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Abstract: The role of the adaptive microenvironment components in severe acute respiratory syn-
drome coronavirus 2 (SARS-Cov-2) infection is widely researched, but remains unclear. Studying the
common dynamics of adaptive immune response changes can help understand the pathogenesis of
coronavirus disease 2019 (COVID-19), especially in critical patients. The aim of the present study
was to determine the cytokines concentration and leukocyte subpopulations profiles in the severe
COVID-19 (n = 23) and critical (n = 18) COVID-19 group distinguished by the computed tomography
(CT) severity score. We observed lower percentage of lymphocyte subpopulation, higher neutrophils
to lymphocytes ratio (NLR) and higher IL-6 concentration in critical COVID-19 group than in severe
group. CT severity score was negative correlated with proportion of lymphocytes, lymphocytes
T, CD4+ cells, Treg cells and NK cells and positive correlated with neutrophils, NLR, and IL-6. In
critical group more correlations between cytokines and lymphocytes were observed, mainly between
TNF-α, IL-1β and lymphocyte subpopulations. The collective assessment of the cytokine profile,
leukocyte subpopulations and the CT severity score can help to characterize and differentiate patient
in advanced COVID-19 than the study of single parameters. We have shown that the interconnection
of elements of the adaptive microenvironment can play an important role in critical COVID-19 cases.

Keywords: SARS-CoV-2; leukocyte; lymphocyte; T regulatory cell; cytokines; IL-6; TNF-α; IL-1β;
computed tomography; CT severity score

1. Introduction

Coronavirus disease 2019 (COVID-19) is presented as a newly diagnosed pneumonia
and can rapidly develop into acute respiratory syndrome that has led to a global pan-
demic [1]. Not only the clinical symptoms such as fever, cough, dyspnea are characteristic
features of COVID-19 disease but also some morphological parameters may indicate this
infection like lymphopenia, neutrophilia, elevated neutrophil to lymphocyte ratio (NLR),
D-dimer concentrations, level of inflammation marker C Reactive Protein (CRP), lactate
dehydrogenase (LDH), or elevated reactive lymphocyte (RE-LYMP) parameter together
with the cytokine release syndrome, also so-called cytokine storm [2–6] The course of the
disease can vary greatly, from asymptomatic to very critical, and may even lead to death [7].
Assessment of severity of the disease is important for fast and effective diagnosis, to be
able to implement appropriate procedures and treatment. The standard diagnostic method
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for suspected SARS-Cov-2 virus infection is the Polymerase Chain Reaction (PCR) test,
which detects viral RNA in the sample [8].

Other methods are being sought that may indicate infection with this virus and
additionally assess the severity of the disease. Lung lesion severity analysis was developed
using computed tomography (CT) to differentiate the form of SARS-CoV-2 disease. It was
confirmed that the CT result can be used to quickly and objectively assess the severity
of lung involvement in patients with COVID-19 [9–11]. A CT scan is not intended to
diagnose COVID-19, but it can help determine individual patient management and assess
the severity of the disease, complications, or seek an alternative diagnosis.

A better understanding of clinical features and the identification of reliable laboratory
markers of inflammation that can distinguish between mild to moderate and severe to
critical infections are needed. The data may also help to better understand the pathogenesis
of this infection. However, the exact role that cytokines, leukocytes subsets, and infection-
related factors play in disease severity and progression have not yet been established. We
examined changes in peripheral blood leukocyte subsets and parallel changes in cytokines
level in patients with different disease severity assessed on the basis of the CT severity
score to explain the pathogenesis of SARS-CoV-2.

The aim of our study was to determine the cytokines and leukocyte subpopulations
profiles using the CT severity score and to identify the differences between the severe and
critical COVID-19 groups.

2. Materials and Methods
2.1. Patients

A total of 38 patients with SARS-CoV-2 were defined as positive from RT-PCR assay
from nasopharyngeal swab specimens according to the WHO guidelines. Patients SARS-
CoV-2+ were recruited from 2 November 2020 to 29 January 2021 at the Department of
Infectious Diseases and Allergology of Military Institute of Medicine.

