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In brief

Toxicity assessment is a critical step in

drug development. To overcome the

black-box nature of conventional

classification models, Hao et al. propose

an interpretable model named DTox

(deep learning for toxicology) for

predicting compound response to

toxicity assays and inferring toxicity

pathways of individual compounds.

Validation studies using experimental

datasets demonstrate the effectiveness

of DTox in rediscovering known

mechanisms, differentiating distinctive

mechanisms, and recapitulating cellular

activities leading to toxicity. DTox will

benefit mechanistic studies in toxicology

by generating testable hypotheses for

further investigation.
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THE BIGGER PICTURE In drug development, a major reason for attrition is the lack of understanding of
cellular mechanisms governing drug toxicity. It is challenging to explain the toxicity outcomes of newly
developed compounds with limited prior knowledge. To address the challenge, we present DTox (Deep
learning for Toxicology), a deep learning model incorporated with extensive knowledge from pathway
ontology. DTox is a highly efficient learning model with good predictive performance. It is applicable to
all compounds because it requires only chemical structure as model input. More importantly, the knowl-
edge-guided structure of DTox enables us to identify network paths connecting query compounds to
toxicity outcomes via target proteins, functional pathways, and general biological processes. Such paths
can be viewed asmechanistic interpretation of toxicity and facilitate experimental investigation. We employ
existing experimental datasets to validate the mechanistic interpretation by DTox and demonstrate its bio-
logical significance.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
In drug development, a major reason for attrition is the lack of understanding of cellular mechanisms govern-
ing drug toxicity. The black-box nature of conventional classification models has limited their utility in iden-
tifying toxicity pathways. Here we developed DTox (deep learning for toxicology), an interpretation frame-
work for knowledge-guided neural networks, which can predict compound response to toxicity assays
and infer toxicity pathways of individual compounds. We demonstrate that DTox can achieve the same level
of predictive performance as conventional models with a significant improvement in interpretability. Using
DTox, we were able to rediscover mechanisms of transcription activation by three nuclear receptors, reca-
pitulate cellular activities induced by aromatase inhibitors and pregnane X receptor (PXR) agonists, and
differentiate distinctive mechanisms leading to HepG2 cytotoxicity. Virtual screening by DTox revealed
that compounds with predicted cytotoxicity are at higher risk for clinical hepatic phenotypes. In summary,
DTox provides a framework for deciphering cellular mechanisms of toxicity in silico.
INTRODUCTION

With the application of quantitative high-throughput screening

techniques, toxicity testing programs1,2 have generated millions

of data points regarding the response of biological systems to

important chemical libraries, both in vitro and in vivo. Specif-

ically, in the Tox21 program,1 over 8,500 compounds were
This is an open access article under the CC BY-N
tested for a variety of toxicity endpoints, including stress

response, genotoxicity, cytotoxicity, developmental toxicity,

etc. These toxicity profiles can assist with probing how chemi-

cals interact with proteins and pathways to trigger a certain

outcome, and thus shed light on cellularmechanisms of toxicity.3

Furthermore, with the help of machine learning algorithms, re-

searchers can identify the chemical or biological patterns of a
Patterns 3, 100565, September 9, 2022 ª 2022 The Author(s). 1
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compound that might be predictive of adverse health outcomes

in humans.4,5

Previous studies have modeled toxicity endpoints from phys-

iochemical properties of compounds using a wide range of su-

pervised learning algorithms, including k-nearest neighbors,6,7

Bayesian matrix factorization,8 support vector machines,7,9

random forests (RFs),6,10 gradient boosting (GB),11 and more

recently, deep neural networks.12–14 Even though most of these

algorithms achieved decent predictive performance, none of

them could overcome the trade-off between accuracy and inter-

pretability. As algorithmic design getsmore complex, it becomes

challenging to interrogate how each input feature contributes to

the eventual prediction.15 A few post hoc explanation tech-

niques, such as Local Interpretable Model-agnostic Explana-

tions (LIME)16 and deep learning important features

(DeepLIFT),17 were developed to address the challenge. Never-

theless, these techniques often draw criticism in that they pro-

vide only an approximate explanation with locally fitted naive

models. Thus, they may not reflect the real behavior of the orig-

inal model.18 More critically, the setting of existing toxicity pre-

diction models has limited the explanation of contributions

from structural properties or target proteins while interactions

with pathways remain largely uncharacterized. For toxicologists,

the behavior of pathways proves crucial in deciphering the

cellular activities induced by a compound and understanding

how target proteins, specific pathways, and biological pro-

cesses trigger the toxicity outcome as a whole.5 Therefore, a

toxicity prediction model that achieves interpretability at both

the gene and the pathway level is urgently needed.

Recent developments in visible neural networks (VNNs) have

overcome the accuracy-interpretability trade-off. VNN is a type

of neural network whose structure is guided by extensive knowl-

edge from biological ontologies and pathways. The incorpora-

tion of ontological hierarchy in VNN forms a meaningful network

structure that connects input gene features to output response

via hidden pathway modules, making the model highly interpret-

able at both the gene and the pathway level. In a pioneering

study, Ma et al.19 built a VNN with 2,526 Gene Ontology and

Clique-eXtracted Ontology terms for predicting growth rate of

yeast cells from gene deletion genotypes. The authors were

also able to rediscover key ontology terms responsible for cell

growth by examining the structure of the VNN. Subsequent

studies have extended the VNN model for learning tasks

regarding human cells, such as predicting drug response and

synergy in cancer cell lines,20 modeling cancer dependencies,21

and stratifying prostate cancer patients by treatment-resistance

state.22 It is our working hypothesis that VNNs can address the

limitations of existing toxicity prediction models because of their

incorporation of pathway knowledge and the resulting high inter-

pretability. In this study, we employed the Reactome23 pathway

hierarchy to develop a VNN model—namely, DTox (Deep

learning for Toxicology)—for predicting compound response to

15 toxicity assays. Further, we developed a DTox interpretation

framework for identifying VNN paths that can explain the toxicity

outcome of compounds.We connected the identified VNN paths

to cellular mechanisms of toxicity by showing their involvement

in the target pathway of respective assay, their differential

expression in the matched Library of Integrated Network-Based

Cellular Signatures (LINCS) experiment,24 and their compliance
2 Patterns 3, 100565, September 9, 2022
with screening results from mechanism of action assays. We

applied the DTox models of cell viability to perform a virtual

screening of �700,000 compounds and linked predicted cyto-

toxicity scores with clinical phenotypes of drug-induced liver

injury (DILI). We conclude with a discussion of potential discov-

eries made by DTox, some of which have already been validated

in previous studies. Our code can be accessed openly at https://

github.com/yhao-compbio/DTox. In general, the DTox interpre-

tation framework will benefit in silico mechanistic studies and

generate testable hypotheses for further investigation.

RESULTS

Design and training of DTox for predicting compound
response to toxicity assays
The purpose of DTox is to predict the outcome of interest from

chemical structure of compounds and to explain the predicted

outcome with activities of proteins and pathways. To train the

model, DTox takes in a labeled dataset that specifies the 2D

structural representation of each compound (in the form of

SMILES string), along with the binary outcome of a screening

assay (active or inactive). Because a VNN model typically starts

with input layers consisting of gene or protein features, to fill in

the gap, we first quantified the structure of each compound us-

ing a 166-bit MACCS fingerprint (each bit represents the answer

to a yes/no question regarding chemical structure), then applied

our previously developed method, named TargetTox,25 to derive

a target profile of each compound (Experimental procedures).

