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Introduction
Studies investigating DNA methylation in blood cells in ALS 
have been accumulating in the last few years, indicating the 
importance of epigenetic studies in the field of motor neuron 
diseases (MND).1-3 Despite the presence of numerous genomic 
sites that show static patterns of DNA methylation, there are 
also methylation sites in the genome that are regulated dynam-
ically and influenced by lifestyle and environmental factors. 
Furthermore, comorbidities that are not associated with the 
neurodegenerative disease can have an impact on the DNA 
methylome, which makes it rather difficult to detect true 
changes in methylation associated with neurodegenerative dis-
eases. Additionally, a complex interplay between genetic and 
epigenetic factors makes it even more difficult to detect the 
subtle changes in DNA methylation in blood cells associated 
with neurodegeneration. Our design, given the genetic and 
clinical nature of the study subjects, provides an ideal setup for 
matching both genotype and rearing environment within each 
pair of MZ twins, with the unaffected co-twins being the con-
trol group. This study design accounts for not only known 
potential confounding factors, such as genetics, age, and sex, 
but latent sources of unwanted variability, as well.4 Overall, the 
approach we used in this work, also called the case co-twin 

design, is superior to the ordinary case-control design in terms 
of the power of a significance test,5 providing a unique oppor-
tunity to detect subtle DNA-methylation changes associated 
with the motor neuron disease.

Methods
Study design and sampling of monozygotic twins

Sixteen participants (eg, 8 twin pairs) were initially enrolled in 
the study. One twin pair was excluded because they were dizy-
gotic. So, the present study was composed of 7 monozygotic 
(MZ) twin pairs discordant for ALS, all genotyped at the 
University Clinic of Ulm. All individuals were of European 
descent without known diabetes or cancer history. The affected 
co-twins were diagnosed according to the revised El-Escorial 
criteria6 for definite ALS. No unaffected co-twins had signs of 
MND. Zygosity information was further verified using SNP 
information using targeted sequencing of the known ALS 
genes and the SNP information provided on the Illumina EPIC 
DNA methylation arrays.

Ethical approval

All procedures were performed in accordance with the rele-
vant guidelines and regulations stated in the Helsinki II dec-
laration and approved by the local medical ethics committees 
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(ethics committees of Ulm University, approval no 19/12) 
medical ethics committees. Informed written consent from all 
study subjects was obtained before enrollment in the study.

Blood collection

Collection of human peripheral venous blood was performed 
in a non-fasting state using a Monovette™ blood drawing sys-
tem (Sarstedt, Germany) and EDTA tubes (Sarstedt, Germany) 
by a standardized procedure.

DNA isolation

5ml EDTA blood was used for DNA extraction. Erythrocytes 
were lysed in 20 ml lysis buffer (155 mM NH4Cl, 10 mM 
KHCO3, 0.1 mM Na2EDTA, pH = 7.4) for 15 minutes on ice. 
The leukocyte pellet was resuspended in 2.5 ml SE buffer 
(75 mM NaCl, 25 mM EDTA). To release the DNA, Proteinase 
K digestion was performed using 100 μl 20% SDS+10 mg/ml 
Proteinase K (Roche, Switzerland) overnight at 37°C. 900 μl of 
saturated sodium chloride solution (6 M NaCl) was added. The 
DNA was precipitated in 7 ml of 100% ethanol. Then, the 
DNA was washed in 70% ethanol, dried at room temperature 
(RT), and resuspended in 100 μl H2O.

DNA quality control and quantif ication

Nanodrop (Thermo Fisher Scientific, MA, USA) was used to 
determine the 260/280 ratio and the 260/230 ratio. All samples 
had a 260/280 ratio between 1.7 and 2 and a 260/230 ratio 
greater than 1.5. Nanodrop was used to get a rough estimate of 
the DNA concentration, then DNA quantification was carried 
out using a DNA Qubit fluorometer (Thermo Fisher Scientific, 
MA, USA).

Genotyping

C9orf72 genotyping in all samples was carried out by fragment 
analysis and repeat-primed PCR (RP-PCR). All normal 
homozygotes and expanded alleles were confirmed with 
Southern Blot. For the targeted gene sequencing, a custom 
panel from Illumina with 36 ALS genes (ie, ALS2, ANG, 
ARHGEF28, CCNF, CFAP410, CHCHD10, CHMP2B, 
DCTN1, ERBB4, FIG4, FUS, GLE1, GRN, HNRNPA1, 
HNRNPA2B1, MAPT, MATR3, NEFH, NEK1, OPTN, PFN1, 
PRPH, SETX, SIGMAR1, SOD1, SPG11, SQSTM1, TAF15, 
TARDBP, TBK1, TUBA4A, UBQLN2, VAPB, VCP, VEGFA, 
VPS54) was used. The subsequent sequencing was performed 
for 150 cycles by generating 2× 74 bp paired-end reads on the 
MiSeq (Illumina, CA, USA). The coverage of all genes was at 
least 20×. Enrichment for targeted gene sequencing was per-
formed with the Nextera Rapid Capture_Custom Kit (Illumina, 
CA, USA).

Sodium bisulf ite conversion

500 ng of DNA from each sample underwent sodium bisulfite 
conversion using the EZ-96 DNA Methylation kit (Zymo 
Research, CA, USA).