There were 16 women and 22 men; mean age: 56.6 ± 13.5 years. Patients were divided
into two groups on the basis of lung changes in the course of SARS-CoV-2 infection assessed
by CT examination. The first group with advanced lesions consisted of 23 patients – severe
COVID-19 group. Second group were 18 patients with critical changes in the lung – critical
COVID-19 group. The baseline clinical condition on admission was classified as symp-
tomatic unstable with SpO2 at 91% to 95%, symptomatic unstable with SpO2 ≤90% or acute
respiratory distress syndrome. The decision on the treatment regimen was made entirely by
the attending physician, taking into account the current knowledge and recommendations
of the Polish Society of Epidemiologists and Infectiologist [12]. From the analyzed patients,
two patients were treated in the ICU. One patient died. There was no co-infection in the
analyzed group of patients. The mean hospitalization was 20.5 +/− 14 days.

Clinical characteristics of all COVID-19 patients were presented in Table 1.

Table 1. Patients’ characteristics.

Severe
COVID-19

n = 23

Critical
COVID-19

n = 15

Sex: f/m (n) 15/8 1/14
Age (mean ± SD years) 54.9 ± 14.4 59.1 ± 12.0
Clinical symptoms (n, %)
- fever 20, 87.0% 15, 100%

- cough 10, 43.5% 11, 73.3%

- dyspnea 8, 34.8% 14, 93.3%

- respiratory failure 5, 21.7% 13, 86.7%
Saturation (mean ± SD %) 94.0 ± 4.2% 88.2 ± 6.7%
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Table 1. Cont.

Severe
COVID-19

n = 23

Critical
COVID-19

n = 15

Diseases comorbidities (n, %)
- diabetes 2, 8.7% 4, 26.7%

- hypertension 3, 13.0% 7, 46.7%

- obesity 1, 4.3% 4, 26.7%

- coronary heart disease 3, 13.0% 3, 20.0%

- neoplastic diseases 2, 8.7% 3, 20.0%

Abbreviation: f, female; m, men; SD, standard deviation.

2.2. CT Severity Score

The method to identify significant radiological differences between severe and milder
cases was based on a scoring system [10,11]. Lung lesion advancement grading in CT was
based on visual assessment of the degree of pulmonary tissue involvement by lesions in
individual lobes (three lobes of the right lung and two lobes of the left lung) mainly the
presence of inflammatory abnormalities, including the presence of ground-glass opacities,
crazy paving pattern and pulmonary consolidation. The extent of changes in a whole
lobe was evaluated, not individual sections. Two radiologists (M.Ż. and A.M. with 25 and
15 years of experience in lung imaging, respectively) evaluated the extent of changes in
lungs and the differences were sorted out by consensus. Percentage changes are presented
for each lobe separately, and then all points are summed up. Each lobe could be awarded a
CT score from 0 to 5, depending on the percentage of the involved lobe: score 0–0% involve-
ment; score 1—less than 5% involvement; score 2–5% to 25% involvement; score 3–26% to
49% involvement; score 4–50% to 75% involvement; score 5—greater than 75% involvement.
The sum of the scores for all lobes gives the score for the severity of lung lesions:

• 0 points—normal lung
• 1–5 points—mild changes
• 6–10 points—moderate changes
• 11–15 points—severe changes
• 16–25 points—critical changes

In our study all patients had score more than 11 and were divided into two groups:
severe COVID-19 group (n = 23) with CT severity score 11–15 and critical COVID-19 group
(n = 15) with CT severity score 16–25. The example of CT changes in critical COVID patient
with severity score 20 was presented on Appendix A Figure A1.

2.3. Peripheral Blood Samples

The routine test of white blood cells count (WBC) was performed using a hematologi-
cal analyzer Sysmex XN-1500 (Sysmex Corp., Kobe, Japan). Peripheral blood (PB) samples
were collected from all COVID-19 patients in the time of 24 h after hospital admission and
before administration of any antiviral and/or immunosuppressive drug.

