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Background. Smoking is one of the risk factors of coronary heart disease (CHD), while its underlying mechanism is less well
defined. Purpose. To identify and testify 6 key genes of CHD related to smoking through weighted gene coexpression network
analysis (WGCNA), protein-protein interaction (PPI) network analysis, and pathway analysis. Methods. CHD patients’ samples
were first downloaded from Gene Expression Omnibus (GEO). Then, genes of interest were obtained after analysis of variance
(ANOVA). Thereafter, 23 coexpressed modules that were determined after genes with similar expression were incorporated via
WGCNA. The biological functions of genes in the modules were researched by enrichment analysis. Pearson correlation
analysis and PPI network analysis were used to screen core genes related to smoking in CHD. Results. The violet module was
the most significantly associated with smoking (r = −0:28, p = 0:006). Genes in this module mainly participated in biological
functions related to the heart. Altogether, 6 smoking-related core genes were identified through bioinformatics analyses. Their
expressions in animal models were detected through the animal experiment. Conclusion. This study identified 6 core genes to
serve as underlying biomarkers for monitoring and predicting smoker’s CHD risk.

1. Introduction

Coronary artery heart disease (CAHD) is the most predom-
inant type of cardiovascular disease and arises from the
interaction of various risk factors. One significant patho-
physiological basis of CAHD is stenosis of coronary artery
lumen due to coronary artery atherosclerosis (CAAS) or
myocardial ischemia, hypoxia, or necrosis because of func-
tional changes of coronary artery. All of the above symptoms
are called coronary heart diseases (CHDs) [1]. It is known
that smoking is the strongest changeable factor of morbidity
and mortality of cardiovascular diseases, and quitting smok-
ing can evidently reduce the risk of CHD [2]. The risk of
CHD in ex-smokers is lower than current smokers, and dif-
ferences in the risk would increase since smoke cessation as

time passed [3]. Thus, it is urgent to identify the molecular
mechanism of CHD related to smoking to understand its
pathogenesis.

Weighted gene coexpression network analysis (WGCNA)
is a method of analyzing the expression mode of multiple
sample genes. The method clusters genes with similar expres-
sion modes and analyzes the correlation between modules
and specific traits or phenotypes [4]. WGCNA applies the
information of numerous genes that varies the most or all
of them instead of some differentially expressed genes solely,
to identify gene sets of interest [5]. Liu et al. [6] identified 8
lncRNAs that notably influence the overall survival of
patients with larynx cancer (LC) via WGCNA, and these
identified lncRNAs are testified in many LC cells. Ding
et al. [7] used WGCNA to screen 5 key genes, which sheds
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light on future prognosis and treatment of hepatocellular car-
cinoma (HCC). However, the research on the potential
molecular mechanism of WGCNA for CHD is still very
inadequate.

Besides, the molecular mechanism between smoking and
clear cell renal cell cancer (ccRCC) in previous studies has
been studied via protein-protein interaction (PPI) network
and WGCNA [8]. PPI network is crucial in most biological
functions and processes, and most proteins activate func-
tions through interactions with each other. Hence, PPI
network helps researchers more comprehensively and syste-
matically understand the molecular mechanism of diseases
[9]. For example, Huo et al. [10] explained the effect mech-
anism of Danshensu on CHD via constructing a PPI net-
work. Jensen et al. [11] determined several genes related to
CHD risk using a PPI network. However, little was reported
about PPI in researching the effect of smoking on CHD risk.

In conclusion, our study provides preliminary informa-
tion for deeply researching the molecular mechanism of
CHD pathogenesis, thereby defining suitable biomarkers
that can monitor and predict the risk for CHD in smokers.

2. Materials and Methods

2.1. Data Source and Preprocess. Whole blood cell gene
alignments of CHD patients and clinical data (Supplemen-
tary Table 1) were obtained from Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE20681). Patient’s quantitative coronary
angiography ðQCAÞ ≥ 50% stenosis in at least 1 large vessel
was selected for research, and 99 samples were ultimately
obtained. Probes were annotated via GPL4133.

