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Abstract: Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator
for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA
vary widely at population level and are responsible for developing severe cutaneous adverse drug
reactions (SCARs) such as Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug
reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE).
The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE
are strongly supportive for clinical considerations. Prescribing guidelines generated by different
national and international working groups for translation of HLA pharmacogenetics into clinical
practice are underway and functional in many countries, including Thailand. Cutting edge genomic
technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are
great opportunities and several challenges as well for effective implementation of HLA genotyping
globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing
precision medicine initiatives.

Keywords: human leukocyte antigen; HLA genetic polymorphisms; SCARs; pharmacogenomics;
precision medicine
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1. Introduction

The major histocompatibility complex (MHC) is a group of cell surface proteins that
play a pivotal role in T-cell activation because this process mandatorily requires that the
T-cell receptor (TCR) engages with the complementary antigenic peptide bound to MHC
molecules. In human, MHC is also known as human leukocyte antigen (HLA). The HLA
is the encoded products of the HLA gene complex which is located on the short arm of
chromosome 6. The HLA antigens are classified into two clusters (class I and class II
according to their coding gene locus, their function, tissue distribution, and biochemistry.
HLA class I molecules are encoded by three loci known as classical HLA-A, HLA-B, and
HLA-C genes while HLA class II molecules are encoded by classical HLA-DR, HLA-DQ,
HLA-DP genes. HLA class I molecules are expressed by virtually all nucleated cells and
present peptides derived from intracellularly expressed proteins to cytotoxic T cells (CD8+)
whereas HLA class II proteins are typically expressed by professional antigen-presenting
cells, such as dendritic cells, and serve to present internalized exogenous protein to T-
helper (CD4+) cells. The HLA genes are the most polymorphic genetic region in the human
genome accounting for the variability in HLA molecules expression to present huge variety
of peptides. The HLA polymorphisms principally influence the shape and electrochemistry
of the peptide-binding groove that consequently determine the repertoire of peptides
that can bind to a specific HLA molecule. The prevalence of specific HLA alleles differs
significantly among different populations and ethnic groups [1].

The HLA system was first recognized and named from experiments in tissue trans-
plantation, as the HLA molecules play a crucial role in the adaptive immune response.
However, the attention in HLA polymorphisms has widened beyond their role as trans-
plantation/transfusion antigens. This is due to HLA is also associated with a large number
of human diseases in which the immune system is passionately involved such as au-
toimmunity, cancers or infectious diseases. Additionally, in pharmacogenomics aspect,
several drugs can induce immune hypersensitivity responses through interactions with
HLA molecules, known as adverse drug reactions (ADRs), which is one of the common
causes of hospitalization as well as mortality. As HLA expression is co-dominant, the
susceptibility to drug hypersensitivity depends on the presence or absence of the relevant
allele associated to a specific drug [1–7].

Therefore, the understanding of its inheritance, nomenclature, and application is
important for optimal patient care. Moreover, HLA genotyping is very importance in
solid organ transplantation (SOT), in hematopoietic stem cell transplantation (HSCT),
in transfusion practice for platelet refractoriness patient, in the diagnosis of a variety
of disease associations and pharmacogenomics applications. The intention here is to
provide a brief overview of the most important features of HLA, the principle of testing
methodologies commonly used in laboratories, and clinical applications of HLA with
emphasis on pharmacogenomics and precision medicine.

2. HLA Molecular Biology

The class I and class II molecules are codominantly expressed but have different tissue
distributions. The class I HLA, includes the HLA-A, HLA-B, and HLA-C, are expressed
ubiquitously in most nucleated cells but can also be found in platelets, and immature
red cells. The class II HLA, includes the HLA-DP, HLA-DQ and HLA-DR, are expressed
primarily on professional antigen-presenting cells (i.e., B cells), endothelial cells, monocytes,
macrophages, dendritic cells, Langerhans cells as well as activated T cells but can be expressed
by most cells including T cells and endothelial cells under inflammatory conditions.

The important biological function of HLA molecules is to regulate the activity of
the immune system by presenting a complex composed of a self-HLA molecule and the
bound nonself peptide or small molecule (i.e., drug) for recognition of clonally expressed
“TCR”. HLA class I proteins consist of an α chain with a molecular weight of 45 kDa that
associates noncovalently with a smaller 12 kDa nonpolymorphic protein, β2-microglobulin.
On the other hand, HLA class II proteins consist of two similar-sized chains of a molecular
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weight of 33 (α) and 28 (β) kDa associated noncovalently throughout their extracellular
portions. Class I molecules present antigens to cytotoxic CD8(+)T lymphocytes, while
class II molecules present antigens to helper CD4(+)T lymphocytes. The specificity of this
interaction is determined by interactions of the CD4 and CD8 coreceptors with the class II
β chain and class I α chain, correspondingly [2,8].

3. HLA Genomic Organization and Inheritance

The HLA genes are closely linked and are located within the most gene-dene and
polymorphic region of the human genome also known as “the MHC” on chromosome
6p21.3. The HLA class I region contains the genes for HLA-A, -B, and -C. The class II region,
also known as HLA-D regions, contains genes for the α and β chains of HLA-DR, -DP,
and -DQ [7] Figure 1. The close linkage of class I, class II, and class III genes enables the
inheritance of the entire set of HLA-A, -B, -C, -DR, -DQ, and -DP genes complex from parent
to child as one unit that termed as “haplotype”. Genetic crossovers and recombination in
the HLA region are uncommon. The HLA haplotypes conservation results in predictable
associations between alleles of HLA genes. A specific combination of alleles, either inside
class I or class II genes or between class I and class II genes, will occur more frequently
than anticipated by chance at the population level. The term “linkage disequilibrium (LD)”
is used to describe this phenomena. HLA haplotypes may be evaluated using LD, which
can provide crucial hints to ensure accurate HLA genotype evaluation [9].
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Figure 1. Human leukocyte antigen (HLA) is located on chromosome 6 and structure of HLA class I
and class II molecules.