2.4. Cytokine Measurement

The Luminex® technique was used to detect the cytokine concentration [pg/mL] in
the serum samples including: IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, TNFα according to the
manufacturer’s instruction. The Human Magnetic Luminex Assay (R&D Systems®, Inc.,
Minneapolis, MN, USA) on the Luminex platform (Shanghai Universal Biotech Co., Ltd.,
Shanghai, China) was used.
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2.5. Flow Cytometry

The immunophenotyping test was carried out on whole blood. Leukocytes and
lymphocytes subset were performed by multiparameter flow cytometry method with panel
of monoclonal antibodies using FACS Canto II BD flow cytometry (Becton Dickinson,
Franklin Lakes, NJ, USA). For surface markers detection on leukocytes and lymphocytes T,
B, NK, Treg cells and activated Treg subset cells were stained with fluorescently labelled
antibodies: CD4-FITC (catalog number: 345768, clone number: SK3), CD56-PE (catalog
number: 345810, clone number: MY31), CD3-PerCP-Cy5.5 (catalog number: 332771, clone
number: SK7), CD19-PE-Cy7 (catalog number: 341113, clone number: SJ25C1), CD8-
APC (catalog number: 345775, clone number: SK1), CD16-APC-H7 (catalog number:
560195, clone number: 3G8), HLA-DR-V450 (catalog number: 655874, clone number: L243),
CD25-APC (catalog number: 340907, clone number: 2A3), CD127-FITC (catalog number:
560549, clone number: HIL-7R-M21), CD45RO-PE-Cy7 (catalog number: 337168, clone
number: UCHL1), CD95-PE (catalog number: 340480, clone number: DX2), CD4-PerCP-
Cy5.5 (catalog number:332772, clone number:SK3), CD3-APC-H7 (catalog number:641415,
clone number:SK7) and CD45-V500 (catalog number: 655873, clone number: 2D1), (BD
Bioscience). Two test tubes were used for the different multicolor panel:

Tube 1: CD4 FITC, CD56PE, CD3-PerCP-Cy5.5, CD19-PE-Cy7, CD8-APC, CD16-APC-
H7, HLA-DR-V450, CD45-V500

Tube 2: CD127-FITC, CD95-PE, CD4-PerCP-Cy5.5, CD45RO-PE-Cy7, CD25-APC,
CD3-APC-H7, CD45-V500

Samples were incubated for 20 min in room temperature. After two washing, cells
were analyzed within 2 h. For each sample, a minimum of 20,000 events were collected.

The representative gating strategy of PB cells with antibodies specific for lymphocytes
subpopulations and Treg cells was presented in Figure A2.

Data were analyzed with DIVA Analysis software 8.0.1 (BD) and Infinicyt 1.8 Flow
Cytometry (Cytognos, Salamanca, Spain).

2.6. Statistical Analysis

All statistical analyses were performed using the Statistica 13.0 software (TIBCO
Software, Palo Alto, CA, USA). The results were expressed as means and SDs and medians
with interquartile range (Q1–Q3). For group comparison the Mann–Whitney U test was
used. For graphic processing was used Prism GraphPad (Version 7, GraphPad Software, La
Jolla, CA, USA). Spearman rank test was performed to test correlations between variables.
Statistical significance was determined as p < 0.05.

3. Results

Patients in our study were divided into two groups: severe COVID-19 group (n = 23
with CT severity score 11–15 and critical COVID-19 group (n = 15 with CT severity score
16–25) (Table 1). Heatmap with CT severity score in individual lobes (three lobes of the
right lung and two lobes of the left lung) for each patient was presented in Figure 1.
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Figure 1. Heatmap with CT severity score in each patient. Lung lesion advancement grading was shown based on visual
assessment of the degree of pulmonary tissue involvement by lesions in individual lobes (three lobes of the right lung and
two lobes of the left lung). Each lobe was awarded a CT score from 0 (white) to 5 (red), depending on the percentage of the
involved lobe.

The clinical characteristics of the investigated groups with severe COVID-19 and
critical COVID-19 were summarized in Table 1. There were no significant differences
between groups in age and the incidence of clinical signs of infection such as cough and
fever. Dyspnea and respiratory failure occurred more frequently in critical patients. The
oxygen saturation level SpO2 was significantly lower in critical group. Coexisting disorders
such as diabetes, hypertension, obesity, coronary heart disease and neoplastic diseases
occurred in both groups in individual cases.

3.1. Basic Leukocytes Profile

The study groups were compared using the assessment of leukocyte subpopulations
by flow cytometry (Table 2). We observed lower proportion of lymphocytes in critical
COVID-19 patients than severe COVID-19 group (respectively, 10.3 vs. 23.1, p < 0.05). The
proportion of T lymphocytes was also lower in critical COVID-19 than severe COVID-19
patients (respectively, 6.9 vs. 18.0, p < 0.05). The median proportion of CD4+ cells was lower
in critical COVID-19 than severe COVID-19 patients (respectively, 3.8 vs. 11.3, p < 0.05).
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Table 2. Differences in the median of white blood cell (WBC) count, leukocytes and main lymphocytes
subpopulation in patients with severe COVID-19 and critical COVID-19. Data expressed as median
(Q1–Q3). * p < 0.05.

