were spatially averaged only over interior core
sites—the outermost core atoms were excluded.

Data Availability. Source code data have been deposited in GitHub
(https://github.com/GeisslerGroup/nc-elastic-model) (39).
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