TargetTox was pre-trained on experimentally measured com-

pound-target binding affinities to infer the target binding proba-

bility of each compound from its MACCS fingerprint. The derived

profile contains 361 target proteins, spanning six functional cat-

egories: enzymes, G protein-coupled receptors (GPCRs), cata-

lytic receptors, ion channels, nuclear hormone receptors, and

transporters (Figure S1). We designed a VNN structure (Figure 1;

Experimental procedures) that connects target proteins (input

features) to assay outcomes (output response) via Reactome

pathways (hiddenmodules). By our design, each pathway is rep-

resented by 1–20 neurons depending on its size. Connections

between input features and the first hidden layer are constrained

to follow protein-pathway annotations, while the connections

among hidden layers are constrained to follow child-parent

pathway relations. The incorporation of pathway hierarchy

makes DTox models highly interpretable, in contrast with con-

ventional black-box neural network models.

We trained DTox models on 15 datasets (Table S1; Experi-

mental procedures) from the Tox21 high-throughput screening

program.1 A DTox model was learned separately for each data-

set to predict the active/inactive status of compounds (i.e.,

screening results of the toxicity assay). On average, each dataset

contains 5,178 compounds available for DTox training, including

746 active compounds and 4,432 inactive compounds (Fig-

ure S2A). To assess model overfitting during the training pro-

cess, we withheld an independent testing set from each dataset

tomonitor the evolution of the loss function and an early stopping

criterion to conclude training when overfitting starts to occur

(Experimental procedures). We discovered that while training

loss continues to decrease, testing loss stops decreasing after

100–150 epochs for most datasets, a sign of model overfitting

https://github.com/yhao-compbio/DTox
https://github.com/yhao-compbio/DTox


Figure 1. Modeling compound response to toxicity assay with DTox

For toxicity prediction, the chemical structure of a compound is quantified using MACCS fingerprint before being converted to target profile by our previously

developed method, TargetTox. The target profile is then fed into a VNN, whose structure is guided by Reactome pathway hierarchy. Specific pathways and bio-

logical processes are coded as hidden modules with a series of neurons. For model interpretation, the network output is propagated backward onto each neuron

as relevance score using the layer-wise relevance propagation technique. A permutation-based strategy is then employed to identify the VNN paths of high rele-

vance. Each path connects a compound to its toxicity outcome via the target protein, specific pathways, and biological process.
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(Figure S3). Therefore, when overfitting was detected, DTox

would conclude training and output the optimal model when

minimal testing loss was reached. On average, the optimal

DTox model was learned over 140 ± 16 epochs. We imple-

mented hyperparameter tuning by grid search to derive an

optimal model for the prediction of each assay outcome

(Table S2; Experimental procedures). On average, an optimal

DTox model contains 412 hidden pathway modules (Figure S2B)

and 45,623 neural network parameters (Figure S2C). The

average ratio between number of training samples versus num-

ber of network parameters is 0.13 ± 0.03 (Figure S2D), with the

estrogen receptor (ER) agonist assay model being the highest

(0.31) and the hedgehog antagonist assay model being the

lowest (0.07). Compared with a conventional multi-layer percep-

tron (MLP) model, the DTox model has far fewer network param-

eters. On average, the number of network parameters for a DTox

accounts for only 3% of the number for a matched MLP

(Figure S2E).

To customize the network structure for prediction of each assay

outcome, we made the root biological process a hyperparameter

(Experimental procedures). This means through hyperparameter

tuning, we can choose a branch or combination of branches

from the Reactome pathway hierarchy that result in the best pre-

dictive performance for an assay of interest (Figure 2A). For

instance, signal transduction pathways alone can deliver the

optimal model for HEK293 cell viability assay, while additional

pathways from the immune system are required for HepG2 cell

viabilityprediction, suggestingapotential roleof immuneresponse

in HepG2 cytotoxicity. In general, models built with multiple

branches perform better than models built with a single branch.
DTox can achieve the same level of performance as
complex classification algorithms
We validated the predictive performance of DTox models on

held-out validation sets, which on average contain 1,295 com-

pounds per assay. The optimal models of all 15 assays exhibit

an area under the receiver operating characteristic (ROC) curve

(AUROC) greater than 0.7 (0.7–0.8: 6models; 0.8–0.9: 9models).

Similarly, 14 models exhibit a balanced accuracy above 0.55

(0.55–0.65: 9 models; 0.65–0.75: 4 models; >0.75: 1 model)

except for the optimal model of the activator protein-1 (AP-1)

signaling agonist assay. We then compared the optimal perfor-

mance of DTox against three other classification algorithms (Fig-

ure 2B; Table S3; Experimental procedures). Comparing DTox

with a matched MLP model, we observed one assay where

DTox significantly outperformed MLP in balanced accuracy

(pregnane X receptor [PXR] agonist) and two assays in the oppo-

site direction (HEK293 and HepG2 cell viability). Comparing

DTox with RF and GB, we observed one assay where DTox

significantly outperformed both RF and GB (constitutive andros-

tane receptor agonist) and one assay in the opposite direction

(AP-1 signaling agonist). In general, the DTox model achieved

the same level of predictive performance as these well-estab-

lished classification algorithms.

To evaluate the degree to which DTox benefits from the incor-

poration of pathway knowledge, we performed shuffling analysis

(Figure S4; Table S3; Experimental procedures) and compared

the predictive performance of original DTox models against

alternative models built on three different layouts: shuffled

ontology hierarchy (i.e., child-parent pathway relationships

are perturbed), shuffled feature profile (i.e., protein-pathway
Patterns 3, 100565, September 9, 2022 3
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Figure 2. Prediction of compound response to 15 toxicity

assays

(A) Heatmap showing the training performance of VNN built under

different combinations of root biological processes (shown as upset

plot at the bottom). To facilitate comparison, the model performance is

normalized within each assay using Z-transform. The optimal combina-

tion for each assay is highlighted with a red star. The name of each

assay is annotated on the left, with the name of the assay cell line

included in parentheses.

(B) Bar plot showing the validation performance in all 15 Tox21 data-

sets. The performance of DTox is compared against three other

models: amulti-layer perceptron with the same number of hidden layers

and neurons as DTox (MLP), random forest (RF), and gradient boosting

(GB). Performance is measured by two metrics: area under ROC curve

and balanced accuracy, with error bar showing the 95% confidence

interval.

AhR, aryl hydrocarbon receptor; AP-1, activator protein-1; ARE, antiox-

idant response element; AR-MDA, androgen receptor in MDA-kb2 AR-

luc cell line; CAR, constitutive androstane receptor; ER-BG1, estrogen

receptor in BG1 cell line, PR-BLA, progesterone receptor in PR-UAS-

bla HEK293T cell line; PXR, pregnane X receptor; RAR, retinoid acid

receptor; ROR, retinoid-related orphan receptor.
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Figure 3. Validation of identified VNN paths by known mechanisms

(A) Bar plots comparing the observed versus expected proportion of validated compounds in four nuclear receptor assays. The ‘‘ground truth’’ VNN path placed

at the top represents the knownmechanism of transcription activation by nuclear receptor. A compound is considered to be validated by the knownmechanism if

the ground truth path is identified by DTox. The expected proportion is computed by random sampling, with the histogram and fitted density curve showing the

sampled distribution (95% confidence interval shown as error bar).

(B) Line charts comparing the proportion of validated compounds (y axis) among models. Performance of DTox interpretation framework (DTox) is compared

against two other methods: Read-across (RAx) with knowledge source from ComptoxAI or DrugBank, LIME with strict or lax threshold for target feature rele-

vance. RAx models were implemented under five different thresholds of Tanimoto coefficient (TC; x axis). A compound is considered to be validated if it can

be connected to the nuclear receptor of interest.
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annotations are perturbed), and shuffled outcome as a negative

control (i.e., input data label is incorrect). We observed that shuf-

fled feature profiles significantly impacted the predictive perfor-

mance of DTox, as the resulting models exhibited random

performance resembling negative controls from the shuffled

outcome, suggesting the importance of correct protein-pathway

annotations in DTox. By contrast, shuffled ontology hierarchy

moderately impacted the predictive performance of DTox,

because we observed only two assays where it resulted in a sig-

nificant drop of balanced accuracy (ER agonist and retinoid-

related orphan receptor gamma [RORg] antagonist). Notably,

the outcomes for both assays are directly related to a specific

nuclear receptor transcription pathway (Figure 3A), as opposed

to other complex outcomes that involve multiple pathways
(e.g., mitochondria toxicity, cytotoxicity). That may explain why

shuffled ontology hierarchy had a higher impact on these two as-

says given that connections to the specific pathway would be

disturbed in the shuffling.