4. HLA Polymorphisms and HLA Nomenclature

The HLA genes are highly polymorphic in nature which occur as a result of different
mutations, meiotic recombination events, and gene conversion events [10]. Majority of
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the polymorphism found in the class I and II genes occurs in the exons that encode
the α-1 and α-2 (class I, exons 2-3)-3 and the α-1 and β-1 (class II, exon 2) domains
which is the peptide (antigen binding) cleft [10]. The HLA polymorphisms may affect the
controlling function of specific immunity and HLA allotypes are also involved in unwanted
immune reactions such as autoimmune diseases [1], histo-incompatibility as well as drug
hypersensitivity, where small therapeutic drugs interact with antigenic peptides to drive
T cell responses restricted by host HLA genetic polymorphisms [4,7,11–14]. More than
10,000 HLA class I genetic variants and 4500 HLA class II-chain genetic variations are
produced by polymorphic HLA [15–17]. Non-covalent interactions between the peptide
main chain and conserved cleft residues, as well as sequence-dependent contacts between
peptide side chains and polymorphic cleft residues aid peptide binding. The structure and
electrochemical environment of the anchor pockets, which are formed by polymorphic
HLA residues, favor the binding of peptides with complementary side chains at these sites,
resulting in an allotype-specific peptide-binding motif [18]. As a result, HLA polymorphism
has the functional consequence of altering the range of self- and pathogen-derived peptides
that can be delivered at the cell surface [18].

The enormous polymorphism of the HLA genes necessitates a rigorous naming tech-
nique. The WHO Nomenclature Committee for HLA System Factors is in charge of iden-
tifying new HLA genes, allele sequences, and their quality control. As the broad HLA
antigen groups were initially identified based on their response with antisera in comple-
ment mediated micro lymphocytotoxicity tests, the nomenclature for alleles is mostly based
on older serological designations. For the current nomenclature, each HLA antigens are
uniformly named starting with the locus, antigenic specificity, and molecularly typed allele
group. HLA-prefix designates the MHC gene complex follow by the capital letters indicate
a specific gene. Alleles for each of the genes are identified by a four-field series of two-
to three-digit numbers separated by a colon. An asterisk “*” sign indicates that typing
is performed by a molecular method and the colon “:” is a field separator. For example,
HLA-A*02:01:01:01L is the allele. The 1st field d (A*02) refers to a group of alleles that
encode for the A2 antigen. 2nd field (01) refers to a specific allele, which encodes a unique
HLA protein (A*02:01). This typically describes serologically equivalent proteins that have
differential ability to stimulate T lymphocyte responses. The 3rd and 4th numeric fields
convey less clinically significant but scientifically important information. The 3rd field
refers to a synonymous (silent) mutation in coding region while the 4th field identifies the
different alleles in non-coding regions. Some of polymorphisms affect gene expression
by creating low-expression (or null) variants. The relevant expression is denoted by the
addition of a capital letter at the end of the 4th field [19].

5. HLA Genotyping: Methods for Identification

The HLA testing supports several clinical applications such as transplantation/transfusion,
immunogenetics as well as pharmacogenomics. Conventionally, HLA antigens were de-
tected using sera with known anti-HLA antibodies similar to the methods performed for
RBC phenotyping. However, the diversity of HLA genes, which are not distinguished by
serology, has required employing DNA-based methods for accurate typing. Molecular
typing allows for varying levels of resolution when typing the HLA allele, depending
on the application needs and the amount of time available to complete the test. On the
one hand, “low resolution” or “two-digit typing” (example: HLA-A*01) supplies the first
field in the molecular-based nomenclature, which is usually the serologic typing result.
For solid organ transplantation, transfusion practice, and certain disease association, low
resolution typing is usually sufficient [6]. On the other hand, “high-resolution” or “four-
digit typing” (for example, HLA-B*57:01) identifies alleles based on the sequence of the
HLA molecule’s peptide-binding region, which corresponds to the first two fields of the
molecular nomenclature. This level of type does not differentiate between alleles with
synonymous alterations or non-coding regions that vary. For bone marrow transplantation,
some disease association, and pharmacogenomic testing, high-resolution typing usually
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necessitates gene sequencing [6]. There is also the intermediate resolution, which contains
a subset of alleles that share the digits in their allele name’s first field but excludes certain
alleles that share this field.

