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Abstract: Background: in magnetic resonance imaging (MRI), automated detection of brain metas-
tases with convolutional neural networks (CNN) represents an extraordinary challenge due to small
lesions sometimes posing as brain vessels as well as other confounders. Literature reporting high
false positive rates when using conventional contrast enhanced (CE) T1 sequences questions their
usefulness in clinical routine. CE black blood (BB) sequences may overcome these limitations by
suppressing contrast-enhanced structures, thus facilitating lesion detection. This study compared
CNN performance in conventional CE T1 and BB sequences and tested for objective improvement of
brain lesion detection. Methods: we included a subgroup of 127 consecutive patients, receiving both
CE T1 and BB sequences, referred for MRI concerning metastatic spread to the brain. A pretrained
CNN was retrained with a customized monolayer classifier using either T1 or BB scans of brain
lesions. Results: CE T1 imaging-based training resulted in an internal validation accuracy of 85.5% vs.
92.3% in BB imaging (p < 0.01). In holdout validation analysis, T1 image-based prediction presented
poor specificity and sensitivity with an AUC of 0.53 compared to 0.87 in BB-imaging-based prediction.
Conclusions: detection of brain lesions with CNN, BB-MRI imaging represents a highly effective
input type when compared to conventional CE T1-MRI imaging. Use of BB-MRI can overcome the
current limitations for automated brain lesion detection and the objectively excellent performance of
our CNN suggests routine usage of BB sequences for radiological analysis.

Keywords: magnetic resonance imaging; convolutional neural networks; automated detection of
brain metastases

1. Introduction

Representing the largest proportion of brain neoplasms, brain metastases pose a key
issue in cancer follow-up or tumor staging [1,2]. Early detection and treatment of small
brain metastases (<15 sq mm; <5 mm short axis diameter (SAD)) has severe implications
for therapy and may significantly prolong survival of cancer patients [3,4]. Accurate
detection of small metastases may be a difficult and tiresome task, even for experienced
radiologists, especially given the rising number of screening examinations for metastases
and the introduction of 3D scans [5,6].

Convolutional neural network (CNN) based deep learning bears the potential to
detect pathological changes even more sensitively than trained human experts [7–9]. In
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clinical routine, CNN are already routinely used in CT examinations showing an increase
of the detection rates for lung nodules [10]. However, CNN are not established for the
detection of brain metastases, even though there are several CE certified start-ups and
a number of studies in literature reporting CNN performance for this task on CE T1
sequences [11,12]. In contrast to conventional CE T1 imaging, MRI black blood imaging
(BB) reduces intraluminal blood signal over the field of view without decreasing the signal
intensity of small metastases, thus facilitating detection of brain lesions for human readers
(see Figure 1) [5,13–16].
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Several other studies approached the computer aided detection of brain neoplasms in
recent years. A 3D selective enhancement filter for the detection of brain metastases and
different template matching-based algorithms have been proposed [6,17–19]. CNN were
successfully used for automatic detection and segmentation of meningiomas and gliomas
and T1 3D based recognition of metastases [7,8,20–22]. Yet, automated detection of brain
metastases poses an extraordinary challenge, especially due to small lesions the size of
brain vessel diameters, but also due to other contrast enhancing structures, such as the
tentorium, plexus or vessel anomalies such as hypertensive vessel changes or aneurysms,
resulting in high false positive rates [5,9,16].

However, current computer aided recognition systems are not sufficiently detailed
on T1 gradient-echo or CE T1 sequences, resulting in high rates of false positive results
and, thus, the questioning of their usefulness in clinical routine [7,9,17–19,23]. In contrast,
Yang et al. proved BB-based automatic detection of brain metastases using computer
aided recognition systems to be of superior sensitivity compared to MP-RAGE T1 CE [24].
However, this study was limited to 29 patients and facilitated an artificial neural network
after the application of feature extraction. To the best of our knowledge, our study is the
first to evaluate the performance difference of CNNs trained on CE T1 and BB data that
does not facilitate image segmentation or feature extraction. Whereas application of these
methods may result in an improved performance, specifically on limited datasets, the usage
of intense preprocessing and specific annotation strategies may limit the reproducibility of
the study outcome.

Given the aforementioned limitations of conventional CE T1 sequences, we postulate
differences in the efficiency of conventional CE T1 and BB sequences as input data for CNN
training with potential advantages for BB sequences in terms of automated CNN-based
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detection. For this reason, we compared the performance of a CNN for the detection of
brain lesions trained on either BB or CE T1 spin echo (CE T1) MRI images.

2. Materials and Methods

In accordance with IRB guidelines, the preparation of this retrospective, single center
study did not require an ethics vote.