COVID-19
Severe
n = 23

Median (Q1–Q3)

COVID-19
Critical
n = 15

Median (Q1–Q3)

Mann-Whitney U
Test

WBC [k/µL] 5280 (4580–8620) 9220 (4370–13010) * 0.0382

[% of leukocytes]

Lymphocytes 23.1 (11.6–36.4) 10.3 (6.7–20.8) * 0.0219
T Lymphocytes 18.0 (7.8–28.0) 6.9 (4.6–15.2) * 0.0514

CD4 cells 11.3 (4.8–17.9) 3.8 (2.8–6.0) * 0.0.018
CD8 cells 5.1 (2.3–12.6) 3.5 (0.7–7.7) 0.2238

Ratio CD4/CD8 2.1 (0.7–3.4) 1.2 (0.8–4.2) 0.8828
Treg cells 0.557 (0.346–0.947) 0.214 (0.155–0.360) * 0.0061

Treg cells CD45RO+
CD95+

[% among Treg cells]
76.5 (67.1–85.2) 81.3 (79.1–89.0) 0.0959

B Lymphocytes 2.5 (1.5–3.6) 1.3 (1.0–2.5) * 0.0412
NK cells 3.5 (1.0–5.4) 1.1 (0.7–2.1) * 0.0238

Neutrophils 67.3 (46.6–80.6) 85.3 (64.4–88.6) * 0.0444
Eosinophils 0.2 (0.0–0.9) 0.1 (0.0–1.2) 0.9295
Basophils 0.2 (0.1–0.7) 0.1 (0.0–0.2) 0.1143

Monocytes 7.0 (4.1–9.0) 5.4 (2.9–9.1) 0.1340

NLR 2.9 (1.4–6.9) 8.4 (3.1–12.7) * 0.0258
Abbreviation: CD, cluster of differentiation; NK, natural killer cells; NLR, neutrophil-to-lymphocyte ratio; Treg
cells, T regulatory cells, WBC, white blood cells count.

The median proportion of Treg cells was lower in critical COVID-19 than severe
COVID-19 patients (respectively, 0.214 vs. 0.557, p < 0.05). However, the proportion of
Treg CD45RO+ CD95+ lymphocytes among Treg cells was higher in the critical COVID-19
patient than in the severe COVID-19 patient (81.3 vs. 76.5, p > 0.05)

When we analyzed the median proportion of B lymphocytes, we observed lower value
in critical COVID-19 than severe COVID-19 patients (1.3 vs. 2.3, p < 0.05). The median
proportion of NK cells was also lower in critical COVID-19 than severe COVID-19 patients
(1.1 vs. 3.5, p < 0.05).

We observed higher median proportion of neutrophils in critical COVID-19 than
severe COVID-19 patients (85.3 vs. 67.3, p < 0.05). The neutrophil-to-lymphocyte ratio
(NLR) was higher in critical COVID-19 than severe COVID-19 patients (8.4 vs. 2.9, p < 0.05)

The above results and differences are presented in Table 2 and Figure 2.
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Figure 2. The differences of percentage of leukocytes, lymphocytes subpopulation and NLR between patients: with severe
COVID-19 and critical COVID-19. Graphs show the median values (Min-Max) * p < 0.05. Lymphocytes, T, B, CD4, CD8, NK
cells, T regulatory (Treg) cells, neutrophils, eosinophils, basophils and monocytes are presented as % of leukocytes. Treg
cells CD95+ CD45RO+ is presented as % of Treg cells.
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3.2. Cytokines Profile

The study groups were compared using the assessment of selected cytokines by
Luminex technique which based on sandwich immunoassay that combines the enzyme-
linked immunosorbent assay (ELISA) with flow cytometry.

When we analyzed the median proportion of selected cytokines levels (pg/mL) such
as: IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10 and TNFα, we observed significant difference between
severe COVID-19 and critical COVID-19 patient only for IL-6 level. The median proportion
of IL-6 level was higher in critical COVID-19 than sever COVID-19 patients (respectively
10.5 vs. 4.0, p < 0.05), similar tendency was for IL-8 level, but not significant (7.6 vs. 3.9,
p > 0.05). IL-10 also showed the same trend (0.831 vs. 0.460, p >0.05) (Table 3, Figure 3).