There are many molecular methods for HLA genotyping, for instance, sequence
specific oligonucleotide probe hybridization (SSO), sequence-specific primers polymerase
chain reaction (SSP), allele-specific polymerase chain reaction (AS-PCR), real-time PCR,
and DNA sequence-based typing (SBT). Exons 2 and 3 for HLA-A, -B, and -C (class I) genes,
and exon 2 for HLA-DR, -DQ, and -DP (class II) genes, are the HLA polymorphic areas
that must be included for typing by these techniques. The comparison of findings to vast
lists of potential alleles is required for HLA sequence analysis, which generally necessitates
interpretive skill and the use of specialist software tools. We provide an overview of the
available approaches utilized by laboratories for HLA genotyping in this study, outlining
the methodological advantages and disadvantages in Table 1. Laboratories must examine
a number of criteria when choosing an HLA typing technique. The SSP and rSSO take
around 4–5 h to complete, making them ideal for clinical circumstances like cadaver kidney
transplantation and pharmacogenomics. The SSP is suitable for low to moderate typing
volumes, but the rSSO is better suited to big clinical quantities or batch research typing. Due
to the use of many primers and probes, SSP and rSSO can reach allele level resolution. For
high-resolution typing, however, SBT is the gold standard. Furthermore, serological typing
is still helpful for comparing serological results to DNA-based results and determining the
existence of null alleles [20–24].

Table 1. Comparison of the common molecular HLA genotyping techniques.

Method Advantage Disadvantage Medical Applications

rSSO

- Intermediate to High resolution
- High throughput
- Robust
- Large volume typing

- Allele ambiguities
- Transfusion
- Transplantation
- Disease associations
- Pharmacogenomics

SSP
- Intermediate to High resolution
- Rapid
- Small volume typing

- Lower throughput
- Large number of reactions
- Required many thermocyclers

- Transfusion
- Transplantation
- Disease associations
- Pharmacogenomics

Real-time PCR
- Low to High resolution
- Rapid
- Low volume typing

- Results reported only positive or
negative for specific alleles

- Disease associations
- Pharmacogenomics

SBT
- Highest resolution
- Full allele
- Direct identification of new alleles

- Lowest throughput
- More technically demanding
- Expensive
- Sequencing ambiguities caused by

cis-/trans-polymorphism

- Transfusion
- Transplantation
- Disease associations
- Pharmacogenomics
- Resolution of ambiguous

results from other method

6. Severe Cutaneous Adverse Drug Reactions (SCARs)

Severe cutaneous adverse drug reactions (SCARs) are delayed T cell induced hypersen-
sitivity (DTH) including Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN),
drug reaction with eosinophilic and systemic symptoms (DRESS), acute generalized exan-
thematous pustulosis (AGEP) as described elsewhere [25]. The pictures of different form of
SCARs are shown in Figure 2A–C, respectively. These conditions have variation of critical
clinical course, skin rashes and severe systemic multi-organ involvement. While other
authors have reviewed the associations between HLA alleles and SCARs [26–31], however,
preset review will reemphasize this relationship along with other important factors in
this filed.
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necrolysis (TEN), (B) indicates drug reaction with eosinophilia and systemic symptoms (DRESS) and (C) indicates acute
generalized exanthematous pustulosis (AGEP).

6.1. Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN)

SJS and TEN are rare and life-threatening muco-cutaneous hypersensitivity reactions
that are in most of the cases drug-induced. Patients’ genetic factors (HLA alleles), drug
metabolism and interaction of T-cell clonotypes are associated with the pathogenesis [32].
The incidence is ranging from ~2 to 7 per million people per year [33,34], as reported
elsewhere. Pediatric SJS/TEN is different from adult SJS/TEN in term of differential
diagnosis, etiology, drug exposure, risk of recurrence and outcome [35]. Recurrence is more
common in children due to cause of infection [32], relatively lower mortality in pediatric
SJS/TEN [33].

There are multiple factors associated with the etiology of SJS/TEN including genetic
susceptibilities: HLA profiles, individual drug use, drug metabolism, ethnicity-specific
association and underlying diseases particularly, hematologic malignancy, HIV infection,
liver and kidney diseases. There are some differences in term of the causative drug
and associated causes between children and adult. Common culprit drugs in children
triggers include sulfonamides, aromatic anticonvulsants (carbamazepine, phenytoin, and
phenobarbital), penicillin, and NSAIDs. Other more strongly causative drugs in adults
are allopurinol, oxicam, NSAIDs, and nevirapine [34,36,37]. SJS/TEN is considered to be
associated with medication when the patient has ingested the suspected agent, usually
trigger within 8 weeks prior to the onset of the rash [34]. The typical onset duration is
about 4 days to 4 weeks.

Mycoplasma pneumonia infection is the second most common trigger of SJS, partic-
ularly in pediatric population and possibly associated with less severe clinical presenta-
tion than drug-induced SJS. The other presumptive cause of SJS/TEN from an infection
include coxsackie virus, influenza, herpes simplex virus, cytomegalovirus, parvovirus,
varicella zoster virus, Epstein–Barr virus, measles virus, human herpes virus types 6 and 7
(HHV-6, 7) streptococcus group A, mycobacterium, and rickettsia [34,38,39] that is noted
to occur 1 week prior to the onset of the rash.