Development of a DTox interpretation framework for
explaining VNN predictions
A fundamental advantage of VNN over other classification algo-

rithms lies in its high interpretability. The incorporation of

pathway hierarchy enables us to reason through hidden layers

of VNN for mechanistic interpretation. Therefore, we developed

a DTox interpretation framework to identify paths from VNN

that can explain the toxicity outcome of a compound (Figure 1;

Experimental procedures). The framework accepts the derived
Patterns 3, 100565, September 9, 2022 5
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target profile of each compound along with the trained DTox

model that specifies learned weights for each hidden neuron.

Each identified path links together a root biological process, its

descendant pathway modules, and a target protein feature.

The framework has two hyperparameters: g and ε. g controls

the stability of interpretation results, while ε controls sparsity.

We evaluated the effect of hyperparameter settings on identified

VNN paths (Figure S5; Experimental procedures). We observed

that the set of identified paths exhibits consistently high similarity

across distinct hyperparameter settings, as the average Jaccard

Index reaches 0.70. Due to the high similarity, we used only the

VNN paths identified from one setting (g = 0.001, ε = 0.1) for the

following validation analyses (Table S4).

DTox can rediscover mechanisms of transcription
activation by nuclear receptor
To evaluate whether DTox can rediscover known mechanisms

for a toxicity outcome, we looked for ‘‘ground truth’’ from the

VNN paths identified for four nuclear receptor assays: androgen

receptor (AR) antagonist, ER agonist, retinoic acid receptor

(RAR) antagonist, and RORg antagonist. Each of the four assays

measures compound response to a specific nuclear receptor

transcription pathway. Therefore, we established ground truth

as the VNN path that links together the root process of gene

expression, nuclear receptor transcription pathway, and the

specific target receptor (AR, ER⍺, RARb, RORg; Figure 3A). In

three of the four nuclear receptor assays, our framework was

able to identify the ground truth path for at least 29% of all active

compounds (ER⍺: 29%, RARb: 31%, RORg: 54%). Comparing

with the expected baseline performance from identifying by

chance (Experimental procedures), our framework improved

the proportion by at least 2-fold.

We also compared the interpretation performance by DTox

against two state-of-the-art methods (Experimental proced-

ures); namely, LIME, a popular interpretation method for explain-

ing predictions of classification algorithms; and Read-across

(RAx), a similarity-based inference technique commonly used

in the field of toxicology. Note that neither method provides a

mechanism for incorporating pathway knowledge. As a result,

they can connect active compounds to toxicity outcome only

via target proteins, while DTox can provide sample-level expla-

nations linking compounds, target proteins, pathways, and

toxicity outcomes. Nevertheless, in three of the four nuclear re-

ceptor assays (ER⍺, RARb, and RORg), DTox exhibits the best

interpretation performance, while the other two methods display

major methodological shortcomings (Figure 3B). Specifically,

interpretation performance by LIME is dependent on the adop-

ted threshold for feature relevance, because a stricter threshold

can significantly deteriorate the performance (e.g., ER and

RORg). Inference by RAx, in contrast, is heavily dependent on

the knowledge source, as well as the adopted threshold for sim-

ilarity measurement. When little existing knowledge could be ex-

tracted for the target of interest, RAx would suffer from poor

performance (e.g., RARb and RORg). Despite the strong perfor-

mance in general, DTox failed to identify the ground truth path for

AR antagonists (Figures 3A and 3B). Instead, DTox interpretation

linked AR antagonists to target proteins such as integrins, pro-

tein kinase A, or protein tyrosine phosphates, which have been

shown to regulate the function of AR.26,27 One possible explana-
6 Patterns 3, 100565, September 9, 2022
tion is that AR antagonists could interact with a variety of off-tar-

gets, making it difficult for DTox to aggregate the signal on a sin-

gle receptor.

DTox can recapitulate cellular activities induced by
aromatase inhibitors and PXR agonists
To evaluate whether DTox can recapitulate cellular activities

induced by active compounds, we studied the differential

expression of VNNpaths identified for four assays: aromatase in-

hibitor, mitochondria toxicity, PXR agonist, and HepG2 cell

viability (Experimental procedures). In total, we obtained the

gene expression profile measured from 321 LINCS experiments

in which an active compoundwas used to treat the assay cell line

(121 experiments for aromatase inhibitor assay, 54 for mitochon-

dria toxicity assay, 101 for PXR agonist assay, and 45 for HepG2

cell viability assay). Of all 321 experiments, we found 161 (50%)

cases where DTox’s interpretation framework was able to iden-

tify at least one differentially expressed VNN path. On average,

3.8% ± 0.6% of VNN paths identified by our framework were

found to be differentially expressed, which is significantly higher

than the expected proportion by chance (2.4% ± 0.3%; p = 2.5e-

3). We then performed the comparison separately by assay and

dose-time combinations (Figure 4A). In the aromatase inhibitor

assay, our framework outperformed the expected proportion

across all three dose-time combinations. In the PXR agonist

assay, our framework outperformed the expected proportion

among the two groups of experiments conducted 24 h after

treatment. In the HepG2 cell viability assay, although no overall

differencewas detected among experiments conducted 6 h after

treatment, our framework was still able to identify a relatively

high proportion of differentially expressed VNN paths for individ-

ual compounds such as cilnidipine (21.4%), cyclopamine

(12.5%), and chloroxine (10%).

Based on the results of differential expression analysis,

induced cellular activities appear to be more consistent among

aromatase inhibitors compared with the other three assays, as

we discovered 10 differentially expressed VNN paths that are

recurrently identified for at least five aromatase inhibitors (Fig-

ure 4B). By contrast, we discovered only one such VNN path

for the other three assays combined. Interestingly, ‘‘transcrip-

tional regulation by TP53’’ and its descendant pathways are

involved in 6 of the 10 discovered VNN paths, suggesting a po-

tential mechanism for regulation of aromatase by p53 in the

MCF-7 aro estrogen-responsive element (MCF-7aro/ERE)

breast cancer cell line, a finding supported by a previous study.28

In addition to p53, interleukin-4 and interleukin-13 also appear to

play an important role in regulation of aromatase, because the

relevant VNN path is linked to 17 aromatase inhibitors by differ-

ential expression. This finding is worth further experimental

investigation.

DTox can differentiate distinctive mechanisms leading
to HepG2 cytotoxicity
Next, we sought to explain the compound-induced cytotoxicity

in HepG2 cells using VNN paths identified for the HepG2 cell

viability assay. A recent review paper29 summarized four major

mechanisms leading to cell death in DILI: (1) tumor necrosis fac-

tor receptors 1 and 2 (TNFR1/2) mediated apoptosis via caspase

activation and pro-survival inhibition, (2) MST1/2 mediated
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Figure 4. Validation of identified VNN paths by differential expression

(A) A VNN path is considered to be differentially expressed (DE) if all pathways along the path are enriched for DE genes from thematched LINCS experiment. The

validation analysis is performed for four assays (columns) in three different dose-time groups (rows), with each scatterplot comparing the observed versus ex-

pected proportion of DE paths for a single group. The observed proportion is computed with VNN paths identified for each compound, while the expected pro-

portion is computed with all possible VNN paths. AWilcoxon signed-rank test is employed to examine whether the average observed proportion of each group is

significantly higher than the average expected proportion (p value and FDR shown at the bottom right). The diagonal is shown as black dashed line, with com-

pounds in the upper triangle (observed > expected) shown in blue and compounds in the lower triangle (observed < expected) shown in gray. Compoundswith the

top five observed proportions in each group are annotated with their names.