Illumina EPIC DNA methylation arrays

Samples were measured at the single nucleotide resolution 
across the human genome for CpG methylation levels using 
Illumina EPIC DNA methylation arrays (Illumina, CA, USA) 
at the University Clinic of Ulm. This platform offers simultane-
ous interrogation of CpG methylation levels of over 850 000 
different sites spanning CpG islands, genes, enhancers, and 
beyond. Sample processing for the assay was done according to 
the manufacturer’s protocol and finally, fluorescence imaging of 
the arrays using an Illumina HiScan SQ scanner yielded raw 
Intensity Data files (.idat) for all samples, following the stand-
ard Illumina scanning protocol. To reduce likely batch-to-batch 
variation in intra-pair CpG methylation differences, samples 
from co-twins in a pair were loaded together on the same array.

Data preprocessing

Preprocessing of raw data was adapted from the workflow com-
monly used for the analysis of array-based methylation data.7 
An initial round of quality control (QC) checks, filtering, 
within- and between-library normalizations, and data explora-
tion were performed using multiple R v4.1.28 packages before 
moving on to any statistical tests for differentially methylated 
cell types (DMCTs), -probes (DMPs), -regions (DMRs), and 
-blocks (DMBs). Briefly, detection P-values calculated per CpG 
in all samples seperately were used to check global signal relia-
bilities, with a cutoff of 0.05 for filtering out samples and a cut-
off of 0.01 for filtering out probes that performed poorly. Also, 
many other QC plots were generated using the “qcReports()” 
function in the R package minfi v1.40.0.9 As we did not expect 
global differences between affected and unaffected co-twins, 
data normalization was done using the “preprocessQuantile()” 
function.10 To confirm for both sample sexes and twin IDs 
reported in the sample metadata sheet using the methylation 
data, we used the “getSex()” together with the “plotSex()” func-
tions and the “getSnpBeta()” function in the R package minfi, 
respectively. Cross-reactive probes and probes associated with 
SNPs were removed with the “dropCrossReactiveProbes()” 
function.11 Multiple MDS plots were generated to cluster the 
samples by kinship, batch, disease status, sex, chronological age, 
and genotype (ie, C9orf72 hexanucleotide expansion (HRE) 
status) using the “plotMDS()” function in the R package limma 
v3.50.3,12 which helped us figure out which covariates to include 
in the regression analysis. Twin correlation on global CpG 
methylation levels was plotted as a means of QC at the sample 
level using the “chart.Correlation()” function in the R package 
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PerformanceAnalytics v2.0.413 considering the notion that a 
high degree of intra-pair correlation on global CpG methyla-
tion can be assumed for genetically-matched twins and that any 
unusual intra-pair dissimilarity might indicate a confounding 
factor (e. g. altered blood cell distribution).4 M- and β-values 
were calculated from preprocessed signal intensities for down-
stream analyses, ranging from 0 (unmethylated) to 1 (fully 
methylated), using the “getM()” and the “getBeta()” functions, 
respectively. Finally, a multi-set Venn diagram was plotted to 
identify shared probes among all twin pairs with an intra-pair 
absolute difference in β-value of ⩾ 0.1 using the “ggVennDia-
gram()” function in the R package ggVennDiagram v1.2.0.14

Differentially methylated cell type (DMCT) 
analyses

Reference-based estimations of blood cell type compositions 
from ALS and non-ALS whole blood samples were made using 
the “epidish()” function in the R package EpiDISH v2.10.0,15 
with the “centDHSbloodDMC.m” matrix being the whole 
blood reference of 333 cell-type specific DNAse Hypersensitive 
Site (tsDHS)-DMCs and 7 blood cell subtypes, and in “con-
straint projection” mode with “inequality” normalization con-
straint as implemented in the Houseman et al method16 for 
epigenetic dissection of intra-pair cell type heterogeneity. First, a 
boxplot of estimates grouped by blood cell subtypes with 2 levels 
(ie, affected and unaffected) was made using the R package 
ggplot2 v3.3.617 for a visual assessment of the estimates as a 
function of individual cell types and disease status. Then, the 
“CellDMC()” function from EpiDISH was used to 1. identify 
differentially methylated cell types, 2. find their directions of 
change, 3. check if and which specific cell type(s) drives methyla-
tion changes observed between ALS and non-ALS samples. By 
including the statistical interaction terms between disease status 
and the proportions of underlying cell types within PBMCs in 
the linear regression (ie, the Robust Partial Correlations (RPCs)) 
framework normally used to identify DMCs, this method allows 
for the detection of differentially methylated cytosines in a cell-
type specific manner.15 Eosinophils were excluded from the 
analysis because their fraction in the estimates was extremely 
low. Preceding the analysis, all cell type estimates were incre-
mented by 0.001 to deal with zero observations before log 
transformation of the counts. Lastly, after confirming the non-
normality of the data through “shapiro.test()” and “qqPlot()” 
functions in the R package stats v4.1.2,8 pairwise comparisons of 
each cell type between ALS and non-ALS samples were made 
using the “wilcox.test()” function in the same R package for a 
non-parametric alternative to the t-test.