Table 3. Differences in the median of cytokine levels in patients with severe and critical COVID-19.
Data expressed as median (Q1–Q3). * p < 0.05.

Cytokines
[pg/mL]

COVID-19
Severe
n = 23

Median (Q1–Q3)

COVID-19
Critical
n = 15

Median (Q1–Q3)

Mann-Whitney U
Test

IL-1β 0.000 (0.000–0.283) 0.000 (0.000–0.100) 0.7013
IL-4 0.000 (0.000–0.710) 0.000 (0.000–0.370) 0.2861
IL-5 0.128 (0.000–2.200) 0.000 (0.000–0.500) 0.2729
IL-6 4.036 (0.474–13.000) 10.500 (4.000–38.380) * 0.0382
IL-8 3.900 (0.000–9.4447) 7.600 (0.000–18.010) 0.3140
IL-10 0.460 (0.000–1.730) 0.831 (0.300–5.200) 0.1623

TNF-α 0.209 (0.000–1.300) 0.212 (0.000–0.490) 0.5548
Abbreviation: IL, interleukin; TNF-α, tumor necrosis factor α.
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3.3. Correlation between CT Severity Score and Study Parameters

We used CT severity score to assess the progression of diseases in COVID-19 pa-
tients. Correlation analysis between CT severity score and laboratory data such as: study
leukocytes subpopulation and cytokines was presented in Table 4. CT severity score was
significantly negative correlated with proportion of lymphocyte, T lymphocytes, CD4+
cells, Treg cells and NK cells. We observed significant positive correlation between CT
severity score and neutrophils, as for NLR parameter. IL-6 concentration was significantly
positive correlated with CT severity score. Correlations between study parameters and CT
severity score are presented in Table 4.

Table 4. Spearman rank correlation coefficients between CT severity score and laboratory data:
leukocytes subpopulation and cytokines. * Means p < 0.05.

CT Severity Score (n = 38 )

r p-Values

Lymphocytes [%] −0.402 0.0123 *
T Lymphocytes [%] −0.344 0.0339 *

CD4 cells [%] −0.387 0.0162 *
CD8 cells [%] −0.311 0.0572

Ratio CD4/CD8 [%] 0.061 0.7156
Treg cells [%] −0.392 0.0148 *

Treg cells CD45RO+ CD95+ [%] 0.219 0.2046
B Lymphocytes [%] −0.284 0.0829

NK cells [%] −0.374 0.0205 *
Neutrophils [%] 0.352 0.0301 *
Eosinophils [%] −0.030 0.8540
Basophils [%] −0.232 0.1598

Monocytes [%] −0.049 0.7689
NLR 0.390 0.0152 *

IL-1β [pg/mL] 0.003 0.9847
IL-4 [pg/mL] −0.223 0.1775
IL-5 [pg/mL] −0.026 0.8762
IL-6 [pg/mL] 0.351 0.0304 *
IL-8 [pg/mL] 0.124 0.4579
IL-10 [pg/mL] 0.105 0.5294

TNF-α [pg/mL] −0.150 0.3680
Abbreviation: CT, computed tomography; IL, interleukin; NLR, neutrophil-to-lymphocyte ratio; TNF-α, tumor
necrosis factor α, Treg cells, T regulatory cells.

3.4. Correlation between Cytokines Concentration and Leukocyte Subpopulations Depending on
Severity of COVID-19

We also analyzed the correlation between the analyzed parameters, i.e., leukocyte
subpopulations and cytokines concentration in two groups depending on the stage of
the disease.

In the severe COVID-19 group we observed high positive correlation between the
proportion of IL-10 level and neutrophils (r = 0.455, p = 0.0293), high negative correlation
between proportion of IL-10 level and eosinophils (r = −0.515, p = 0.0118) and between
proportion of IL-6 level and eosinophils (r = −0.475, p = 0.0219). Moreover the significantly
negative correlations between the proportion of IL-6 level and Treg cells (r = −0.483,
p = 0.0197) and between the proportion of IL-10 level and Treg cells (r = −0.463, p = 0.0262)
were observed.