The exact immune-histopathology of SJS/TEN is still not fully understood. Drug
specific CD8 T-cells and NK cells are the major inducer of keratinocyte apoptosis. Specific
T cell receptors recognize a metabolized drug presented by specific HLA alleles, followed
by the activation of drug-induced cytotoxic T lymphocytes (CTLs) and the release of
multiple cytokines, chemokines, signals, and soluble cytotoxic mediators such as Fas-
ligand, granulysin, perforin, granzyme B and tumor necrosis factor alpha [40]. IL-15 signal
pass through the JAK-STAT pathway, then has downstream to PI3K/AKT/mTOR pathway
responsible that effects on NK and CD8 T-cell.
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6.2. Drug Reaction with Eosinophilia and Systemic Symptom (DRESS)

DRESS is characterized by fever, lymphadenopathy, hematologic abnormalities (eosinophilia,
atypical lymphocyte), multi-systemic involvement and viral reactivation. The true inci-
dence of DRESS is still unclear. The younger children seem to be found less than in the
adults. Numerous medications have been reported to cause this condition include allopuri-
nol, aromatic/non-aromatic anticonvulsants (carbamazepine, phenobarbital, phenytoin,
valproic acid), antimicrobial (ampicillin, cefotaxime, dapsone, ethambutol. isoniazid,
trimethoprim-sulfamethoxazole, minocycline, metronidazole), antiviral (abacavir, nevirap-
ine), antihypertensive (amlodipine, captopril), NSAIDs (ibuprofen) [41]. Carbamazepine is
the most common causative agents of DRESS in adult [42,43] and pediatric patients [44].

The onset of DRESS symptoms is typically 2–3 weeks from initial exposure of the drug,
ranging from 2 to 8 weeks (average 22.2 days, range 0.42–53 days) [42,44,45]. Not only drug
specific immune response but also viral reactivation of human herpesvirus (HHV)-6, 7,
Epstein–Barr virus (EBV) and cytomegalovirus are associated with this condition. High
viral load and antibody titers are the poor prognostic outcome [46]. DRESS is the result
of complex interplay of genetic factors (especially HLA alleles), immunological response
(T-cell), and abnormality of drug detoxification enzymes pathway and herpes virus family
member reactivation (HHV-6, 7, EBV, CMV) [41,42,46]. This viral reactivation probably
causes of chronic recurrence despite cessation of the culprit drug [46].

Polymorphism in gene encoding drug metabolizing enzyme such as cytochrome P450
(CYP) enzymes, N-acetyltransferase possibly takes part in the pathogenesis of DRESS [47].
Multiple medications including aromatic anticonvulsants are metabolized by the hepatic
CYP450 enzymes and oxidation by aromatic hydroxylase may produce the arene oxides
which are the excessive toxic metabolites. Alteration of these metabolic enzymes leads to
accumulate these toxic metabolites that dysregulated the immune response conducting cell
necrosis and/or apoptosis [48]. Toxic metabolite accumulation derived from defect of these
metabolized components that alternated the immune response causing cell necrosis and
apoptosis. Diagnosis criteria of DRESS is shown in Table 2.

Table 2. Diagnostic criteria for drug reactions with eosinophilia and systemic symptoms (DRESS).

RegiSCAR Bocquet et al. J-SCAR.

Criteria:
Diagnosis when all 3 items +3/4 of all of the
following clinical signs

Criteria:
All 3 is required, 1 of each clinical signs

Criteria:
Typical—all 7 clinical signs/criteria
Atypical—5 first clinical signs

1. Acute skin eruption
2. Reaction suspected to drug-related
3. Hospitalization

1. Cutaneous drug eruption

1. Maculopapular rash develop > 3 weeks after
starting offending drug
2. Prolonged clinical symptoms 2 weeks after
discontinuation of the causative drug
3. Fever > 38 ◦C
4. ALT > 100 U/L or other organ involvement
5. Lymphocyte abnormalities ≤ 1 present
-Leukocytosis > 11 × 109/L
-Atypical lymphocytes > 5%
-Eosinophilia > 1.5 × 109/L
6. Lymphadenopathy
7. HHV-6 reactivation

1. Fever > 38 ◦C
2. Enlarged lymph nodes ≤ 2 sites
3. Involvement ≤ 1 internal organ
4. Blood count abnormalities
-Lymphocytes above or below normal limit
-Eosinophils above normal limit
-Platelets under normal limit

2. Hematologic abnormalities
-Eosinophil > 1.5 × 109/L
-Atypical lymphocytes

3. Systemic involvement
-Lymphadenopathy ≤ 2 cm
-Hepatitis: transaminase ≤ 2X
-Interstitial nephritis
-Interstitial pneumonitis
-Carditis
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6.3. Acute Generalized Exanthematous Pustulosis (AGEP)

AGEP is attributed commonly to drugs, infection and other substance, respectively. It
is typically characterized by the acute onset of numerous non-follicular sterile pustules on
erythroderma, fever and neutrophilia. The estimate incidence of AGEP is about one to five
per million per years [49]. There was variation of patient’s age, whereas mean age range from
40.8–56 years (±21 years) [50,51]. More than 90% of cases associated with medication ingestion
including antibiotics (aminopenicillin, sulfonamide, quinolone), anti-fungal (terbinafine),
calcium channel blocker and antimalarial agents (hydroxychloroquine) [52,53].

The other causes of AGEP had been described as the contact sensitivity with mer-
cury, lacquer, psoralen combined with ultraviolet A (PUVA) treatment and potent top-
ical NSAIDs [52,53]. AGEP is induced by spider bite, viral infection (Coxsackie B4, cy-
tomegalovirus, parvovirus B19) and bacterial infection (Mycoplasma pneumoniae, Chlamydial
pneumoniae, Escherichia coli) and parasitic infestation [52,53]. AGEP commonly occur as
a sudden onset, mostly has time interval from drug ingestion within 24–48 h (hour to
25 days) [52,54]. The onset of this condition is variable depend on different drug.