(B) Bar plot showing the DE VNN paths that are recurrently identified for at least five aromatase inhibitors. Each VNN path is named after its lowest-level pathway.

Paths that contain the ‘‘transcriptional regulation by TP53’’ pathway are highlighted in salmon, while the remaining paths are colored in cyan.
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apoptosis via Hippo signaling, (3) immune response activation

via MHC class II antigen presentation, and (4) TLR3/4 mediated

necrosis (Figure 5A). Because the HepG2 cell line was derived

from liver tissue, we can use the four mechanisms as a reference

for compound-induced cytotoxicity in HepG2 cells. We identified

nine Reactome pathways that participate in the four mecha-

nisms (Figure 5A). We then mapped HepG2-cytotoxic com-
pounds to the nine Reactome pathways via VNN paths identified

by our framework (Figure S5). Of all 1,120 cytotoxic compounds,

707 (63%) compounds aremapped to at least one of the nine cell

death-related pathways (Figure S6), while the remaining 413

(37%) compounds are mainly linked to HepG2 cytotoxicity via

the GPCR, mTOR, and Rho GTPase signaling pathways (Fig-

ure S7). We performed hierarchical clustering on the mapping
Patterns 3, 100565, September 9, 2022 7
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Figure 5. In-depth analysis of HepG2 cytotoxicity using identified VNN paths

(A) Established mechanisms for cell death in drug-induced liver injury. Reactome pathways relevant to the mechanisms are identified and used as reference for

the analysis.

(B and C) Survival plots comparing the pathway relevance scores among active (orange curve) versus inactive (gray curve) compounds of two mechanisms of

action assays: caspase-3/7 induction (B) and disruption of the mitochondrial membrane potential (C). Comparisons are made for nine cell death-related path-

ways, with each plot showing the comparison for a single pathway. Red star at the top right denotes that the pathway is related to the respective mechanism of

action. Log-rank test is employed to examine whether the two distributions in each plot are significantly different (FDR value shown at the bottom left).

(D) Network diagram showing the simplified DTox structure connecting mifepristone (triangle node) to the HepG2 cytotoxicity (rectangle node) via pathway

modules (round nodes). Pathways with relevance score > 0 are colored in purple, with the scale proportional to relevance scale. The VNN paths identified for

mifepristone by DTox are shown in solid lines, while the rest are shown in dashed lines.

(E and F) Heatmaps showing the enrichment of nine cell death-related pathways among compounds associated with 20 drug-induced liver injury phenotypes

(E) and among compounds of 14 ATC classes (F). Cells are colored based on odds ratio. Fisher’s exact test is employed to examine the significance of enrichment

(asterisk denotes FDR < 0.05).

VOD/SOS, veno-occlusive disease and sinusoidal obstruction syndrome.
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and identified two compound clusters (Figure S6). Compounds

in the first cluster are linked to cytotoxicity via apoptosis, while

compounds in the second cluster are linked to cytotoxicity via

immune activation and necrosis. Nevertheless, we discovered

a few compounds that exhibit characteristics of both clusters.

For instance, according to our framework, mifepristone, a med-

ical abortion drug, causes cytotoxicity in HepG2 cells by acti-

vating both apoptosis (via mitogen-activated protein kinase 1

[MAPK1]/MAPK3 signaling and Hippo signaling) and necrosis

(via TLR3 and TLR4 cascade), a finding supported by previous

studies30–32 (Figure 5D). In addition, our framework was able to

link mifepristone with its therapeutic target—the glucocorticoid

receptor—via PTK6 signaling (Table S4). The other therapeutic

target of mifepristone—the progesterone receptor—is not in

the VNN.

To evaluate whether DTox can differentiate distinctive mecha-

nisms leading to HepG2 cytotoxicity, we looked for concordance
8 Patterns 3, 100565, September 9, 2022
between the assigned pathway relevance and screening results

from twomechanism of action assays (included in the Tox21 da-

tasets). The first assay we studiedmeasures caspase-3/7 induc-

tion in HepG2 cells. Caspase-3 and caspase-7 are key execu-

tioners of apoptosis.33 They are involved in TNFR1/2-mediated

apoptosis and YAP/TAZ phosphorylation of Hippo signaling34

(Figure 5A). Accordingly, we compared the assigned relevance

scores between caspase-3/7+ and caspase-3/7� compounds

regarding TNFR1-induced proapoptotic signaling and Hippo

signaling (Figure 5B). Overall, we did not observe significantly

higher relevance among caspase-3/7+ compounds regarding

the two signaling pathways (false discovery rate [FDR] = 0.31

and 0.42, respectively). However, for Hippo signaling, we did

observe higher pathway relevance among caspase-3/7+

compounds above the 90th percentile of two distributions (high-

lighted in Figure 5B), hence a partial agreement between

assigned pathway relevance and caspase-3/7 induction
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screening. By contrast, the pattern among top-ranked com-

pounds was not observed in other cell death-related pathways

except for MHC class II antigen presentation (FDR = 0.02; Fig-

ure 5B), suggesting a potential role of caspase-3/7 in MHC class

II antigen presentation, a finding worth further investigation.

The second assaywe studiedmeasures disruption of themito-

chondrial membrane potential (MMP). MMP is a key indicator of

mitochondrial activity because it is required for ATP synthesis.

Disruption of MMP can lead to release of cytochrome c, which

in turn amplifies the apoptosis signal.35 The downstream effec-

tors of TNFR1/2, including caspase activation and inhibition of

nuclear factor kB (NF-kB) activation, can cause disruption of

MMP35,36 (Figure 5A). Accordingly, we compared the assigned

relevance scores between MMP-disruptive and nondisruptive

compounds regarding TNFR1-induced proapoptotic signaling,

TNFR1-induced NF-kB signaling, and TNFR2-induced NF-kB

signaling (Figure 5C). We observed significantly higher relevance

among MMP-disrupting compounds regarding TNFR1-induced

proapoptotic and TNFR1-induced NF-kB signaling (FDR =

5e�6 and 3e�6, respectively). Also, the pattern of higher rele-

vance is consistent across all percentiles of two distributions,

hence an agreement between assigned pathway relevance

and MMP disruption screening. By contrast, the pattern was

not observed in other cell death-related pathways except for

MHC class II antigen presentation (FDR = 4e�6; Figure 5C), sug-

gesting the potential involvement of mitochondria in antigen pre-

sentation, a finding supported by previous work.37

Interpretation of HepG2 cytotoxicity links clinical phe-
notypes of DILI to TLR3/4-mediated necrosis
We also sought to explain 20 clinical phenotypes of DILI using the

derivedmapping between compounds and nine cell death-related

pathways. For each DILI phenotype, we identified the enriched

pathways among its associated compounds (Figure 5E; Experi-

mental procedures). We observed a disproportionate prevalence

of high odds ratio (OR) in the two necrosis-relatedpathways (TLR3

and TLR4 cascade signaling) across almost all DILI phenotypes,

with hepatic necrosis, hepatitis, and hepatic fibrosis being the

three highest. In total, nine phenotypes are significantly enriched

for TLR3/4-mediated necrosis (FDR < 0.05). By contrast, only

four phenotypes are significantly enriched for immune activation

via MHC class II antigen presentation, while no phenotype is

significantly enriched for Hippo signaling or TNFR1/2-mediated

apoptosis. These results suggest that TLR3/4-mediated necrosis

is a common cause for clinical phenotypes of DILI, a finding sup-

ported by previous studies.38,39

Similarly, we identified the enriched pathways among com-

pounds of 14 Anatomical Therapeutic Chemical (ATC) classes

(Figure 5F). Each ATC class represents a group of drugs that

act on a specific organ or system. We found three classes

(hormonal, sensory, and dermatological) significantly enriched

for TLR3/4-mediated necrosis and two classes (hormonal and

dermatological) significantly enriched for immune activation via

MHC class II antigen presentation.