The missing expression data were calculated with the k-
nearest neighbors (KNN) algorithm and normalized with
LIMMA package [12, 13]. As for several probes that match
a gene signature solely, the average expression values of cor-
responding genes of these probes were calculated and taken
as ultimate gene expression values. Analysis of variance
(ANOVA) was performed on all genes [14]. Genes with var-
iances greater than the quartile of all variances were selected
as the genes of interest. Next, WGCNA was performed com-
bining gender and smoking status.

2.2. Construction of Gene Coexpression Network. WGCNA
construction utilized R package WGCNA [4]. A sample clus-
ter tree was established to remove outlier samples. Afterward,
Pearson correlation analysis was performed on all genes to
construct an adjacent matrix. Correlation between genes was
further calculated with a suitable soft threshold value parame-
ter β. To this end, the connection between genes in the net-
work was subjected to scale-free network distribution (β is a
soft threshold value parameter that can emphasize the strong
correlation among genes and punish weak correlation). Then,
the result was transferred to the adjacent matrix and further
into the topology overlap matrix (TOM).

To classify genes with similar expression modes to the
same gene modules, genes were hierarchically clustered with
dissimilarity degree (1-TOM), and the minimum module
was set to contain 50 genes. In principle component analysis,

the principle component was composed of module eigen-
gene (ME) that representing the gene expression profile of
each module. Next, module eigenvalue was defined as the
most important part of modules, and all genes in the mod-
ules were summarized into a single characteristic expression
profile. Finally, highly similar gene modules were merged
(threshold value: dissimilarity less than 0.25).

2.3. Determination of Relevant Modules of Interest and
Module Function Annotation. The correlation between mod-
ule eigenvalue and smoking was calculated via Pearson cor-
relation analysis, and the module most related to smoking
was chosen as the module of interest.

Thereafter, to further explore the biological functions
that genes in the module of interest may affect, GO func-
tional annotation and KEGG enrichment analyses were per-
formed by using clusterProfiler package [15] (threshold
value: p value < 0.05 and q value < 0.05).

2.4. Key Gene Identification. After determining the module
of interest, the Gene Significance (correlation between
smoking status and genes in the module) and Module Mem-
bership (genes in the module and module eigenvalue) were
calculated, with cor:geneModuleMembership > 0:8 and cor:
geneTraitSignificance > 0:2 as threshold values to screen
hub genes in the module.

To further screen key genes with more significance, all
gene lists in the module of interest were uploaded to
STRING (http://string-db.org/cgi/input.pl) website to con-
struct a PPI network. The genes with the top 20 highest con-
nectivity were chosen as hub nodes in the PPI network
(threshold value: interaction score > 0:4). Then, hub genes
in the module were intersected with hub nodes in the PPI
network to acquire potential key genes of CHD related to
smoking.

Table 1: PCR primer list.

F13A1
F: 5′-CAACAGCCACAACCGTTACACC-3′
R: 5′-CTTGGATCAGCACCGCCTCTTT-3′

ITGB3
F: 5′-CATGGATTCCAGCAATGTCCTCC-3′
R: 5′-TTGAGGCAGGTGGCATTGAAGG-3′

PF4
F: 5′-AGTGCCTGTGTGTGAAGACCAC-3′
R: 5′-TTCCTCCCATTCTTCAGCGTGG-3′

PPBP
F: 5′-TGCTCTGGCTTCCTCCACCAAA-3′
R: 5′-ACACATGCAGCGGAGTTCAGCA-3′

SPARC
F: 5′-GTGAAGGCAACATGAGGGTGCA-3′
R: 5′-GTTGGAGGACAAGTCACTGGATC-3′

GAPDH
F: 5′-GTCTCCTCTGACTTCAACAGCG-3′
R: 5′-ACCACCCTGTTGCTGTAGCCAA-3′

VCL
F: 5′-CCTATCAAGCTGTTGGCAGTAGC-3′
R: 5′-TGTGGCTCCAAGCCTTCCTGAA-3′
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Figure 1: Continued.