2.1. Patient Population

Using our institutional image archiving system, MRI scans of patients receiving
screening MRI for brain metastases at our tertiary-care university hospital between June
and October 2017 were reviewed. Scans included, when patients received both, BB and
conventional CE T1. Accordingly, 127 patients were identified. Scans were excluded given
following reasons: (I) prior neurosurgical procedures (n = 32), (II) number of metastases
(>8; n = 4), and (III) meningeal carcinomatosis (n = 6). This resulted in a total number of
85 patients, of which 26 presented a total number of 47 brain metastases. The remaining
healthy 59 patients served as a control group. Labeling of the image dataset was based on
the original radiological report and on additional manual sighting of all included slides.
The sizes of metastatic lesions included in our study are documented in Figure 2.
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Figure 2. Diameter of analyzed lesions.

2.2. Imaging

Image acquisition was performed using two 3 Tesla Ingenia Scanners (Philips Health-
care, Best, The Netherlands). The standardized imaging protocol at the university hospital
of Cologne included intravenous administration of gadolinium (Dotarem, Guerbet GmbH,
Roissy, France; 0.5 mmoL/mL, 1 mL = 279.3 mg gadoteric acid = 78.6 mg gadolinium) with
a concentration of 0.1 mmol/kg body weight into an antecubital vein.

The acquisition matrix was 404 × 254 × 30 for conventional CE T1 and 404 × 254 × 410
for BB. Voxel size was 0.62 × 0.75 × 5 mm for conventional CE T1 (T1-FFE) and
0.8 × 0.8 × 0.8 mm for BB. Repetition time was 320 ms for conventional CE T1 and 700 ms
for BB. Echo time was 4.61 ms for conventional CE T1 and 35 for BB, using a flip angle of
80◦ in both sequences. BB acquisition was TSE-based and the echo train length was 1.0.

2.3. CNN

A CNN with weights pretrained on the ImageNet database (Inception V3 with Im-
ageNet weights, Google, Mountain View, CA, USA) was retrained using the TensorFlow
framework (Google, Mountain View, CA, USA) with a customized monolayer classifier,
using either conventional CE T1 or BB scans of brain lesions and physiological brain scans
without additional annotation (e.g., bounding boxes). For every patient presenting brain
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lesions, we exported every 2D MRI axial slide depicting the lesions to the input and dis-
carded the remaining slices. Each lesion included in the learning process had both an
identical BB and a CE T1 image available.

For the control group, complete slide sets of 59 healthy patients were included (total
number of included slide images: n = 43 lesion slides, 545 control slides for CE T1 and
n = 88 lesion slides, 1306 control slides for BB). This ensured that every potential layer
with a lesion had a corresponding one without lesion available for the learning process
(see Figure 3). To assimilate the size of training sets in both experimental groups, after
formation of a holdout validation set containing 10% of the original images, we facilitated
image augmentation by randomly flipping and rotating up to 20◦, thereby creating a total
of n = 274 lesion slides, 981 control slides (CE T1) and n = 316 lesion slides, 1175 control
slides (BB) images. For augmentation, the Python package imgaug was used (Python 3.7;
source code and documentation accessible at https://github.com/aleju/imgaug, accessed
on 30 May 2021).
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Figure 3. Flow chart for patient selection and split of the data set.

During training, the datasets were randomly separated into training and validation
sets, with a validation rate of 0.2. After creating bottlenecks for all images using the
pretrained Inception v3 network, an additional classifier was trained on top of the network
using a total of 1k training steps. Every ten steps, validation accuracy was determined to
estimate learning progress and check for overfitting.

After training, the resulting graphs were applied to the holdout validation set using
label images with a predictive value representing the certainty of class association.

2.4. Statistical Analysis

Statistical analysis and preparation of the graphs were performed using R version
3.6.2 (https://cran.r-project.org/, accessed on 30 May 2021). By variation of classification
threshold, sensitivity and specificity curves, as well as AUC, were calculated and visualized
using the pROC package (documentation available at https://cran.r-project.org/web/
packages/pROC/pROC.pdf, accessed on 30 May 2021). Graphics and figures were created
using the ggplot package. The P threshold was set in two-sided t-tests to 0.05.

3. Results

The total number of patients was 85, of which 26 presented a total number of 47 brain
metastases. Of these, 12 were related to non-small cell lung carcinoma (NSCLC; 25.5%),
24 to malignant melanoma (51%), four to hematological neoplasia (8.5%), one to renal cell
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carcinoma (2.1%), three to prostate carcinoma (6.4%), and three to breast carcinomas (6.4%).
The average patient age was 59.9 years (SD 17.2), with 52.3 % of the patients male and
47.7 female.