Differentially methylated probe (DMP) analyses

For the differentially methylated probe analysis, we used the 
case co-twin design to capture intra-pair differences in CpG 
methylation. β-values were logit-transformed and converted 

into intra-pair differences (ie, values of unaffected co-twin in 
a pair be subtracted from those of the affected in the same pair 
for each probe across the twin set). This adjustment assigns a 
critical task to the intercept in the mixed-effects model 
(LMM) we used for probe-level differential methylation anal-
ysis: the mean level of intra-pair methylation differences per 
probe, when all fixed effect variables are set to zero, is repre-
sented by the intercept. In R8 we used the lme4 v1.1.2918 and 
the lmerTest v3.1.319 packages to conduct a linear mixed-
effects analysis for the detection of DMPs through the “lmer()” 
function. As the fixed effects, sex, age, C9orf72 status, CD4+ 
T cells, and neutrophils were used as covariates while as the 
random effects, the batch was the covariate incorporated into 
our random-intercept-fixed-slopes regression model, leading 
to the best outcome regarding singularity issues. In an attempt 
to prevent overfitting, underrepresented cell types in the data 
set and other low-priority predictors identified based on the 
MDS plots, including BMI, have been excluded from the 
regression analysis. The predictors such as different cell types 
in the model that vary between co-twins have also been con-
verted into intra-pair differences as before, and subsequently 
mean-centered to improve the numerical stability of the 
regression analysis. The intercepts, together with various sta-
tistics including the P-values calculated per probe, have then 
been collected as model fitting which was accomplished  
iteratively for the entire data set. Nominal P-values were 
adjusted using a cutoff of FDR ⩽ 0.05 for multiple testing 
corrections through the “p.adjust()” function.20 The “getAn-
notation()” function has been used together with the R pack-
age IlluminaHumanMethylationEPICanno.ilm10b2.hg19 
v0.6.09 for genomic annotation. To assess the distribution of 
all DMPs across the genome at the chromosome resolution, a 
Manhattan plot was generated using the “mhtplot()” function 
in the R package ENmix v1.30.3.21 Finally, a selected subset of 
probes was used to assess indices of model performances (the 
“compare_performance()” function) and the underlying 
assumptions, including normality of residuals and random 
effects (the “check_distribution()” and the “shapiro.test ()” 
functions), homogeneity of variance (the “check_heterogene-
ity_bias()” and the “leveneTest()” functions), linear relation-
ship and multicollinearity (the “compare_model()” function), 
and autocorrelation (the “compare_autocorrelation()” and the 
“durbinWatsonTest()” functions), using the R packages perfor-
mance v0.9.1,22 stats v4.1.2, lmtest v0.9.40,23 and car v3.1.0.19 
Also, it has been assumed that the data have been generated 
exogenously and that the twin sampling, as well as the entire 
set of probe-level observations on the EPIC arrays, were made 
independently. The “pheatmap()” function in the R package 
pheatmap v1.0.12, together with the color palettes in the 
package RColorBrewer v1.1.3, was used to generate heatmaps. 
The annotation track option of the UCSC Genome Browser24 
was enabled to illustrate a selected DMP along the CpG 
islands and gene bodies.



4 Epigenetics Insights 

Functional enrichment analysis

After the DMP-annotated genes were extracted, a STRING 
v11.525 protein association network analysis was done to 
investigate functional interactions in this final list of genes 
with a minimal interaction score of 0.400. A gene list enrich-
ment platform, EnrichR v15.06.202226 at https://amp.pharm.
mssm.edu/Enrichr/ has produced the pathway- and the 
ontology-level functional annotation results using the follow-
ing libraries: KEGG Human PA (2021) and GO Biological 
Process (2021). The enrichment P-values were calculated 
using a Fisher’s Exact Test or a hypergeometric test, which 
were then corrected for multiple testing using the Benjamini-
Hochberg (BH) FDR-controlling method.20

Differentially methylated region (DMR) and 
-block (DMB) analyses

The data have been grouped by disease status, instead of the 
twin structure used for the DMP analysis, to estimate 
“regions” of the genome binned into 1.5 kb windows for 
which a CpG methylation profile deviates from its baseline 
value between 2 (ie, affected and unaffected) populations. 
Detection of DMRs was done on the β-values through the 
“bumphunter()” function in the R package minfi v1.40.0 
with default settings, except a genomic profile cutoff of .2 to 
identify candidate regions and a resampling number of 1000 
to assess uncertainty. The “DMR.plot()” function in the R 
package DMRcate v2.8.527 was used to visualize the poten-
tial regions within the scope of this analysis. On the other 
hand, to explore the methylation status of genomic “blocks,” 
which is based on a metric devised to segregate hundreds of 
neighboring intergenic CpG sites into large-scale genomic 
regions with similar methylation profiles,28 the probes asso-
ciated only with OpenSea clusters (ie, the CpG-sparse 
regions outside the CpG islands) were used per the devel-
oper’s guidelines.29 In this context, a differentially methyl-
ated block (DMB) analysis was performed using the “champ.
Block()” function in the R package ChAMP v2.24.029 
between affected and unaffected samples with maximum 
block and between-cluster gap sizes of 250 kb, a threshold of 
10 as a minimum number of probes per block, and a resam-
pling number of 500.