3Computational and Mathematical Methods in Medicine



2.5. Validation of Key Genes. To testify whether screened key
genes participated in regulating biological processes related to
the heart, coexpression analysis and corresponding pathway
analysis were performed on screened potential genes related
to smoking in GeneMANIA (http://genemania.org/). Thereaf-
ter, boxplots of key gene expression were drawn according to

smoking status in different groups to verify the effect of
smoking on key gene expression.

2.6. Cigarette Smoke Extract (CSE) Preparation. A vacuum
pump (pressure: 300mmHg) was employed to filter the
smoke of two lit cigarettes (China Tobacco Hunan Industrial
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Figure 1: WGCNA: (a) clustering analysis of 99 CHD samples; (b) analysis of scale-free fit index of various threshold values (β); (c) analysis
of mean connectivity of various threshold values; (d) histogram of connectivity distribution when β = 8; (e) check of scale-free topology
when β = 8; (f) clustering dendrogram of all differentially expressed genes.
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Figure 2: Continued.
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Co., Ltd. Tar: 12mg, nicotine: 1.1mg, carbon monoxide:
14mg, China). Particles in the smoke were removed. Then,
the filtered smoke was collected in the PBS buffer. The pH
of CSE-PBS solution was controlled between 7.2 and 7.4.
Lastly, fresh-prepared CSE was filtered and disinfected for
further use.

2.7. Animal Model Construction and Hemocyte Isolation.
Male BALB/c mice (8-week) were purchased from Vital
River Animal Center (Beijing, China) and placed in a 12 h/
12 hday-night environment with a free diet at room temper-
ature of 22°C. Both smoking and nonsmoking CHD mouse
models were induced by dietary stimulation. In brief, 10
mice were divided into the smoking group and the normal
group (5 mice a group). Mice in two groups were fed with
a high-fat diet (TP-2003) (Trophic Animal Feed, China)
containing the following components: 0.21% propylthioura-
cil, 0.49% sodium cholate hydrate, 87.3% standard chow, 2%
cholesterol, and 10% lard. CSE of two cigarettes was added
to the water bottles of the smoking group every day, while
no CSE was added to the water bottles of the nonsmoking
group. After 8 weeks of culture following the above diet,
blood was collected from the eyeballs of mice and then
diverted into tubules (Eppendorf, Germany) using heparin
sodium capillary tubes. Then, 300μl of whole blood was

obtained from each mouse. The fresh blood was centrifuged
at 1800× g for 10min, and then, the upper plasma was dis-
carded to obtain blood cells. All mouse-related experiments
were approved by the Animal Ethics Committee of Wuxi
Huishan District People’s Hospital.

2.8. Polymerase Chain Reaction (PCR). Total RNA was iso-
lated from mouse hemocytes using TRIzol reagent (Invitro-
gen, USA). After RNA concentration was detected by
Nanodrop 2000, cDNA was obtained by reverse transcrip-
tion of total RNA through PrimeScriptTRT Reagent
(Takara, Japan). Finally, the obtained cDNA was amplified
by PCR using SYBRPremix Ex Taq. The relative expression
of DNA was calculated by 2-ΔΔCT method. All experiments
were repeated three times, and the corresponding data were
averaged. Primers used for PCR are shown in the following
table (Table 1).

3. Results

3.1. Determination of Genes of Interest. After probes were
annotated, ANOVA was undertaken on all genes based on
the gene expression matrix. A total of 4,937 genes with var-
iances that were greater than the quartile of all variances
were selected (Supplementary Table 2).
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Figure 2: Functional annotation of modules of interest: (a) correlation between gene modules and smoking status; (b) GO enrichment
analysis of genes in the violet module; (c) KEGG enrichment analysis of genes in the violet module.
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3.2. WGCNA. Weighted gene coexpression network was
built on 4,937 genes in 99 CHD samples with WGCNA
package. First of all, 3 outlier samples were removed by sam-
ple clustering analysis (Figure 1(a)). Then, coexpression net-
work was constructed with 96 samples and their 4,937

corresponding genes. The connectivity between genes in
the gene network satisfied the scale-free network distribu-
tion as the threshold value β was 8 (scale-free R2 = 0:86)
(Figures 1(b)–1(e)). Thereafter, hierarchical clustering was
undertaken on genes with dissimilarity degree (1-TOM).
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Thirty-seven modules were obtained, and eigenvalue of each
module was calculated. Highly similar gene modules were
merged with dissimilarity degree < 0:25, and 23 coexpres-
sion modules were finally determined (Figure 1(f)).