Immune mechanism changes after exposure with the culprit agent forming a drug
epitope. Antigen presenting cells present the drug related epitopes by MHC molecules
leads to activate specific CD4 and CD8 T cells that reaction as “drug-specific cytotoxic
T cells”. CD8 T cells release cytotoxic protein such as perforin, granzyme B and Fas
ligand causing apoptosis of keratinocytes within the dermis causing sub-corneal vesicles
formation [55].

Furthermore, drug specific CD4 T cells released chemokine (C-X-C motif) ligand 8
(CXCL 8)/IL-8, interferon gamma (IFN-γ), granulocytes/macrophage colony stimulating
factor (GM-CSF). CXCL 8/IL-8 is a potent neutrophilic chemotactic chemokine the re-
cruited neutrophils. GM-CSF protects these recruited neutrophils from apoptosis, whereas
IFN-γ synergistic produces of CXCL 8/IL-8 from surrounding keratinocytes. Neutrophil
infiltrations mediate transform of sub-corneal vesicles to sterile pustules [52,56].

CD4 T cells occasionally stimulate Th2 cytokine pattern to produce IL-4, IL-5, a potent
stimulator of eosinophilic differentiation. This uncommon event is the cause of eosinophilia
that had been found about 30% of AGEP patients [53]. Th-17 cells, IL-17, IL-22 have been
proposed to be pathogenesis of AGEP. The synergist effects of IL-17 and IL-22 expression
by neutrophils, mast cell and macrophage are inducible CXCL 8/IL-8 production from ker-
atinocyte [55]. Furthermore, the increasing of IL-17 level in subcorneal pustules of AGEP
patients can be detected [57]. The recent studies about genetic predisposing identified muta-
tion IL-36RN in AGEP patients [58]. These mutations lead to increase expression of various
pro-inflammatory cytokines and chemokines such as IL-36 signaling, up-regulating IL-1,
IL-6, CXCL 8/IL-8 production and neutrophil recruitment [54,59]. Etiology, pathology and
treatments of SCARs have been extensively described as reviewed by other authors [60–62].

7. Potential Mechanism of HLA-Associated Drug Hypersensitivity

The mechanisms behind drug-induced delayed hypersensitivity reactions (DHS)
may be explained by three different theories: hapten/prohapten theory, pharmacological
interaction theory (p-i), and repertoire alteration theory (Figure 3).
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7.1. Hapten/Pro-Hapten Theory

The ‘Hapten concept’ or ‘Haptenisation’ was first introduced by Landsteiner and
Jacob in 1936. As per this model, the hapten, a substance that has <1000 Dalton molecular
weight capable of triggering the immune response when it binds with larger protein or
peptides. The electrophilic or reactive chemicals or drugs behave as hapten and initi-
ate the immune response. However, the hapten hypothesis is modified into ‘prohapten
theory’ as many inert substances are reported with DHS. According to this concept, the
toxic metabolites of drugs can bind with protein and become immunogenic (Figure 3a).
Therefore, the non-reactive drug acquires reactivity by the virtue of its metabolites. For in-
stance, sulfamethoxazole is pro-haptane which is converted into a proactive hydroxylamine
metabolite by CYP2C9 at first then into the unstable and readily protein binding nitroso
sulfamethoxazole and this pro-haptane complex can initiate the immunological response
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as it is processed by an antigen-presenting cell (APC) and presented to T cell through MHC
or HLA [63]. The triggered immune responses could be humoral that is anaphylaxis or
cell-mediated response, the delayed type of T-cell mediated immune reactions.

According to this theory, the non-reactive drug binds directly to the TCR or HLA by a
non-covalent bond. The T cell activation requires the interaction between drugs and HLA
or TCR or both and usually, the degree of interaction is metabolism independent. The inter-
action between drug and TCR/HLA may not always end up T-cell response. Likewise, the
drug may inhibit another structurally similar drug’s interaction with TCR/HLA. A typical
example is that the sulfanilamide suppresses sulfamethoxazole induced proliferation [64].

7.2. The Pharmacological-Interaction (P-I) Theory

The P-I theory can be classified into two, the p-i TCR interaction in which a drug
binds to TCR and activates T cells via strengthening its interaction with peptide-HLA
(pHLA) [65]. The drug may bind to TCR itself with high affinity at sites that contact with
pMHC resulting in T-cell activation, even in the presence of different peptides or allogeneic
HLA [64,66,67]. In case of carbamazepine-induced hypersensitivity, the carbamazepine
interacts with both TCR and HLA-B*15:02, suggesting that it exhibits the features of both
p-i TCR direct p-i and p-i HLA indirect p-i [68] as shown in Figure 3b.

7.3. Repertoire Alteration Theory

In this model, the drug binds with MHC binding site by non-covalent bond and
altering the chemistry of binding cleft and endogenous peptide repertoire. This alteration
modifies the selection and presentation of peptide ligands necessary for TCR activation.
Studies show that abacavir is found to bind non-covalently to HLA-B*57:01 molecule,
causing changes in the peptides binding ability of HLA-B*57:01 molecule causing an
alteration in the repertoire of endogenous peptides presented to TCR (Figure 3c).