Copy number variations (CNV) analysis

To detect copy number variations between affected and unaf-
fected co-twins using genome-wide CpG methylation pro-
files,30 we used the “champ.CNA()” function in the same R 
package ChAMP with default parameters. Two sets of plots 
were returned, including the aberrations of each sample group 
and the aberrations of each affected sample with respect to the 
mean of the unaffected sample group.

DNA methylation (DNAm) age analysis

DNA methylation age estimates were generated using the 
online calculator31 at https://dnamage.genetics.ucla.edu/, as 
described by Horvath (2013). Briefly, any probes missing in our 
data set that was originally used in the 27 K arrays to develop 
the underlying algorithm were appended row-wise to obtain 
the input data set for the analysis, with any missing value 
replaced by “NA.” A matching sample annotation file was gen-
erated for an in-depth analysis of DNAm age. After the analy-
sis, the samples that fail to correlate well (ie, r ⩽ .80) with the 
standard samples were excluded from further consideration. 
Plots for data visualization were generated using base R graph-
ics or the R package ggplot2 v3.3.6.

Power of a sample analysis

Power analysis was done using the “pwrEWAS_shiny()” func-
tion in the R package pwrEWAS v1.8.032 based on 500 simula-
tions and a target maximal difference in DNA methylation 
between 20% and 50% at 5% FDR, with limma12 being the 
method for DM analysis.

Receiver operating characteristic curve (ROC) 
analysis

With discriminatory power expressed as the area under the 
curve (AUC), ROC analysis with sensitivity and specificity 
calculations were all done using the “plot.roc()” function in the 
R package pROC v1.18.033 to assess how well each DMP 
identified in this study is capable of discriminating between 
affecting and unaffecting samples. Efficacy evaluation: 
AUC = 0.5 means non-efficiency, 0.5 ⩽ AUC ⩽ 0.7 means a 
modest level of efficiency, AUC ⩾ 0.7 means high efficiency.

Results
Demographics

The current study is composed of 7 pairs of MZ twins (n = 14). 
Though the initial sample size at the time of study design was 
16 (ie, 8 twin pairs), one of the pairs turned out to be dizygotic 
(DZ) during the verification stage of the zygosity information, 
and was thereby excluded from the downstream analyses. Of 
these 7 pairs (Table 1), 3 were female and 4 were male with 
chronological ages ranging from 38 to 74 years (x  = 57.43, s = 
10.64, x  = 58). The age at onset ranged from 36 to 73 years (x  
= 55.84, s = 11.46, x  = 56.6). The C9orf72 hexanucleotide 
repeat expansion (HRE) was identified in 3 twin pairs (1 male 
and 2 female twin pairs), 1 twin pair (female twin pair) showed 
a variant in the TBK1 (TBK1:c.217A>C, p.I73L) gene, 1 twin 
pair (male twin pair) was identified with a variant in the NEK1 
(NEK1:c.1634T>G, p.M545T) gene and 1 twin pair (male 
twin pair) was identified with a variant in the NEFH gene 

https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://dnamage.genetics.ucla.edu/
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(NEFH: c.1054C>A, p.R352S). In total there were 3 spinal 
ALS cases, 3 bulbar ALS cases, and one ALS-FTD case.

Intra-pair methylation profiles of the mutated ALS 
genes in the corresponding twin pairs

To determine whether there is any discrepancy in the methyla-
tion status of an upstream CpG island spanning the promoter 
region and exon 1 of each of the mutated ALS genes between 
affected and unaffected co-twins in the corresponding twin 
pair, we used the associated probes in the EPIC data and 
observed a highly similar pattern in the methylation profile of 
each of these regions per intra-pair comparison (Figure 1). As 
expected, there is a lack of DNA methylation at CpG islands 
encompassing the first exons of the TBK1 and NEK1 genes 
(Figure 1b and c). Importantly, as the probes mapping to CpG 
islands associated with the C9orf72 gene were filtered out dur-
ing preprocessing (Supplemental Figure 1), we confined our 
analysis to this subgroup of ALS genes mutated in our MZ 
twin set (Table 2). Overall, there appears to be a clear consist-
ency in the methylation profiles of the mutated ALS genes 
between co-twins in the mutation-positive twin pair, in line 
with the previous literature.34

Global changes in CpG methylation across the twin 
pairs

After confirming the twin correlation on global CpG methyla-
tion levels using the methylation data, as well as sample sex and 

twin IDs (Supplemental Figure 2), we explored any relation-
ship between genome-wide DNA methylation and chrono-
logical age within- or between MZ twin pairs (Figure 2a). 
With the mean levels of global DNA methylation being almost 
the same across all 14 samples, there appeared to be no particu-
lar trend associating genomic methylation on a broad scale 
with age, which also seems to be independent of disease status. 
Then, we sorted the data by sex and repeated the experiment, 
only to see the same outcome (Figure 2b): there is likely no 
relationship between sex and CpG methylation at the genome 
level, with or without disease status involved. Taken together, 
our observations on global alterations in CpG methylation 
across the twin pairs are mostly in agreement with the current 
literature.