3.3. Functional Annotation of the Modules of Interest. The
correlation between module and smoking status was calcu-
lated via the module-trait relationship of WGCNA. It was
illustrated that the violet module presented the most signifi-
cant correlation with smoking status (r = −0:28, p = 0:006)
(Figure 2(a)). Next, GO and KEGG enrichment analyses
were performed on 143 genes in the violet module. GO anal-
ysis indicated that genes were mainly enriched in biological
functions related to the heart like blood coagulation, hemo-
stasis, coagulation, adherens junction, focal adhesion, and
actin binding (Figure 2(b)). KEGG showed that genes were
mainly enriched in biological pathways like focal adhesion,
platelet activation, and tight junction (Figure 2(c)). The
above results represented that genes significantly related to
smoking may be involved in regulating the biological func-
tions of the heart.

3.4. Determination of Key Genes. In this study, 21 genes with
high correlation with smoking in the violet module were
screened as hub genes with cor:geneModuleMembership >
0:8 and cor:geneTraitSignificance > 0:2 as threshold values
(Figure 3(a)).

PPI network was constructed with all genes in the violet
module. Top 20 genes with the highest connectivity were
screened as hub nodes of the PPI network with interaction

score > 0:4 as a threshold value (Figure 3(b)). The hub nodes
of the PPI network were then intersected with 21 hub genes
in the violet module, and finally, 6 potential key genes
related to smoking were obtained (Figure 3(c)).

3.5. Verification of Key Genes. To verify whether the 6 key
genes were related to smoking status and CHD risk of
patients, coexpression analysis was undertaken in GeneMA-
NIA on these 6 key genes, and 26 genes were obtained
(including these 6 key genes). It was found that parts of
genes were enriched in biological functions related to the
heart like platelet activation, regulation of coagulation, regu-
lation of blood coagulation, regulation of hemostasis, platelet
alpha granule lumen, platelet degranulation, and platelet
alpha granule (Figure 4(a)).

Then, analysis of grouped smoking status exhibited that
6 genes were significantly lowly expressed in recent or cur-
rent smoking group, which was consistent with the negative
correlation between corresponding WGCNA module and
smoking status (Figure 4(b)).

The above results exhibited that the 6 key genes may be
involved in regulating biological functions related to the
heart and were relevant to smoking status.

3.6. The Expression of Key Genes in the Smoking and
Nonsmoking CHD Mouse Models. In an effort to measure
key gene expression in the smoking and nonsmoking
patients with CHD from the animal experiment, we built
corresponding CHD mice models. The expression levels of
F13A1, ITGB3, PF4, PBP, SPARC, and VCL in mouse
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Figure 4: Verification of key genes: (a) coexpression network and pathway analysis of potential genes related to smoking in GeneMANIA;
(b) boxplot of expression differences of potential genes related to smoking in different groups of smoking status.
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hemocytes were detected by qRT-PCR (Figures 5(a)–5(f)).
The results showed that the expression of ITGB3, PPBP,
and SPARC was significantly low in the smoking group.
The expression levels of F13A1, PF4, and VCL in the smok-
ing group showed a trend of low expression, but there was
no significant difference.

4. Discussion

CHD mainly features atherosclerosis and coronary artery
dynamic vasospasm and myocardial infarction. Myocardial
ischemia and hypoxia may occur as disease worsen, or
more seriously, disability rate and fatality rate will increase
[16]. To relieve coronary artery stenosis as soon as possible
and reduce the mortality rate, a reasonable diagnostic
method is necessary to detect CHD progression. Smoking
is known as a main independent risk factor for CHD, and
the risk and status of CHD are negatively correlated with
the age of smoking initiation, daily smoking amount, and
smoking years [17]. Critchley and Capewell [18] found that
the mortality of patients who quit smoking declines 36%
compared with smoking patients, and the mortality is not
relevant to patients’ other features (such as age, gender,
type of CHD, and years of study) [18]. Hence, it was con-
sidered that exploring genes related to smoking may help
us to further understand the molecular mechanism of

CHD pathogenesis, thereby increasing its diagnostic and
cure rates for smoking patients.