In the critical COVID-19 group we observed more significant correlation between
leukocytes and study cytokines. Moreover in compared to the severe COVID-19 group
we observed significant correlations between lymphocytes subpopulation and selected
cytokines. There was significant positive correlation between proportion of lymphocytes
and IL-1β (r = 0.591, p = 0.0204) and between proportion of lymphocytes and TNF-α
(r = 0.615, p = 0.0148). We observed significant positive correlations between proportion
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of T lymphocytes and TNF-α level (r = 0.539, p =0.0382). CD8+ cells significantly positive
correlated with proportion of IL-1β level (r = 0.550, p = 0.0335) and with TNF-α level
(r = 0.604, p = 0.0172). There was positive correlation between proportion of lymphocytes
B and IL-1β (r = 0.625, p = 0.0127). The significantly negative correlation between the
proportion of IL-10 level and Treg cells was observed (r = −0552, p = 0.0328). NLR was
significantly negatively correlated with proportion of IL-1β level (r = −0.591, p = 0.0203)
and with TNF-α level (r = −0.615, p = 0.0148).

All correlations between study leukocytes subpopulation and cytokines in the 2 groups
were presented on heat maps (Figure 4). The red line highlighted significant positive, strong
correlations between the studied parameters in the critical group and indicated the lack of
the same correlations in the severe group.
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4. Discussion

We examined changes in peripheral blood leukocyte subsets and parallel alternation
in cytokine levels in patients with different disease severity assessed on the basis of the
CT severity score to explain the pathogenesis of SARS-CoV-2. We found that patients
with critical COVID-19 had decreased lymphocyte values including: T lymphocytes, CD4+
cells, B lymphocytes and NK cells. As reported in recently published studies lymphopenia
has been observed in most critical COVID-19 cases on admission and may be a potential
prognostic factor [13–16]. In our previous study we found a lower proportion of T lympho-
cytes (CD4+ and CD8+ subsets), B lymphocytes, eosinophils and basophils in COVID-19
with interstitial lesions on chest X-ray than in healthy controls but we did not observe the
differences in absolute number of analyzed leukocytes subpopulations between patients
with and without lung lesions on chest X-ray [17]. This may confirm that the decrease
in the absolute number of leukocytes may be related to the severity of the disease and
manifest itself more in severe cases. The mechanisms of lymphopenia can include immune
dysregulation due to cytokine accumulation which affects lymphocyte apoptosis, migration
of immune cells into the lungs, and impairment of lymphoid organs [18,19]. Research by
Vedder et al. may suggest migration of lymphocytes to the site of infection and explain
peripheral blood lymphopenia. They evaluated cellular profile in bronchoalveolar lavage
(BAL) in COVID-19 patients and observed increased CD8+ T-cell values in direct com-
parison to other Corona virus types [20]. It is unclear whether SARS-COV-2 can directly
infect lymphocytes, which requires more detailed studies. The mechanism of lowering the
percentage of peripheral Treg cells is also unknown. In our study, e observed a decrease in
Treg cells proportion depending on the severity of the disease. The recent research suggests
that the level of peripheral Treg cells is prominently reduced in severe COVID-19 patients
compared with mild patients [21–23]. Wang, W. et al. [21] have shown that Treg cells
increased during the progression from mild to severe condition but then declined during
the progression to critical condition. Similarly Wang, F. et al. [23] have presented that the
percentage of natural Treg cells was decreased in extremely severe patients. Additionally,
we noticed that the phenotype of activated Treg cells CD45RO+ shifted towards enhanced
apoptotic susceptibility by the high level of expression of pro-apoptotic molecule CD95
(Fas/APO-1). Increased apoptosis likely contributes to impaired survival of regulatory T
cells and insufficient immunosuppressive function of these cells [24]. We hypothesize that
apoptotic Treg cells may play an important role in the advanced stages of COVID-19.

Similar to other studies increased percentages of neutrophils and NLR parameter have
been noted in our study [25–27]. The NLR in critical patients was higher than in severe,
but there is no systematic review and meta-analysis to assess predictive NLR values for
disease severity. It is therefore unclear about the NLR thresholds that should be used to
classify disease severity and predict prognosis.