Intra-pair variability analysis revealed altered 
DNA methylation associated with the GRIK1 gene

A consistent body of previous literature revealed that intra-pair 
methylation differences in disease-discordant MZ twins are 
generally low (⩽0.20) at the probe level due to the matched 
genetic make-up and shared rearing environment between co-
twins.1,4,5,34 Based on this observation, we tested for probes with 
a sufficient (ie, Δβ-value ⩾ 0.10) intra-pair variability shared by 
all twin pairs in our data set (Figure 2c). We identified 
cg26023019 with a Δβ-value above the threshold, which maps 
to the GRIK1 gene, which was previously associated with ALS 
in a group of independent ALS-CNV studies.35,36 Lastly, after 
estimating blood cell type compositions from ALS and 

Table 1. Demographics for the MZ twin set.

TWiN PAiR iD DisEAsE sTATUs GENDER AGE MUTATiON AGE OF ONsET BMi

Twin1 Unaffected female 62 C9Orf72 HRE 0 22.9

Affected female 62 C9Orf72 HRE 60 19.2

Twin2 Unaffected male 53 NEK1: p.M545T 0 23.9

Affected male 53 NEK1: p.M545T 53 20.2

Twin3 Unaffected male 38 wt 0 23.3

Affected male 38 wt 37 19.5

Twin4 Unaffected male 54 NEFH: p.R352s 0 23.1

Affected male 54 NEFH: p.R352s 52 22.3

Twin5 Unaffected female 58 TBK1: p.i73L 0 28.3

Affected female 58 TBK1: p.i73L 57 27.6

Twin6 Unaffected female 63 C9Orf72 HRE 0 23.1

Affected female 63 C9Orf72 HRE 62 18.7

Twin7 Unaffected male 74 C9Orf72 HRE 0 22.8

Affected male 74 C9Orf72 HRE 73 21

Abbreviations: HRE, hexanucleotide repeat expansion; wt, wild type for known ALs genes; BMi, body mass index.
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non-ALS whole blood samples, we performed a pair of DMCT 
analyses (Figure 2d). Using neither a particular linear regression 
framework described in the Methods section nor individual 
pairwise comparisons of each cell type between ALS and non-
ALS samples we could detect DMCT by disease status. 
Nevertheless, elevated levels of B cells and granulocytes were 
observed in ALS-affected co-twins, as published before.3 As a 
final point, we checked to see whether the intra-pair correla-
tions computed on CpG methylation decline with biological 
age, as previously reported in the literature4,37 for MZ twin 

pairs. As expected, a downtrend line suggesting a decrease in the 
correlation with biological aging was observed (Supplemental 
Figure 2c), implying the importance of adjusting for age in esti-
mating the relationships between CpG methylation patterns 
and disease status.

Probe-level differential methylation analysis

To analyze the methylation data from ALS-discordant MZ 
twins at the probe level using the case co-twin design, we used 

Figure 1. The promoter proximal sites of neither NEFH nor NEK1 or TBK1 are differentially methylated between mutation-positive ALs-discordant twins. 

The methylation β-values of both the relative location of the promoter proximal regions and exon 1 for NEFH ((a), upper left), NEK1 ((b), upper right), and 

TBK1 ((c), bottom) plotted as a function of corresponding probe iDs. Methylation status of each gene was identified using EPiC arrays. Methylation profile 

of the promoter regions and exon 1 of NEFH, NEK1, and TBK1 does not indicate any pattern of differential methylation between affected and unaffected 

co-twins in the corresponding twin pairs, concordant for NEFH p.R352s, NEK1 p.M545T, and TBK1 p.i73L, respectively.
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a mixed-effects model with fixed effects of age, sex, C9orf72 
status, and cell type estimates, with random effects of batch 
(Supplemental Figure 3). As indicated above for biological age, 
though discordant MZ twins are matched for biological factors 
specific to individual pairs, the effects of these factors on the 
within-pair difference in CpG methylation patterns should be 
accounted for,4,5 which is addressed in the Discussion section. 
Considering that the intercept is the key term of the analysis as 
the mean level of intra-pair methylation differences per probe 
when all fixed effect variables are set to zero, we plotted the 
frequency distribution of the intercept estimates obtained from 
the regression analysis. In line with the literature,38 they fol-
lowed a clear pattern of normal distribution (Figure 3a), just as 
the M-values. Ultimately, a total of 35 probes were found sig-
nificant at an FDR ⩽ 0.05 with varying levels of significance 
(Supplemental Figure 4). In an attempt to visually assess their 
degree of variation in methylation levels by disease status, we 
observed a heterogeneous profile of CpG methylation for the 
DMPs (Figure 3b). Subsequently, each of the underlying 
assumptions of our linear model was evaluated using a selected 
subset of probes for the quality of the model fit, performance 
characteristics, and diagnostic accuracy. From a technical aspect, 
a remarkable robustness of LMMs has been confirmed in the 
literature,39,40 except for small biases in estimated parameters 
stemming from missing predictors or random effect compo-
nents, even if the majority of the assumptions are violated. Our 
results revealed, though using a subset of probes, that the 