DTox can be applied to a wide range of chemicals other
than drugs
Finally, to demonstrate the applicability of DTox among a

broader spectrum of chemicals, we implemented the optimal
DTox models of two cell viability assays (HepG2 and HEK293)

to predict the probability of cytotoxicity for 708,409 compounds

from distributed structure-searchable toxicity (DSSTox)40

(Table S5). These compounds provide considerable coverage

of the chemical landscape of interest to toxicological and envi-

ronmental researchers and have not been screened by the

Tox21 project. We first analyzed the predicted HepG2 cytotox-

icity by compiled compound lists from DrugBank regarding

drug approval status (Figure 6A; Table S6; Experimental proced-

ures). We discovered that regardless of approval status, com-

pounds in all six lists exhibited significantly lower predicted

HepG2 cytotoxicity than positive controls (active in Tox21

screening). However, only compounds in the nutraceutical list

exhibited no significant difference from negative controls (inac-

tive in Tox21 screening). We discovered the same result when

analyzing the predicted HEK293 cytotoxicity (Figure S8A;

Table S6). These nutraceutical compounds are mostly dietary

supplements and food additives that can be taken daily, and

thus are expected to appear less toxic to the human body.

We then analyzed the predicted HepG2 cytotoxicity by com-

pound lists from the Environmental Protection Agency (EPA)

regarding their chemical properties (Table S6; Experimental pro-

cedures). Among the 265 chemical lists compiled by the EPA, we

discovered 12 lists in which compounds exhibited significantly

higher predicted HepG2 cytotoxicity than negative controls

(inactive in Tox21 screening) and no significant difference from

positive controls (active in Tox21 screening). In 10 of the 12 lists

(shown in Figure 6A), compounds share a common function.

Compounds in the other two lists (‘‘casmi2017’’ and ‘‘tscawp’’)

were compiled together because of joint appearance in

contest datasets. Similarly, we discovered 12 such functional

lists (shown in Figure S8A) when analyzing the predicted

HEK293 cytotoxicity. These compounds are either industrial

manufacturing products (e.g., bisphenols, dioxins) or lethal to a

certain species (e.g., insecticides, rodenticides), and thus are

expected to appear more toxic to the human body. These results

also demonstrate that DTox can be applied to a wide range of

chemicals other than drugs, including food ingredients, environ-

mental chemicals, industrial chemicals, etc.

HepG2 cytotoxicity scores predicted by DTox can
differentiate hepatic cyst compounds from negative
controls
To demonstrate the clinical application of DTox, we sought to

differentiate DSSTox compounds associated with DILI pheno-

types from negative controls using the predicted HepG2 cytotox-

icity score (Figure 6B). We were able to detect significantly higher

predicted scores among the compounds associated with hepatic

cyst (p = 0.015), because hepatic cyst is the only DILI phenotype

showing a significant association with HepG2 cytotoxicity (OR =

1.90, 95%confidence interval [CI]: 1.04–3.45). Among the remain-

ing 19 DILI phenotypes showing weak or no association with

HepG2 cytotoxicity (9 phenotypes with OR > 1, 10 with OR < 1),

wewere able to detect only a significant difference for one pheno-

type: hepatic steatosis (p=0.008). Similarly,wesought todifferen-

tiate DSSTox compounds associated with drug-induced kidney

injury (DIKI) phenotypes from negative controls using predicted

HEK293 cytotoxicity score (Figure S8B). Unfortunately, we were

not able to detect a significant difference for any of the 24 DIKI
Patterns 3, 100565, September 9, 2022 9



EPA chemical list DrugBank listA

B

Figure 6. Application of predicted cytotox-

icity score among DSSTox compounds

(A) Boxplot showing the distribution of predicted

HepG2 cytotoxicity scores among positive controls

(leftmost box in red), 10 EPA chemical lists (boxes

in light red), six DrugBank lists (boxes in light blue),

and negative controls (rightmost box in blue).

Mann-Whitney U test is employed to examine

whether the cytotoxicity scores of each list exhibit

no significant difference from the positive controls

(red star above list name), or no significant difference

from the negative controls (blue star above list name).

(B) Boxplot on the right compares the predicted

HepG2 cytotoxicity scores among drugs associated

with clinical hepatic phenotypes (green box) versus

negative controls (yellow box), while bar plot on the

left shows the odds ratio betweenHepG2cytotoxicity

and eachphenotype (95%confidence interval shown

as error bar). Results for 10 phenotypeswith odds ra-

tio > 1 are shown in the plot. Mann-Whitney U test is

employed to examine whether the drugs associated

with each phenotype are predicted with higher cyto-

toxicity scores than the negative controls (red star

next to the phenotype name denotes p < 0.05).

See also Figure S8.
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phenotypes, because none of them exhibit a significant associa-

tion with HEK293 cytotoxicity (lower bound of 95% CI < 1).

DTox offers flexibility in balancing between model
efficiency and performance
Lastly, we compared the efficiency of the DTox model against

other classification algorithms. We reported the central process-

ing unit (CPU) time and run time of all algorithms in Table S7. On

average, it took 1.72 h for a DToxmodel to complete training on a

single Tox21 dataset (�5,000 samples with mini-batch size of

32), 3 times the duration for MLP and 12 times the duration for

RF and GB. As mentioned above, DTox employs an early stop-

ping criterion to conclude training when an optimal model can

be detected. In this study, we adopted a conservative stopping

criterion for maximizing the predictive performance of derived

DTox models. We further tuned the stopping hyperparameter

to investigate the flexibility in model efficiency and performance

(Figure S9).We discovered that, on average, the run time of DTox

can be saved by 30%with a 2% sacrifice in model performance.

Further, the run time of DTox can be cut in half with a 5% sacri-

fice in model performance. These statistics offer DTox users

some flexibility in balancing model efficiency and performance,

especially when implementing the model on larger datasets.

DISCUSSION

Biologically informed VNNs provide a solution to the dilemma

posed by conventional supervised learning models: whether to
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achieve good predictive performance or

high model interpretability. Here, we have

explored the implementation of VNNs for

predicting and explaining compound

response to toxicity assays. Compared

with previous efforts, our DTox model
uniquely stands out in four aspects. First, the structure of DTox

can be customized for an outcome of interest according to the

underlying biological processes, making the model flexible to-

ward various toxicity outcomes. It also provides a molecular

overview of each toxicity outcome regarding which pathway cat-

egories are relevant to the outcome (Figure 2A). The molecular

overview can help prioritize areas for future research in drug dis-

covery because many toxicity outcomes we analyzed are linked

to complex diseases. For instance, the AR, ER, and progester-

one receptor all exhibit aberrant activities in various cancer types

and play a central role in the progression andmetastasis of these

types, including breast cancer, prostate cancer, and ovarian

cancer. Both constitutive androstane receptor and PXR can

regulate drug-metabolizing enzymes and transporters, and

thus play a critical role in resistance to cancer therapy and other

adverse drug reactions. Second, trimming of network hierarchy

can remove unrelated pathways from the network and signifi-

cantly reduce the number of trainable parameters in VNNs,

which in turn prevents overfitting. Through comparisons with

well-established classification algorithms, we have demon-

strated that DTox is a highly efficient learning model with good

predictive performance. For instance, DTox achieved the same

level of performance as a matched MLP with only 3% of the

network parameters. Through shuffling analysis, we have

demonstrated that DTox benefits from the incorporation of

Reactome pathway knowledge, including protein-pathway an-

notations and child-parent pathway relationships. Shuffling

child-parent pathway relationships (higher hierarchy) exhibits a
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moderate impact on model performance compared with shuf-

fling protein-pathway annotations (lower hierarchy), because

there are fewer alternative pathways to sample from in the higher

hierarchy. It also implies undocumented relationships other than

child-parent, such as crosstalk between pathways from different

branches, may play a critical role in some toxicity outcomes.