8. HLA and CD8+T-Cells Provide the Immunogenetics Basis of Systemic Drug Hypersensitivity

MHC is unique for every individual and every tissue. All nucleated cells have MHC-I,
MHC-II complex present in APCs such as dendritic cells, macrophages, and neutrophils.
All nucleated cells contain the class I MHC molecule (HLA-A, HLA-B, and HLA-C) as
transmembrane glycoproteins on their surface, they are encoded by genes presented at
HLA A, HLA B, HLA C loci. T cells that express CD8+ molecules react with this class I
MHC molecules, so all the infected cells can act as APC for these CD8+T cells. Class II
MHC molecules are presented only in regular APC such as dendritic cells, B cells and
macrophages, and so on. These molecules are encoded by genes that are located in the
HLA-DP, -DQ, or -DR loci, and T cell expressed with CD4+ reacts with them. The Source of
allergen is usually from the cytoplasm (viral infection) in CD8+T whereas in CD4+T cells
antigen is from extracellular. Cytokines are produced by both CD8+T cells and CD4+T
cells, hence both of them are capable to produce DTH.

Antigen processing type is the important determinant of T-cell response. If antigen
comes from outside, MHC II molecule present this to T cell which is expressed with CD4+
to produce a response, then the differentiated CD4+T cell, produce Helper T cell (TH1)
which can stimulate cytokinins production through IL2 and IFN gamma, on the other hand,
TH2 produce antigen-specific antibodies by IL4, IL 5 and IL 10. CD8+T cells follow the
same pattern in producing cytokinins and IFN gamma which can initiate DTH through
TC1 and TC2.

Studies have confirmed that the histology of drug-induced eruptions and alloimmune
reactions are similar, because in both cases the predominant infiltration cells are CD8+T
cells, in contrast, CD4+T cells are presented deeper dermis in both conditions. Another
mechanism of CD8+T cells and drug hypersensitivity is that some drugs are transformed
into chemically reactive haptens, which can bind with any peptides and can be considered
as drug antigen. Keratinocytes contain CYP450 enzymes that can do this transformation.
For example, sulfanilamide and phenytoin are metabolized into their reactive metabolites
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of aryl-hydroxide and epoxide respectively, and usually, these reactive metabolites are
detoxified by enzymes, but if there is any genetic variation in genes that encode these
enzymes may initiate the immune reaction by endogenous pathway and presented to
CD8+T cells.

In another proposed mechanism, drugs can directly bind (non-covalently) with ex-
isting peptide/MHC class I or class II complexes and presented to CD4+ and CD8+T-cell
clones, this happens even in the absence of metabolism and processing. In drug-induced
bullous eruptions, CD8+T cells play a major role by initiating the cytotoxic effect by produc-
ing potent medicated perforin, So the study has suggested that the sulfonamides induced
cutaneous eruption in AIDS patients is mainly mediated by CD8+class I-restricted, perforin
producing, cytotoxic DTH effector T cells.

9. Pharmacogenomics and HLA Research across the World

Polymorphism of classical HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ genes varies
among populations in the respect of the frequencies of alleles and haplotypes particular
to population groups. Ethnic-specific genetic variation information is vital for clinical
implementation, especially, to identification of good pharmacogenetic markers. There
have been reported associations between various HLA alleles and different adverse drug
reactions, as described in Tables 3 and 4.

Table 3. The frequencies of Class I HLA-associated drug hypersensitivity and related drug adverse reactions.

HLA
Pharmacogenetics

Marker

Allele Frequency (%)

Drug ADR TypeThai
Population

(n = 470) [25]

African
Americans

(n = 252) [26]

North
American

(n = 187) [26]

Caucasians
(n = 265)

[26]

Hispanics
(n = 234)

[26]

Asians
(n = 358)

[26]

HLA-A*01:01 2.23 5.56 7.49 15.09 5.98 1.53 Phenobarbital SCARs, MPE [32]

HLA-A*24:02 11.49 2.78 22.73 6.6 12.18 18.94 Carbamazepine SJS/TEN [33]

Phenytoin SJS/TEN [33]

Lamotrigine SJS/TEN, MPE [33]

HLA-A*30:02 0 4.96 1.87 0.57 3.42 0.14 Amoxicillin-
Clavulanate DILI [34]

HLA-A*31:01 0.85 0.79 7.75 3.21 4.91 3.06 Carbamazepine
CADRs, SJS/TEN,

DRESS, MPE
[35,69,70]

0.85 0.79 7.75 3.21 4.91 3.06 Lamotrigine SCARs [36]

HLA-A*33:03 11.17 3.97 0.53 0.57 1.07 11.7 Allopurinol SJS/TEN [71,72]

Ticlopidine DILI [73]

HLA-A*68:01 0.96 2.58 5.62 3.02 2.56 0.28 Lamotrigine SCARs [37]

HLA-B*13:01 5.96 0 0 0 0 3.34 Phenytoin SCARs [38]

Phenobarbital DRESS [32]

Dapsone DRESS [39]

Salazosulfa-
pyridine DRESS [40]

HLA-B*15:02 7.66 0.2 0 0 0 4.87 Carbamazepine SJS/TEN [35,69,70]

Oxcarbazepine MPE, SJS [35]

Phenytoin SJS/TEN [35]

Cotrimoxazole SJS/TEN [74]

HLA-B*15:11 0.21 0 0 0 0 0.28 Carbamazepine SJS/TEN [35,69]

HLA-B*15:13 0.96 0 0 0 0 0.28 Phenytoin SJS/TEN, DRESS
[33,75,76]

HLA-B*35:05 1.91 0 0 0.38 0.85 0.14 Nevirapine SJS/TEN, DRESS
[69,77]

HLA-B*38:01 0 0.4 1.07 2.45 1.71 0.42 Co-trimoxazole SJS/TEN [78]

HLA-B*38:02 4.26 0 0 0.19 0 6.55 Oxcarbazepine MPE [79]

Co-trimoxazole SJS/TEN [78]
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Table 3. Cont.