It is known that patients with COVID-19 are unregulated immunologically with fast
response to infection and high cytokine release. Researchers have shown that the severity
of COVID-19 is associated with increased levels of inflammatory mediators, including
cytokines and chemokines, such as interleukin IL-2, IL-7, IL-10, TNF, granulocyte colony
stimulating factor (G-CSF), monocyte chemotactic protein-1 (MCP1), macrophage inflam-
matory protein 1 alpha (MIP1α) or CXC10 chemokine ligand (CXCL10) in the blood after
SARS-CoV-2 infection [5,28,29]. In our study, when analyzing the differences in median
levels of cytokines in patients with severe and critical COVID-19, we noticed significant
changes only for IL-6 level. Others also found that serum IL-6 concentration is closely
associated with the severity of COVID-19 disease [30–32]. They have shown that COVID-19
patients have higher serum level of cytokines: TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10 than
control individuals. Within COVID-19 patients, only serum IL-6 and IL-10 levels are sig-
nificantly higher in critical group than in moderate and severe group [33]. Jing Zhang
et al. [32] also have observed that IL-6 concentrations were significantly increased in critical
patients. They suggested that serum IL-6 level is a good marker of severity in patients with
SARS-CoV-2 infection.
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Our study showed that using the assessment of the correlation of the CT severity score
with various examined parameters showed the tendencies to decrease in leukocytes and
increase in neutrophils percentages and NLR along with the stage of advancement. The
CT severity score uses specific cut-off values to classify patients into specific advancement
groups [10,11]. CT is an effective method of detecting abnormalities in the lungs, especially
in the early stages of the disease and the high sensitivity of CT makes this method ideal for
assessing the severity of the disease. However, the changes observed in CT examination in
patients with SARS-CoV-2 infection are not specific enough to use tomography as a tool of
definitive diagnosis [34,35].

Taking into account the above studies and our results, it seems important to search for
parameters whose specific value would allow to determine the stage of the disease or to use
combinations of several parameters to determine the specific profile of the disease severity.
Although it has not been investigated whether cytokines and leukocyte subpopulations
are directly involved in lung pathology during COVID-19, evaluation of changes in these
parameters, including reductions in total lymphocyte counts, lymphocyte subsets and
elevated neutrophils percentages, NLR levels, and IL-6 levels, was strongly correlated
with the severity of the disease. In addition, we assessed the correlation of the studied
parameters with each other and compared it between the groups with severe and critical
COVID-19. We noticed correlation in the severe COVID-19 group between cytokines
IL-6 and IL-10 levels and neutrophils, what was reported by other studies [31,36]. Dhar
et al. [31] also indicates a possible dysregulation of the immune response against COVID-19,
in which the two cytokines IL-6 and IL-10 play a main role. They suggest that measuring
these cytokines could help identify patients more likely to progress to severe disease. In
our study in the severe COVID-19 group we observed high negative correlation between
proportion of IL-6 level and eosinophils. Eosinopenia had been found in numerous studies
lately to have a strong correlation with COVID-19 mortality and along with lymphopenia
may be a useful pointer for diagnosing COVID-19 in those patients [37–39].

In contrast to the severe COVID-19 group, the critical COVID-19 group was notable
for the existence of more and different correlations between proinflammatory cytokines:
TNF-α, IL-1β and cells, including lymphocyte subpopulations: T lymphocytes CD8+, B
lymphocytes and Treg cells. We hypothesized that pro-inflammatory cytokines together
with highly immunocompetent subpopulations of cells (T lymphocytes: CD4 and CD8 and
B lymphocytes) play a significant role in the most advanced group, which was not ob-
served in the sever group. In the critical group, there was a noticeable lack of significant
correlations with neutrophils, eosinophils, which are the main components of the innate
non-specific immune response. During innate immune response, pro-inflammatory cy-
tokines, especially INF-γ, induced by neutrophils, monocytes, macrophages and dendritic
cells are produced [40]. Severe COVID-19 cases had elevated the levels of various cytokines,
including granulocyte colony stimulating factor, IL-10, TNF-α, MIP-1α and MCP-1 [41].
However, the exact role of innate immunity against COVID-19 is not fully understood [42].
In the adaptive immune response, CD4+ T cells perform a helper and effector function,
CD8+ cells contribute to virus clearance by lysing infected cells meanwhile B cells produce
virus-specific antibodies and neutralize the viruses [43]. It is known that the presence
of T cells and antibodies is associated with successful resolution of average all cases of
COVID-19 [44]. He, S. et al. [45] found a reduced number of CD4+ T, CD8+ T lympho-
cytes and increased levels of IL-6 and IL-10 in patients with advanced lung lesions had
significantly fewer lymphocytes, and this decrease was negatively correlated with the area
of lung lesions. It can be seen that SARS-CoV-2 mainly affected lymphocytes causing a
deficiency of cellular immunity. Transient lymphopenia is a common feature of many
respiratory viral infections, such as with influenza A H3N2 virus, respiratory syncytial
virus or human rhinovirus, but in contrast to COVID-19 infection typically occurs for only
2–4 days around symptoms [46]. Peripheral lymphopenia in COVID-19 patients seems
to be more selective for T lymphocytes and could reflect recruitment of lymphocytes to
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inflamed respiratory sites. However, infiltration of lymphocytes in the BALF was observed,
but some researchers show that the number of these cells was not elevated [47,48].