Future investigation should be conducted in how to train a

VNN to recognize these interactions. Third, the introduction of

an early stopping criterion combined with a relatively small

network size makes DTox a fast-learning model. Last, and

most importantly, DTox advances an interpretation framework

that identifies high-relevance VNN paths for explaining the

toxicity outcome of compounds. The framework builds on top

of layer-wise relevance propagation (LRP)41 and assigns a rele-

vance score to each VNN path. The innovation of our framework

resides in its ability to statistically assess the significance of each

path, with an empirical p value computed from permutation

testing. With the help of existing experimental datasets, we

have validated the mechanistic interpretation by our framework

and demonstrated the biological significance of DTox. For

instance, we showed that DTox was able to consistently identify

the corresponding ‘‘ground truth’’ VNN path representing mech-

anisms of transcription activation by three nuclear receptors. We

employed Mechanism of Assay screening data to show that

DTox was able to differentiate distinctive mechanisms leading

to HepG2 cytotoxicity. We employed drug-induced transcrip-

tome profiling data to show that DTox was able to disproportion-

ately identify VNN paths representing the cellular activities

induced by aromatase inhibitors and PXR agonists, implying its

potential to detect mechanisms of action. In addition to mecha-

nistic assay and transcriptome profiling, DTox interpretation can

be validated by other types of experiment in the future. For

instance, knockdown and overexpression experiments can be

performed to evaluate the inferred causality between toxicity

phenotypes and target proteins/pathways. For toxicity out-

comes that can be linked to clinical phenotypes in patients,

observation data from electronic health records can be em-

ployed to perform survival analysis, evaluating the inferred cau-

sality between the phenotype and lab measurements (e.g.,

enzyme level, cell count) that can inform the activities of certain

proteins/pathways.

Besides the expected results, DTox also generated new

mechanistic hypotheses along model interpretation, some of

which are supported by previous studies. For instance, our

framework suggested a potential role for p53 in the regulation

of aromatase in MCF-7aro/ERE, a breast cancer cell line. It has

been revealed that p53 can directly bind to proximal promoter

PII in breast adipose stromal cells, which in turn inhibits aroma-

tase expression.28 In another case, our framework suggested

three signaling pathways, including MAPK/ERK (i.e., MAPK1/

MAPK3 Reactome pathway), Hippo, and TLR3/4, contribute to

the HepG2 cytotoxicity of mifepristone. Accordingly, recent

studies have pointed out the effect of mifepristone on ERK acti-

vation,30 YAP (a core factor of Hippo) activation,31 and TLR4

regulation.32 Particularly, ERK activation by mifepristone can

lead to cytotoxicity in uterine natural killer cells,30 while YAP acti-

vation by mifepristone can induce hepatomegaly in mice.31 Two

additional findings from our cytotoxicity analysis have been

corroborated by previous studies: (1) the involvement of mito-
chondria in antigen presentation via ATP synthase and mito-

chondrial calcium uniporter,37 and (2) the disruption of TLR3/4

signaling in DILI.38,39 In addition, some unexpected findings by

DTox are worth further investigation, such as the role of immune

response in HepG2 cytotoxicity, the role of interleukin-3/14 in

regulation of aromatase, the role of caspase-3/7 in MHC class

II antigen presentation, etc.

Despite the highlights mentioned above, DTox in its current

form bears some limitations from both technical and methodo-

logical perspectives. In terms of technical limitations, as with

all deep learning models, DTox requires a time-consuming hy-

perparameter tuning process before an optimal model can be

reached. As we observed in the analysis (Figure 2A), an optimal

setting may greatly improve the predictive performance of DTox.

However, the issue can be resolved with implementation of

graphics processing unit (GPU) computing. In terms of method-

ological limitations, to start with, DTox did not significantly

outperform other well-established classification algorithms,

because most differences are within the 95% CI of performance

metrics. In the interpretation analyses, DTox was not able to

identify the ground truth path for a particular assay: AR antago-

nist. It also failed to identify more differentially expressed paths in

general for two assays: mitochondria toxicity and HepG2 cell

viability. These results imply that additional factors unaccounted

for in DToxmay also play a critical role leading to toxicity, such as

pharmacodynamic and pharmacokinetic profile, compound-

induced gene expression profile, etc. In this study, we empha-

sized the applicability of DTox such that it can be adopted to

study any compounds with or without additional profiling infor-

mation. Therefore, we limited themodel input to the 2D structural

representation of compounds. In the future, we expect the per-

formance of DTox to be enhanced after incorporation of addi-

tional profiles (e.g., pharmacodynamic, pharmacokinetic, gene

expression) once they become available for more compounds.

We also acknowledge the recent development of toxicology-

focused graph databases, such as ComptoxAI, which provide

extensive knowledge on relations among chemicals, genes, as-

says, and many other entities.42 Such a database may help re-

searchers generate a more comprehensive feature profile for

model training and thus improve the performance of DTox. In

addition to better feature profiling, we think the incorporation

of context-specific knowledge may further enhance the perfor-

mance of DTox. As we have discussed above, undocumented

interactions between pathways may play a critical role in some

toxicity outcomes. These interactions can be specific to the

outcome of interest. Therefore, the issue can be addressed by

using context-specific gene networks (e.g., tissue-specific, dis-

ease-specific) to inform connections between pathways during

VNN construction, or incorporating stochastic connections be-

tween pathways of distinct branches during VNN training.

In the future, we anticipate the application of DTox in two

distinct directions. The first direction is concerned with efficacy

or toxicity prediction for virtual screening. As with what we

have accomplished in the screening of �700,000 DSSTox com-

pounds for cytotoxicity, DTox can quickly go through large-scale

chemical libraries and prioritize compounds for further experi-

mental testing. The second direction is concerned with outcome

explanation for generating new hypotheses. As we have shown

throughout the study, DTox’s interpretation framework may
Patterns 3, 100565, September 9, 2022 11
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detect a new mechanism of action for compounds, uncover

cellular mechanism for outcomes of interest, and identify new

therapeutic targets for diseases.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information should be directed to the lead contact, Jason Moore

(jason.moore@csmc.edu).

Materials availability

This study did not generate any new materials.

Data and code availability

The processed datasets used in our study (including Tox21, LINCS, and

NSIDES) are available at https://github.com/yhao-compbio/tox_data. DTox

source code is available at https://github.com/yhao-compbio/DTox. The

code has also been deposited at Zenodo under https://doi.org/10.5281/

zenodo.6808324.

Processing Tox21 datasets and inferring feature profile for DTox

model training

The Tox21 datasets1 contain screening results describing the response of

in vitro toxicity assays to compounds of interest, including approved drugs,

experimental drugs, small molecules, and environmental chemicals. We ex-

tracted active and inactive compounds from the screening results of each

assay, then removed compounds with inconclusive or ambiguous results.

We further removed assays with fewer than 5,000 available compounds and

focused our analyses on the remaining 15 assays. To quantify structural prop-

erties of compounds, we used rcdk package to compute a 166-bit binary

MACCS fingerprint that covers most of the interesting physicochemical fea-

tures for drug discovery.43 We then implemented TargetTox25 to infer the

target-binding probability of each compound from its MACCS fingerprint.