majority of the assumptions were met (Supplemental Figures 5 
and 6). Next, we checked to see whether these DMPs are capa-
ble of distinguishing between ALS and non-ALS samples. The 
results of different methodologies converged on a low power of 
discrimination between sample groups given just these signifi-
cant probes (Figure 3c and d). When the DMP-annotated 
genes were clustered based on the direction of the change in 
methylation, 2 groups emerged: (a) ATG9A, BCAT1, BARX2, 
C1orf103, CYGB, FES, MYH9, PARVB, and RNF4 as hypo-
methylated genes, (b) ATP6V0B, BOC, BUD31, C3orf75, 
FEZ2, IL17D, KILLIN, MEGF6, OSBPL10, PDAP1, PTEN, 
RSPO4, SLX4, UBLCP1, and USP20 as hypermethylated. 
Though not significant (FET P-value: .0699), protein associa-
tion network analysis of these 24 genes performed using the 
STRING platform revealed the enrichment of a part of the 
ubiquitin (Ub)-proteasome pathway (UPP) of protein degrada-
tion, which is known to be dysfunctional in ALS.41,42 On the 
other hand, “autophagy” and “axon guidance” were identified as 
the top deregulated signaling pathways (q-value = 0.012 and 
0.020, respectively), and “actin cytoskeleton reorganization” was 
identified as the top enriched biological process (q-value = 0.003) 
in these DMP-annotated genes which has been strongly associ-
ated with ALS pathogenesis.43-45 To detect differences up to 
20% and 50% in CpG methylation between affected and unaf-
fected co-twins with a minimum number of 7 subjects in a sam-
ple group based on the power of sample calculations, the 
calculated power of making a statistically significant compari-
son at an FDR ⩽ 0.05 turned out to be low, as expected. Yet, it 
was also observed for target differences of 20% and 50% that the 
probability of detecting at least 1 true positive significant probe 
out of 35 DMPs identified between affected and unaffected co-
twins is about 10% and 61%, respectively given the current sam-
ple size (Supplemental Figure 7). In other words, approximately 
4 of the DMPs identified within the scope of this study are 
expected to be true positive results with ⩾20% methylation dif-
ference between sample groups. Interestingly, our ROC analysis 
revealed using a classical AUC threshold of 0.70 that there are 
exactly 4 probes (Figure 4a) out of 35 DMPs (Supplemental 
Figure 8) that appear to classify the sample groups well. While 
3 of these candidate probes are located in the “OpenSea clus-
ters” of the genome, one of them with an AUC value of 0.755 is 
located near the TSS of the IL17D gene, which is implicated in 
positive regulation of cytokine production during inflammatory 
response46 (Figure 4b). Overall, our probe-level differential 
methylation analysis appears to provide a small but biologically 
relevant group of genes that are differentially methylated within 
the context of ALS.

Region- and block-level differential methylation 
analyses

After the data have been regrouped according to their disease 
status, ignoring the twin structure used for the DMP analysis, we 
also conducted differential methylation analyses at 2 different 

Table 2. Pairwise correlations between individual samples 
and the gold standard.

TWiN iD PEARsON’s R2

Twin1 (Unaff.) 0.905

Twin1 (ALs) 0.916

Twin2 (Unaff.) 0.920

Twin2 (ALs) 0.919

Twin3 (Unaff.) 0.918

Twin3 (ALs) 0.919

Twin4 (Unaff.) 0.914

Twin4 (ALs) 0.914

Twin5 (Unaff.) 0.920

Twin5 (ALs) 0.920

Twin6 (Unaff.) 0.910

Twin6 (ALs) 0.915

Twin7 (Unaff.) 0.916

Twin7 (ALs) 0.915

The gold standard is defined by averaging the beta values across  
the samples from the largest blood data set. The accepted threshold of 
R2 = 0.800.
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levels, namely genomic region (ie, a 1.5 kb genomic window) and 
genomic block (ie, a genomic bin up to 250 kb). In this context, 
each block contains hundreds of neighboring intergenic CpG 
sites with similar methylation profiles. As can be seen in 
Supplemental Figure 9, the lack of significant deviations from 

the baseline value between affected and unaffected populations 
is apparent even when the smoothed group means for the top-
ranking region are compared. The same holds for the DMB 
analysis: no genomic blocks were identified differentially meth-
ylated between the sample groups. Overall, ALS-discordant 

Figure 2. Global changes in CpG methylation across the twin pairs. (a) An attempt to explore any relationship between genome-wide DNA methylation 

and chronological age within- or between MZ twin pairs revealed that there is no particular trend associating genomic methylation on a broad scale with 

aging regardless of disease status. All twin pairs are ranked by chronological age. N(un)affected = 7. (b) it is also clear that there is no relationship 

between gender and CpG methylation at the genome level, with or without disease status involved. N(un)affected, female = 3, N(un)affected, male = 4. (c) 

intra-pair variability analysis performed to identify probes with a sufficient (ie, Δβ-value ⩾ 0.10) intra-pair variability shared by all twin pairs in our data set 

revealed altered DNA methylation associated with the GRiK1 gene. Also, the twin pairs 1, 6, and 7 accommodate the highest number of pair-specific 

probes with sufficient intra-pair variability, with 6 being the most extreme. (d) Comparisons of blood cell type composition estimates using neither basic 

univariate (ie, wilcoxon test) nor more advanced multivariate statistics (ie, the Robust Partial Correlations (RPCs)) approaches reported differentially 

methylated cell types by disease status. Yet, an increase in B cell and granulocyte levels is apparent in ALs-affected co-twins. ns: not significant. N(un)

affected = 7.
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Figure 3. Probe-level differential methylation analysis identified 35 DMPs with varying levels of methylation changes between conditions. (a) As a QC 

step for the statistical approach (ie, a linear mixed-effects model) used in the differentially methylated probe analysis, the frequency distribution of the 