It should be mentioned, that despite lymphopenia, immune cells respond to COVID-19
infection. In our previous studies, we showed an increase in the number of activated
lymphocytes - RE-LYMP parameter and plasmablasts [6] as well as CD4+ central memory
and CD8+ effector cells in patients with COVID-19 without interstitial lesions on chest
X-ray and with interstitial lesions on chest X-ray compared to the control group [17].
Other researchers also point to the emerging immune response in the form of activated,
effector and memory T cells depending on the severity of the disease [49,50]. Furthermore,
not only activation receptors appear on lymphocytes, but also exhausted markers and
receptor inhibitors are revealed [51–53] It is not entirely clear whether the expression
of these receptors reflects over-activation or exhaustion of lymphocytes and requires
further research.

Those above findings indicate a dysregulation of both innate and adaptive immunity,
and intensity of these immunological changes could be related to the severity of the disease.
Thus, direct research of innate and adaptive immunity including cytokine-leukocytes
profile and its relationship to disease severity in SARS-CoV-2 infected patients could be
crucial to understanding pathogenesis of COVID-19. In our opinion detailed CT results of
lung lesions along with the cellular and cytokine profile will give a better clinical picture of
the patient and may contribute to selecting the optimal and individual therapy.

5. Conclusions

Our study showed that differences between patients in the advanced stages of COVID-19
can be seen using a combination of cytokine levels and leukocyte subpopulation assess-
ments. In addition, we noticed that in patients with critical COVID-19 there were more
interrelationships in the cytokine-lymphocytic profile. The results of our study may help to
better understand the role of the research profile consisting of image of pulmonary lesions
measured by CT severity score, cytokines and leukocyte subpopulations and indicate a
potential therapeutic target in patients with advanced COVID-19.
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Figure A1. The example of CT changes in patient with critical COVID severity score 20—4 points (50 to 75% of lung tissue
involvement) for the each of lung lobe. (A) axial scan at the level of upper lobes; (B) axial scan at the level of middle lobe on
the right side, lingua on the left side and the upper segments of lower lobes; (C) axial scan at the level of the basal segments
of the lower lobes. The yellow arrows points ground-glass and crazy paving opacifications.
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Figure A2. Representative FACS analysis of PB cells with antibodies specific for lymphocytes subpopulations and T
regulatory (Treg) cells. (A) Lymphocytes gating strategy: FSC-A vs. FSC-H plot: Gating the cells that have an equal area and
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height, thus removing clumps (greater FSC-A relative to FSC-H) and debris (very low FSC), CD45 vs. SSC-A plot: Selection
of lymphocytes based on their SSC/CD45+ properties. (B) Lymphocyte subpopulation gating strategy: CD3 vs. CD19 plot:
Selection of lymphocytes T (blue and yellow) based on their CD3+ properties and lymphocytes B (navy blue) based on their
CD19+ properties. CD4 vs. CD8 plot: Selection of T lymphocytes subsets CD4+ (blue) and CD8+ (yellow) based on their
CD4/CD8 properties. CD3 vs. CD16 plot: Selection of NK cells (pink) based on their CD16+ properties and CD3 negative.
(C) Treg cells and Tregs subsets gating strategy: CD25 vs. CD127 plot: Selection of Treg cells (purple) based on their
CD25+high and CD127 negative properties. CD45RO vs. CD95 plot: Treg cells subset with CD45RO and CD95 expression.
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