TargetTox comprises binding prediction models that were pre-trained on hun-

dreds of thousands of compound-target binding affinity data points that were

experimentally measured in EC50/IC50/Kd/Ki. It first employs a feature selec-

tion pipeline to identify the fingerprint features that are predictive of the binding

outcome for each target protein, then fits an RF classification model using the

predictive features. We selected 361 target proteins of which the binding

outcome can be well predicted by TargetTox (model AUROC > 0.85 on

held-out validation set). The derived target-binding profile containing 361 pro-

teins was then used as input feature data for assay outcome modeling.

Constructing VNN with Reactome pathway hierarchy

We designed the VNN structure based on the Reactome pathway hierarchy

that comprises root biological processes, child-parent pathway relations,

and protein-pathway annotations (downloaded in August 2019).23 To trim

the scale of the neural network and prevent overfitting, we adopted two hyper-

parameters to filter Reactome pathways: (1) minimal pathway size (values for

tuning: 5, 20) and (2) root biological process (values for tuning: ‘‘gene expres-

sion,’’ ‘‘immune system,’’ ‘‘metabolism,’’ ‘‘signal transduction,’’ and all

possible combinations among the four, 15 values in total). We selected the

four processes because of their broad coverage and direct involvement in

cellular mechanism of toxicity. Each pathway is coded as a hidden module

with fixed number of neurons. For a pathway p, the number is defined by

Np = round
h
1 + ðNmax � 1Þ � log Sp=Smin

log Smax=Smin

i
,

where Sp denotes the size of p, Smin and Smax denote the minimal and

maximal size of a pathway in the VNN, respectively, and Nmax (= 20) denotes

the maximal number of neurons for a hidden module. As a result, hidden mod-

ules of larger pathways are assigned with more neurons to capture potentially

more complex responses.

Under the Reactome hierarchy, the VNN model of DTox starts from an input

layer containing 361 protein features, which are connected to lowest-level hid-

den modules by protein-pathway annotations. The connections to a hidden

module of pathway p are encoded by a weight matrix Wp with dimensions

Np*Nprotein, where Np denotes the hidden module size and Nprotein denotes

the number of input proteins annotated with p. With Wp, input vector xp is

transformed to output vector yp via yp = ReLu½xpWT
p +bp�, where bp is a
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bias vector. The hidden modules are then interconnected by child-parent

pathway relations until root biological processes are reached. Finally, the

root biological processes are connected to an output layer containing the

assay outcome. The connections to the output layer are encoded by a weight

matrixWrwith dimensions 1*Nr, whereNr denotes the sumof root hiddenmod-

ule sizes. The final output yr is computed as yr = Sigmoid½xrWT
r +br �, where

the Logistic Sigmoid function converts layer inputs to an output score between

0 and 1 (i.e., the predicted outcome probability). In addition, we adopted the

idea of auxiliary layers from DCell19 to prevent gradients from vanishing in

the lower hierarchy and to facilitate the learning of new patterns from individual

pathways. Specifically, output vector of hidden module yp is transformed to an

auxiliary scalar y0p via y0p = Sigmoid½ypW0Tp +b0
p�, where W 0

p denotes the

weight matrix with dimensions 1*Np. The auxiliary scalars from all hidden

modules are then evaluated in a loss function along with the final

output:BCELossðyr ; yÞ+a
P
p
bpBCELossðy0p; yÞ+ l k Wk2. The auxiliary factor

⍺ is a hyperparameter of the VNN model (values for tuning: 0.1, 0.5, 1),

balancing between root and auxiliary loss terms. bp serves as the adjustment

factor for auxiliary loss terms from pathway p, being computed as the inverse

number of pathway count within the corresponding hidden layer. Therefore,

pathways higher in the hierarchy exhibit greater contribution to the loss func-

tion as pathway count decreases dramatically along the hierarchy. l (= 1e�4)

is the coefficient for L2 regularization.
Learning optimal DTox model for Tox21 assay outcome prediction

Each dataset is split into learning and validation sets by ratio of 4:1. During

model training, the learning set is further split into training and testing sets

by ratio of 7:1. The purpose of the split is to set aside an independent testing

set for overfitting assessment during model training. At every epoch, forward

and backward propagation are performed on the training set for deriving gra-

dients of model parameters. The parameters are then optimized by Adam al-

gorithm with mini-batch size of 32. At the end of every epoch, loss function

is evaluated on the testing set for assessing overfitting and determining

whether the early stopping criterion has been met (testing loss has not

decreased for P epochs, where P represents the ‘‘patience’’ hyperparameter

and is set at 20 in this study). Model training stops after 200 epochs or if the

early stopping criterion has been met (in our experience, the early stopping cri-

terion is often met long before 200 epochs).

As mentioned above, the VNN model of DTox has three hyperparameters:

minimal pathway size, root biological process, and the auxiliary factor ⍺. To

find the optimal setting for each assay, we adopted a grid search and imple-

mented all possible hyperparameter combinations to train DTox models (90

combinations in total, listed in Table S8). We evaluated each trained model

by computing the loss function on the whole learning set, then identified the

optimal model that minimizes learning loss. Finally, the held-out validation

set was used to evaluate the performance of the optimal DTox model and

compare with other machine learning models. We adopted two performance

metrics for the task: AUROC and balanced accuracy. We computed the

95%CI of metrics using bootstrapped samples from predicted outcome prob-

abilities. On average, the bootstrapped samples contain 63.3% of unique orig-

inal samples. The performance of two methods is significantly different if their

CIs do not overlap. Threemachine learningmodels were considered for perfor-

mance comparison: (1) a fully connected MLP model with the same number of

hidden layers and neurons as optimal DTox model, (2) an optimal RF model

derived from tuning of six hyperparameters (‘‘n_estimators,’’ ‘‘criterion,’’

‘‘max_features,’’ ‘‘min_samples_split,’’ ‘‘min_samples_leaf,’’ and ‘‘boostrap’’)

by grid search (2800 combinations in total, listed in Table S8), and (3) an

optimal GB model derived from tuning of five hyperparameters (‘‘n_estima-

tors,’’ ‘‘max_depth,’’ ‘‘learning_rate,’’ ‘‘subsample,’’ and ‘‘min_child_weight’’)

by grid search (3,000 combinations in total, listed in Table S8).

In addition, shuffling analysis was performed to assess the influence of

pathway knowledge and hierarchy on DTox performance. Three distinctive

layouts were considered for performance comparison. First, an alternative

DToxmodel built under shuffledReactome ontology hierarchywhile the shuffle

preserves the number of children for each parent pathway and the number of

connections between hidden layers (suppose a parent pathway is connected

to three children in the original DTox, two in layer i and one in layer j). By hier-

archy shuffling, the parent will be connected to two pathways sampled from

mailto:jason.moore@csmc.edu
https://github.com/yhao-compbio/tox_data
https://github.com/yhao-compbio/DTox
https://doi.org/10.5281/zenodo.6808324
https://doi.org/10.5281/zenodo.6808324
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layer i and one pathway sampled from layer j. This shuffling strategy ensures

that the resulting DTox model is still consecutively connected from input to

output layer.) Second is an alternative DTox model built with shuffled input

target profile (the input values are shuffled among features). The third layout

is an alternative DTox model built with shuffled assay outcome as negative

control (the outcome labels are shuffled among compounds within the learning

set).
Interpretating optimal DTox model by LRP

LRP41 is a model interpretation tool for deep neural networks. Through back-

ward propagation, LRP assigns each neuron a share of the network output and

redistributes it to its predecessors in equal amounts until the input layer is

reached. The propagation procedure ensures that relevance conservation is

an inherent property of LRP. To implement LRP, we adopted two local propa-

gation rules: generic rule and input-layer rule.44

Generic rule was applied to relevance propagation of the hidden neurons.