In our study, 99 CHD patient samples were accessed
from GEO first. The violet module that had the most signif-
icant correlation with smoking was identified with WGCNA.
WGCNA is an association analysis between modules and
external sample traits by searching clusters (modules) of
highly correlated genes, which can be used for identifying
candidate biomarkers or therapeutic targets [4]. Next,
enrichment analysis was performed on genes in the above
module. The results showed that genes were mainly enriched
in biological pathways like focal adhesion, platelet activation,
and tight junction. GO analysis exhibited that genes in the
module may affect biological functions of the heart like clot-
ting, myocardial contractions, and signal transduction. A
study exhibited that specific components of the cardiomyo-
cyte costamere (focal adhesion) play a role in initiating and
maintaining the transduction of aberrant signal which con-
tributes to cardiac remodeling and development [19]. The
above references and results testified that the determined
genes in the module that significantly related to smoking
were involved in regulating biological functions related to
the heart.

Next, 21 hub genes were acquired from the violet mod-
ule. Then, PPI network was established with all genes in
the violet module, and 20 hub nodes were found. Later,
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Figure 5: The expression of key genes in smoking and nonsmoking CHD mouse models. (a–f) qRT-PCR detected the expression of key
genes (F13A1, ITGB3, PF4, PBP, SPARC, and VCL) in mouse hemocytes. ∗p < 0:05.
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PPI was intersected with hub genes in WGCNA, and 6 key
genes were ultimately obtained (F13A1, ITGB3, PF4, PPBP,
SPARC, VCL). The activity of F13A1 and coagulation factor
XIII (FXII) plasma can affect the risk for myocardial infarc-
tion [20]. Polymorphism of rs5918 (PlA1/A2) in ITGB3
correlates with coronary artery [21]. ITGB3 polymorphism
may be implicated in blood platelet inhibiting the coagula-
tion of aspirin [22]. Levine et al. [23] observed a remarkable
increase in plasma PF4 in patients with coronary artery. In
coronary heart disease, PPBP may work as a feasible syner-
gistic inflammatory biomarker [24]. SPARC presents in the
myocardial membrane, and its expression is elevated after
myocardial damage and during fibrosis and hypertrophy
[25]. VCL is a critical adhesion molecule connecting adhe-
sion compound with extracellular matrix based on integrin
[26]. VCL-SSH1-CFL is capable of mediating the maturation
of cardiomyocyte myofilament [27]. These genes closely cor-
relate with coronary heart disease and cardiac muscle cells as
suggested in earlier investigations, possibly serving as a novel
option for treatment target to enhance patient’s cure rate.
Lastly, coexpression network analysis was undertaken on
smoking-related hub genes of coronary heart disease in Gen-
eMANIA, and then, ITGA2B, ALOX12, ESLP, and CLU
were acquired. Aspirin-associated gene ITGA2B correlates
with smoking status of patients with cardiovascular disease
[28]. ALOX12 promoter methylation changes in atheroscle-
rosis might function as a new epigenetic indicator [29]. The
polymorphism combination of CLU is implicated with
DMDM status in coronary artery [30]. Additionally, these
genes are involved in platelet degranulation and platelet acti-
vation, which are closely bound up with CHD [31, 32]. Thus,
it was posited that the identified hub genes relevant to smok-
ing in CHD might increase the cardiovascular events by
polymorphism and platelet activation.

In conclusion, WGCNA, PPI, and pathway analyses
were used to identify and testify 6 key genes of CHD related
to smoking. The expression of these genes was then testified
through animal experiment. They may be potential bio-
markers of smoking-related CHD and assist the diagnosis
and treatment of CHD for smoking people. However, fur-
ther experiments need to be done to explore the specific
molecular mechanism of the above hub genes that affect
CHD risk.
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