intercept estimates obtained from the regression analysis follows a clear pattern of normal distribution. (b) The degree of variation by disease status in 

methylation levels of the 35 DMPs identified within the scope of this work is highly variable: while there are DMPs with clear differences in methylation 

levels between ALs and non-ALs samples, there are also DMP that have roughly similar levels of methylation by disease status when raw βvalues are 

used for visual assessment, implying the importance of adjusting for key covariates such as age and gender in estimating the relationships between CpG 

methylation patterns and disease status. N(un)affected = 7. (c and d) When we tested whether these DMPs are capable of distinguishing between ALs and 

non-ALs samples, the results of different methodologies (ie, a heatmap (c) or a PCA (d) of raw methylation levels) indicated a low power of discrimination 

between sample groups given just the significant probes. in other words, methylation was roughly similar across samples for most DMPs, and samples 

did not seem to cluster by disease status. PC1 in (d) explains 34% of the variation in the input data of DMPs.
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twin studies with relatively small sample sizes seem to work bet-
ter for probe-level than region-level methylation analysis.

Copy number variation analysis

Finally, we performed a copy number variation (CNV) analysis 
using the genome-wide CpG methylation profiles at the probe 
resolution between ALS and non-ALS samples. The copy 
number variations (gains or losses) both between sample groups 
and of each affected sample with respect to the mean of the 
unaffected sample group failed to yield a consistent pattern for 
disease status (Supplemental Figure 10).

Discussion
In this study, our goal was to provide further biological insight 
into ALS pathogenesis at the DNA methylation level using 
whole blood samples of ALS-discordant MZ twins. We have 
shown that a few CpG locations in the genome carry differen-
tial methylation marks associated with ALS. In addition, we 
observed differential methylation of neither genomic bins of 
different sizes nor blood cell types associated with ALS in our 
data set. Nevertheless, global patterns of genomic methylation 
across the twin pairs, including an increasing intra-pair dis-
crepancy in methylation age and a decreasing intra-pair corre-
lation on CpG methylation with chronological aging, a low 
degree of variation in within-pair CpG methylation, and 
elevated levels of B cells and neutrophils in ALS-affected 

co-twins, were all in agreement with the current literature. Our 
results imply that the methylation landscape of whole blood in 
ALS is a dynamic and highly heterogeneous network at the 
genome level, with only some commonly found perturbations 
and affected pathways contributing to the disease.

As rarely as these study subjects can be found, our twin set 
presumably harbors invaluable information on the molecular 
etiology of ALS, independent of the genetic mutations in the 
ALS gene each twin pair carries. More specifically, the ultimate 
reason why we chose a study design as such, that is, with identi-
cal twins that have remarkably different phenotypes, was 
because co-twins in a pair are matched for familial factors, 
including but not limited to baseline genetic sequence, age, sex, 
and rearing environment, thereby reducing the variability 
between pairs of subjects, but are still discordant for the disease. 
This leaves room for epigenetic components that might be 
involved in the disease pathogenesis. We observed rather con-
sistent methylation profiles of the mutated ALS genes between 
co-twins in the mutation-positive twin pair, implying causative 
mutations detected in each twin pair are independent of dif-
ferential CpG methylations identified within the scope of this 
study.

Another limitation of the current work relates to the LMM 
that was found to produce heavily inflated P-values (likely a 
high number of false positives47) within the context of the 
probe-level differential methylation analysis. As statistically 

Figure 4. in silico validation of DMP analysis results indicate differential methylation of iL17D in ALs blood. (a) The ROC analysis results of 35 DMPs 

using a classical cutoff value at AUC ⩾ 0.70 identified 4 probes that appear to classify the sample groups well, just as expected after the results of the 

power of sample calculation. The corresponding probe iDs are shown in red at the top of each plot. N(un)affected = 7. (b) Graphical representation of the 

DMP with the iD number “cg13993853” overlapping the iL17D promoter region, as indicated by the adjacent activating epigenetic marks (eg, CpG islands, 

H3K27Ac, and DNasei hypersensitivity), as well as the neighboring TF binding sites. Unlike the other 3 candidate probes that are located in the “Opensea 