For two connected neurons, j and k, from a child-parent pathway pair, the for-

ward propagation of VNN follows ak = ReLu

 P
j

ajwjk +bk

!
, where ak de-

notes the activation of neuron k. The generic rule propagates relevance be-

tween them as Rj =
P

k

aj,ðwjk +gw+
jk
Þ

ε,SD½ðwjk +gw+
jk
jkÞ�+

P
j
aj,ðwjk +gw+

jk
ÞRk , where g and ε are

two hyperparameters of the rule. g (values for tuning: 0.001, 0.01, 0.1) controls

the contribution of positive weights in relevance propagation. Increasing the

value of g can marginalize neurons with negative weights and decrease the

variance of relevance across neurons, and thus may lead to more stable inter-

pretation results. ε (values for tuning: 0.001, 0.01, 0.1) absorbs relevance from

neurons with weak or contradictory weights. Increasing the value of ε can give

prominence to a few neurons with high weights, and thus may lead to more

sparse interpretation results.

Input-layer rule was applied only to relevance propagation of the input pro-

tein features. For a protein feature i and its connected neuron j from a lowest-

level pathway, the input-layer rule propagates relevance between them as

Ri =
P
j

xiwij � liw
+
ij

� hiw
�
ijP

i
xiwij � liw+

ij
� hiw�

ij

Rj , where li (= 0) and hi (= 1) are the lower and upper

bound of input feature values.
Identifying significant VNN paths for explaining toxicity outcome of

compounds

After relevance of each neuron is assigned via LRP, a relevance score is

computed for each pathway by summing the relevance scores of its neurons.

An observed score is then computed for each VNN path connecting input pro-

tein feature to output assay outcome as Spath =
P

p ˛ path

log R+
p , where p de-

notes a protein or pathway along the path. The relevance scores are converted

to non-negative values, as we are interested in only the proteins or pathways

that are more likely to result in a toxicity outcome. The log transformation is

adopted to adjust the scale of relevance scores from different layers, because

the number of pathways decreases dramatically along the hierarchy.

To assess the significance of each observed path score, we employed a

permutation-based strategy to derive the null distribution. Specifically, we

shuffled the outcome label of each Tox21 dataset, then re-trained random

DTox models using the same hyperparameter setting as a previously

trained optimal model. The procedure was repeated n = 200 times, a

balance between sample size and running time. Scores derived from

the random DTox models comprise the null distribution for each

observed path score, and thus the empirical p value can be computed as

Spath =
PN

i = 1I
�
Spath� i RSpath

��
n. We used the FDR to perform multiple

testing correction on all VNN paths, then identified the significant paths

(FDR < 0.05) for each active compound.

As mentioned above, DTox’s interpretation framework has two hyperpara-

meters: g and ε from the generic rule. To study the effect of hyperparameter

settings onmodel interpretation, we implemented all possible (nine in total) hy-

perparameter combinations to identify significant VNN paths for active com-

pounds. We measured the similarity between each pair of settings by the me-

dian Jaccard Index among active compounds regarding their identified

significant paths.
Comparing DTox against existing interpretation methods regarding

rediscovering mechanisms of transcription activation by nuclear

receptor

Three interpretation methods were considered for performance comparison

regarding the task. The first method serves as a baseline for DTox interpreta-

tion framework, in which we randomly sampled the same number of VNN

paths for each compound as identified by DTox from the pool of all possible

paths in the network. The performancemetric was computed as the proportion

of active compounds that were sampled with the ‘‘ground truth’’ VNN path

(linking together root process of gene expression, nuclear receptor transcrip-

tion pathway, and the specific target receptor). The procedure was repeated

1,000 times to account for the stochastic nature of sampling. The average per-

formance and 95% CI were computed and adopted as baseline for DTox.

The second method is widely used for explaining predictions of classifica-

tion algorithms, namely, LIME.16 LIME explains predictions by fitting local

linear models to approximate the behavior of the original model. For each nu-

clear receptor of interest, we implemented LIME on the optimal RF model

(derived previously from hyperparameter tuning) to explain the predicted

outcome of each compound by target feature relevance (our implementation

was based on the tutorials in https://github.com/marcotcr/lime). The perfor-

mance metric was computed as the proportion of active compounds that

were explained with high relevance regarding the specific target receptor.

We adopted two thresholds for defining ‘‘high relevance’’: (1) feature relevance

for the target receptor is positive (lax threshold), and (2) feature relevance for

the target receptor is above average (strict threshold).

The third method is commonly used for inferring toxicity profile of new com-

pounds, namely, RAx. RAx does not rely on classification algorithms. Instead,

it assigns existing knowledge on source compounds to the query compounds

with similar chemical structure. For each nuclear receptor of interest, we

extract compounds with known connections (source compounds) from

two resources: DrugBank45 and ComptoxAI.42 The performance metric was

computed as the proportion of active compounds (query) that exhibit similar

structure to at least one source compound. Five thresholds of Tanimoto coef-

ficient were adopted to define structural similarity between source and query

compound: 0.8, 0.85, 0.9, 0.95, and 1.
Processing LINCS dataset for validation of DTox interpretation

results

The LINCS dataset24 contains gene expression profiles derived from genetic

and small-molecule perturbation experiments on a number of cell lines,

including MCF-7 (which was used in Tox21’s aromatase assay) and HepG2

(used in Tox21’s mitochondria toxicity assay, PXR agonist assay, and

HepG2 cell viability assay). We extracted the profiles induced by active com-

pounds of the four assays in their respective cell line. We removed the profiles

that did not pass quality control, then separated the remaining ones into three

groups based on dose and time of perturbation (1.11 mM/24 h, 10 mM/6 h,

10 mM/24 h). We used the LINCS level 5 data, which consist of moderated dif-

ferential expression Z scores, for the validation analysis.

To assess the differential expression of VNN paths identified for each com-

pound, we first identified differentially expressed genes (DEGs) from the corre-

sponding profile by |Z| > 2, as suggested by LINCS. Then, we used Fisher’s

exact test to examinewhether the pathways along each VNNpath are enriched

for DEGs. A test p value was computed for each pathway. We used FDR to

perform multiple testing correction on all pathways along each path. A VNN

path is differentially expressed if all the pathways involved are significantly

enriched for DEGs (FDR < 0.05). Finally, we calculated the proportion of differ-

entially expressed paths among the paths identified by DTox (observed pro-

portion) and among all possible paths in VNN (expected proportion).
Processing datasets for analyzing DTox results on HepG2- and

HEK293-cytotoxic compounds

We obtained six DrugBank lists from https://go.drugbank.com/releases/

latest#external-links.45 Each list contains a number of compounds sharing a

particular approval status. We obtained 265 EPA chemical lists from https://

comptox.epa.gov/dashboard/chemical-lists. Each list contains a number of

compounds sharing a particular property. Descriptions of these lists can be

found in Table S6.
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The NSIDES dataset46 contains drug-adverse event relations that are

derived from US Food and Drug Administration (FDA) reports after adjusting

for confounding factors. Each drug-adverse event pair is assigned with a pro-

portional reporting ratio (PRR) score alongwith its 95%CI, whichmeasures the

extent to which the adverse event is disproportionately reported among indi-

viduals taking the drug. We manually curated a list of 20 clinical phenotype

terms associated with DILI (Table S9) and a list of 24 clinical phenotype terms

associated with DIKI (Table S9). Drugs associated with each phenotype of in-

terest are identified by the lower bound of 95% CI (>1). Drugs not associated

with each phenotype of interest (negative controls) are identified by both the

lower (<1) and the upper (>1) bound of 95% CI.

Tomeasure the association between each DILI phenotype and HepG2 cyto-

toxicity, we calculated the OR and its 95% CI based on a 2 3 2 contingency

table. The same procedure was performed to measure the association be-

tween each DIKI phenotype and HEK293 cytotoxicity. We also used Fisher’s

exact test to evaluate the enrichment of nine cell death-related pathways

among the drugs associated with DILI phenotypes. The OR and test p value

were computed for each phenotype-pathway pair. We used FDR to perform

multiple testing correction on all phenotype-pathway pairs.
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