HLA
Pharmacogenetics

Marker

Allele Frequency (%)

Drug ADR TypeThai
Population

(n = 470) [25]

African
Americans

(n = 252) [26]

North
American

(n = 187) [26]

Caucasians
(n = 265)

[26]

Hispanics
(n = 234)

[26]

Asians
(n = 358)

[26]

HLA-B*51:01 4.26 1.2 11.23 5.66 6.2 6.69 Phenobarbital SJS/TEN [32]

HLA-B*56:02 0.11 0 0 0 0 0.28 Phenytoin DRESS [38]

HLA-B*57:01 1.17 2.39 2.14 4.15 1.92 0.97 Abacavir AHS [35,69,80]

Flucloxacillin DILI [81]

HLA-B*58:01 6.38 6.37 0.8 1.13 1.07 7.38 Allopurinol
CADRs, SCARs,
MPE, SJS/TEN,

DRESS [35,69,71,82]

HLA-B*59:01 0 0 0 0 0 0.56 Methazolamide SJS/TEN [83]

HLA-C*03:02 7.77 2.78 0.27 0.38 1.07 7.66 Allopurinol SJS/TEN [71,72]

HLA-C*06:02 4.26 11.31 5.62 8.68 6.84 3.62 Co-trimoxazole SJS/TEN [74]

HLA-C*08:01 10.32 0.2 2.41 0 1.71 11.28 Carbamazepine SJS/TEN [33]

Phenytoin SJS/TEN [84]

Allopurinol SJS/TEN [84]

Co-trimoxazole SJS/TEN [74]

Table 4. The frequencies of class II HLA-associated drug hypersensitivity and related drug adverse reactions.

HLA
Pharmacogenetics

Markers

Allele Frequency (%)

Drug ADR TypeThai
Population

(n = 470) [25]

African
Americans

(n = 241) [85]

Caucasians
(n = 265) [86]

Japanese
(n = 371) [87]

Han Chinese
(n = 358) [88]

HLA-DRB1*12:02 15.32 0.4 0 1.5 13.3 Carbamazepine SJS/TEN [33]
HLA-DRB1*13:02 1.38 8.5 3.4 7.7 2.8 Allopurinol SJS/TEN [71]

HLA-DRB1*15:01 8.09 16 15.8 8.5 10.8 Amoxicillin-
Clavulanate DILI [34,89]

HLA-DRB1*15:02 14.47 0 0.8 10 5.3 Allopurinol SJS/TEN [71]
HLA-DRB1*16:02 5.96 0 0 0.9 5.3 Phenytoin SJS/TEN [84]

HLA-DQB1*06:02 1.49 23.2 15.8 8.2 3.8 Amoxicillin-
Clavulanate DILI [34,89]

HLA-DQA1*02:01 8.72 9.1 13.2 N/A 5.7 Lapatinib DILI [90]

10. Drug Hypersensitivity and HLA Alleles: Translational Research into Clinical Practices

10.1. Association of Abacavir Hypersensitivity with HLA-B*57:01

Fever, rash, malaise, nausea, vomiting and diarrhea are all symptoms of abacavir
hypersensitivity syndrome, which can be lethal if the drug is reintroduced. About ten years
ago, the initial discovery that it was linked to the HLA-B*57:01 allele was an encouraging
development for drug hypersensitivity research [91]. It provides a unique model to explore
the pathophysiology of drug hypersensitivity because of its narrow HLA limitation and
high PPV of 47.9% Martin et al. [92] proposed that the innate immune system is involved
in abacavir hypersensitivity reactions, in which abacavir stimulates APC through the
HSP70-mediated Toll-like receptor pathway. However, there have been no additional
complaints to back up this claim. The activation of abacavir-specific T cells requires the
HLA-B*57:01 molecule, as established by the creation of abacavir-specific T-cell lines from
abacavir-naive HLA-B*57:01 positive donors. The CD8 T cell-driven, drug-specific response
was abrogated if HLA-B*57:01 was replaced by HLA-B*57:03 or even a single, essential
amino acid alteration. This suggests that a single amino acid in HLA-B*57:01 could be the
deciding factor in abacavir hypersensitivity development.

Over a decade, the HLA genetic variability has been identified as the major predis-
posing risk factor for SCARs in which the association between the HLA-B*57:01 allele and
abacavir hypersensitivity syndrome (AHS) is one of the most confounding evidence. To
date, several important studies revealed that approximately 2–8% of patients are experi-
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encing AHS warranting discontinuation of abacavir therapy. Consequentially, inheriting
HLA-B*57:01 allele shows a highly specific association with the AHS that has been validated
in patients taking abacavir in numerous clinical studies [93–97].