clusters” of the genome, this probe with an AUC value of 0.755 is the only candidate probe that is located near the Tss of a gene.
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precarious as this situation may be, such inconsistencies can be 
explained in the context of our experimental design, as well as 
our analysis workflow, independent of modeling errors. 
However, it should also be noted that as we preferred the case 
co-twin design to the classical twin design for DMP analysis 
chiefly due to our initial experimental design, the whole proce-
dure of data preparation and processing mentioned in the 
“Differentially methylated probe (DMP) analyses” part of the 
Methods section, composed mainly of transformations, value 
adjustments, selection of predictor variables (both fixed and 
random effect covariates) in the LMM, model fitting, and 
extraction of key metrics for downstream analysis, has been 
planned and performed based on the developers’ guidelines.5 
This is also evident by the total number of DMPs identified in 
this work, which is in line with many other discordant twin 
studies in the literature.34,48,49 Back to the potential reasons for 
inflated P-values, outlier probes in a data set are widely known 
to cause instability in statistical tests, which can result in excep-
tionally high standard errors, and thereby, inflated P-values. 
The preprocessQuantile() function used for data normaliza-
tions during preprocessing stage of the analysis workflow also 
fixes outliers, but only those that have low (ie, close to zero) 
signal intensities, not high. In this regard, it is likely that the 
significant results are, to some extent, driven by technical arti-
facts or outliers. In fact, only 4 of the 35 DMPs identified in 
this study could be validated using ROC analysis, just as pre-
dicted using the power of sample calculations as the total num-
ber of true positive findings from DMP analysis with ⩾20% 
methylation difference between sample groups. This is why we 
decided to prioritize the genomic locations associated with 
these 4 DMPs over those associated with all DMPs while 
making biological interpretations of our results. Another point 
is that we already performed a comprehensive search trying 
most of the combinations of predictor variables to find the sub-
set with the best evaluation criterion using not only simple lin-
ear model but also mixed-effects model, with the MDS/PCA 
results in mind, before constructing the final version of our 
multivariate regression model. In this respect, singularity issues 
and multicollinearity were also taken into account as selection 
criteria. Lastly, our power calculations demonstrated that the 
small sample size we had for the EWAS presented here made 
it rather difficult to obtain any significant results (Supplemental 
Figure 7). So, there is also a chance, though not the most likely 
scenario, that small sample sizes lead to such statistical biases as 
an inflated type-1 error, as reported in many different clinical 
trial studies before.50 Taken together, the statistical approach 
used in this work, though not minimizing the risk of false posi-
tive findings being reported together with true positive results, 
allowed us to identify a small subset of DMPs that were later 
validated bioinformatically.

An overly underestimated concept in discordant MZ twin 
studies is the intra-pair dynamics of epigenetic drift. Epigenetic 
drift can be defined as the divergence of the epigenome with 

biological age due to stochastic alterations in methylation.51 
This paradigm has often been overlooked especially when the 
methylation changes are investigated, with chronological age 
being part of the equation, in identical twins who do not share 
the disease phenotype between co-twins. It is critical to note 
that the effect of the age-associated intra-pair difference in 
DNA methylation status must not be disregarded in such stud-
ies though the biological factors specific to individual pairs are 
matched out in MZ twins.52  Empirical evidence confirming 
this effect came from the observation that twin correlation on 
genome-wide DNA methylation declines with age 
(Supplemental Figure 2). If this increasing divergence of the 
epigenome with age actually roots from stochastic alterations, 
then co-twins in identical twin pairs should be affected differ-
ently along the natural course of epigenetic drift, leading to 
diminishing within-pair twin correlations on global DNA 
methylation. From a technical perspective, this approach might 
as well serve as a QC check in MZ twin studies and be used to 
monitor sample compliance.

Considering our analysis approach for probe-level differen-
tial methylation, one could easily claim that age and sex are 
matched out in the case co-twin design and that including 
them as predictor variables in the final model seems excessive. 
Yet, such an argument does not apply to the EWAS as: (a) 
intra-pair differences in the epigenome are likely to be higher 
in older twin pairs, just as mentioned above, (b) it has been 
known that intra-pair epigenetic differences in particular 
regions of the genome vary by sex.5 As a result, fixed effect 
covariates as such can improve the regression analysis consider-
ably when included in the model. From a practical standpoint, 
the regression models we tested in the absence of such predic-
tors did not seem to yield any better results, either. Further 
examples can be found in other studies with similar experi-
mental designs in the literature.4,34,48

The only probe with sufficient (ie, Δβ-value ⩾ 0.10) intra-
pair variability shared by all twin pairs in our data set, 
cg26023019, was found to be hypermethylated in affected co-
twins and map to GRIK1 which is involved in the excitatory 
neurotransmitter receptors in the mammalian brain. The gluta-
mate signaling pathway is known to be intimately related to 
both acute and chronic neurodegenerative disorders, including 
ALS.53 In this regard, several lines of evidence also suggest that 
excessive activation of the glutamate receptors results in excito-
toxicity.53-55 With the GRIK1 gene being hypermethylated (or 
presumably transcriptionally suppressed) in ALS samples, our 
findings implicate the activation of a compensatory mecha-
nism responsible for restoring the overly active glutamate sign-
aling back to normal levels in ALS. Further research is needed 
to confirm this hypothesis and to understand the potential role 
of GRIK1 in ALS biology.

Finally, 1 of 4 DMPs identified within the scope of this 
study and later verified by ROC was found to be hypermethyl-
ated in affected co-twins and located near the TSS of the 
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IL17D gene, which is implicated in positive regulation of 
cytokine production during an inflammatory response. 
Interestingly, recent evidence has shown that IL17 directly 
affects human motor neuron survival and directly contributes 
to motor neuron degeneration in ALS.56,57 Considering that 
IL17D is vastly expressed in various brain regions58 and that 
blood is a reasonable surrogate for brain tissue in DNA meth-
ylation studies,59 IL17D has the potential to serve as a blood-
based biomarker.

Conclusion
Despite the small sample size of the current study, we identified 
a group of DMPs that might serve as potential epigenetic loci 
for future ALS studies. Especially for the studies investigating 
different phenotypes (eg, fast vs slow ALS progressors) irre-
spective of the genetic cause underlying the disease, testing for 
these DMPs might provide meaningful biological outcomes 
and could further validate the findings of the current study.
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