CE T1 imaging-based training resulted in a final internal validation accuracy of 85.5%
after 1 k training steps (see Figure 4a,b,c), whereas BB image retraining showed a final
internal validation accuracy of 92.3% (p < 0.01).
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In holdout validation analysis, CE T1 image-based prediction presented poor speci-
ficity and sensitivity with an AUC of 0.534, whereas the BB image-based prediction model
performed with an AUC of 0.869 (see Figure 5). Furthermore, it was revealed that, in
particular, smaller metastases (<15 sq mm; <5 mm SAD) can be detected better using BB
scans in the internal training data set (p < 0.05; see Figure 4d) as well as in the holdout
validation data set.
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4. Discussion

In this study, we investigated whether conventional CE T1 or CE BB sequences provide
the input data of choice for computer-aided detection of brain metastases.

As major finding of this study, CE BB MRI imaging proved to be a significantly more
effective input type for CNNs compared to traditional CE T1 MRI imaging, resulting in
higher specificity and sensitivity performance.

Comparing the present, methodologically different approach with pre-processed data
from Yang et al., both show relatively similar values of an AUC of approximately 0.9 with
respect to the BB data set and a slightly smaller AUC with respect to the conventional T1
CE approach in this study. This is an effect that may be explained by the different number
of patients. In summary, we agree with the results of Yang et al. and show that even
with a new concept of using non-preprocessed data, the BB-based approach of automated
metastasis detection is clearly superior to the approach based on conventional T1 CE data.

For smaller lesions under 5 mm SAD, BB data proved to be superior to conventional
CE T1 and should primarily be useful for automated detection of brain metastases. BB
data thereby emerges as an alternative modality for training algorithms specialized in
high-sensitivity detection of very small brain lesions, a repeating issue even with otherwise
excellently performing machine learning algorithms [5,6]. Beyond this, the objectively
quantified performance of our CNN on BB sequences also suggests the routine usage of BB
for radiological analysis.

This study is limited because it was conducted in a single-center using a retrospective
approach and should be considered as a proof-of-concept for both the superiority of BB
imaging data in training radiological classifiers and the application of pre-trained CNNs
for radiological image data.

Since our study focused largely on a potential difference between T1 CE and BB
imaging data and their potential as input for neural network training, we decided to
facilitate a CNN pretrained on a very large dataset and commonly used for transfer
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learning applications. Although a CNN pretrained on radiological data might provide
better absolute performance and should, in future, be explored for clinical application,
the obvious differences between both acquisition types in a CNN pretrained on non-
radiological data clearly underline the performance gain from using BB data over traditional
T1 CE for metastasis detection.

Of importance, other than a previous study that used BB imaging for automatic brain
lesion detection, no segmentation of images or feature extraction was performed; instead,
the CNN was trained in an unsupervised manner and for the most part used weights
obtained from training on non-radiological image data. The excellent performance of
the CNN encourages future research to use such pretrained networks that profit from
unsupervised learning on huge datasets.

There are important limitations to our study. Since the encoding of T1 CE and BB CE
datasets is different, the analyzed 2D slices may differ in artifact frequency and specifically,
and BB images may contain information that is lost in the inter-slice gaps of the T1 CE
datasets. Furthermore, the voxel size between T1-CE and BB-CE dataset was different,
which could potentially impact detectability of the lesions, although only images where
the lesion was clearly visible for human experts were included in our study. Additionally,
the feasibility of performing BB CE imaging during every MRI brain scan for metastasis
detection is questionable as this technique prolongs image acquisition significantly. Of
importance, computational solutions for artificially creating BB-like images from traditional
T1 and T2 sequences are emerging, proving that it may not be necessary to natively
acquire BB imaging to benefit from its improved distinctiveness of vessels and metastatic
lesions [25]. Further, CNNs may integrate information from multiple acquisition methods
to further increase classification performance in the future.

Although this study represents the largest study known to us in the field of automated
brain metastasis detection using black blood sequence, automated detection using neuronal
networks should always aim for the largest possible data sets. Larger data sets with both
sequences could further increase the detection rate and increase specificity and sensitivity
and would allow implementation of a more customized CNN architecture. Further studies
will provide knowledge about sequence-typical errors of omissions and commission by
means of a superordinate decision network, and, in this way, optimize clinical routine and
radiological reports.

5. Conclusions

In conclusion, this work showed the superiority of CE BB over conventional T1
sequences for the automated detection of brain metastases using CNN. As CNN-based deep
learning bears the potential to detect pathological changes with improved sensitivity in
comparison to trained human experts, it will soon be implemented in clinical routine [5,16].
These findings prove to be of high relevance, as the use of AI for brain lesion detection is to
be an expected standard application in clinical routine.
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