Due to strong association between the HLA-B*5701 allele and AHS, several studies
have demonstrated that genetic pre-emptive screening of HLA-B*5701 before starting aba-
cavir is extremely useful and is reducing AHS substantially [95,96,98,99]. Pre-emptive
screening of HLA-B*57:01 positive patients treating with alternative antiretrovirals and
starting of abacavir only in HLA-B*57:01 negative patients have eradicated incidences of
laboratory confirmed AHS in significant number of the patients [94,100]. This has geared
relevant international drug expert groups including pharmacogenomics (PGx) expertise
to generate guidelines for suggesting pre-emptive HLA-B*57:01 genetic testing to advise
abacavir prescription accordingly as provided by the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC) and the Infectious Diseases Society of America (IDSA).
Additionally, both the European Medicines Agency (EMA) and the US Food and Drug
Administration (USFDA) have concordantly included boxed warnings on the drug la-
bel, which advocate in advance HLA-B*57:01 screening while taking abacavir and that
recommend HLA-B*57:01 positive patients should not be taking abacavir [97,101–104].

The prevalence of HLA-B*57:01 allele varies in different ethnicities profoundly. A
recent study after accumulation of data from major ethnic groups revealed that the preva-
lence of HLA-B*57:01 allele was highest in South Asia (227.4 million allele carriers; carrier
rate 9.3%) followed by Europe (44.4 million allele carriers; carrier rate 6%). In contrast,
the prevalence of HLA-B*57:01 allele was considerably lower in East Asia (16.2 million
allele carriers; carrier rate 1%) [97]. In Thailand, the prevalence of HLA-B*5701 allele is
~2–4% [17,97].

The screening of HLA-B*57:01 allele has increased steadily since its first inclusion in
standard of care which was accompanied by a decreasing incidence of definite or probable
AHS over the decade. As a considerable proportion of patients are not screened in many
parts of the world for HLA-B*57:01 allele while taking abacavir, certain proportion of
abacavir induced hypersensitivity reactions are remained still though it is preventable [96].
A recent cost-effective analysis showed that pre-emptive testing of HLA-B*57:01 allele was
cost-effective in most of the countries while taking abacavir [97]. Countries where HLA-
B*57:01 testing is still not on the standard care, appropriate strategy and planning including
preparing national guidelines is needed to launch such testing program to prevent abacavir
driven hypersensitivity reactions.

10.2. Association of Carbamazepine Hypersensitivity with HLA-B*15:02

In Asian populations, HLA-B*15:02 allele is highly linked to carbamazepine (CBZ)-
induced SJS/TEN. The HLA-B*15:02 testing before CBZ prescription has been shown to
prevent CBZ-SJS/TEN. However, there have been reports of patients who acquired CBZ-
SJS despite not having HLAB*15:02. They describe a Thai patient who developed CBZ-SJS
despite being negative for HLA-B*15:02, and who was later found to have HLA-B*15:21, an
HLA-B75 serotype marker that is identical to HLA-B*15:02, B*15:11, and B*15:08.

They hypothesized that if all HLA-B*15:02 carriers were barred from receiving CBZ,
another prevalent HLA-B75 serotype marker, particularly HLA-B*15:21 would affect the
development of CBZ-SJS. To test this hypothesis, we reviewed published association studies
in Asian populations excluding Japanese and Korean studies, which have been found to
have no association with HLA-B*15:02 pooled genotype data, excluded all cases and controls
with HLA-B*15:02, and then looked at the association between HLA-B75 serotype markers
and CBZ-SJS. A tertiary structure of the protein component is required for comprehensive
examination because the serotype manifests in a specific protein form. They not only built
a tertiary structure in this study, but they also ran an in-silico analysis to compare all HLA-
B75 structures and the molecular interaction between the CBZ molecule and all HLA-B75
serotype molecules to the HLA-B*15:01 serotype. While the fact that HLA-B*15:02 screening
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is successful in preventing CBZ-SJS, a handful of persons have developed CBZ-SJS despite
having neither HLA-B*15:02 nor the two known related markers, HLA-A*31:01 and B*15:11.

Because HLA allele frequencies differ widely amongst groups, the statistical sig-
nificance of association studies involving HLA-B allele frequencies has likewise varied.
HLA-B*15:21, for example, is common in Southeast Asian and neighboring populations
with a high HLA-B*15:02 frequency. In real-world association studies, however, only HLA-
B*15:02 and B*15:11 have been demonstrated to be related with CBZ-SJS. The first positive
connection between CBZ-SJS and HLA-B*15:21, but not HLA-B*15:08, the HLA-B75 serotype
marker with very low frequencies in Asian populations, is presented in this study. If an
unmistakable link exists between all HLA-B75 serotype members and CBZ-SJS, a screening
policy for all HLA-B75 serotypes should be developed in order to maximize the advantage
of HLA-B screening prior to CBZ prescription [105–108].

Although strong association of the HLA-B*15:02 allele with CBZ-induced SJS/TEN has well
established in numerous clinical studies and also supported by the meta-analyses [105,109,110],
however, CBZ-induced SCARs associated with other HLA-B variants has not well-noticed
yet [105]. This is because, a recent in silico study showed that a Thai female patient
negative for HLA-B:15:02 treated with CBZ was developed SJS due to the presence of the
HLA-B:15:21 allele [108]. A recent study conducted by Sukasem C et al. 2018 found that
CBZ-induced SJS/TEN was significantly associated with HLA-B*15:21 allele compared
with CBZ-tolerant controls (OR = 9.54; 95% CI 1.61–56.57; p = 0.013). This is also in line
with the findings identified in other clinical studies [105]. Additionally, some studies
established the associations of other HLA-B75 serotype, i.e., HLA-B:15:08 and HLA-B*15:11
with CBZ induced SJS/TEN [111–115]. The findings of these studies urge that not only just
HLA-B*15:02 allele but also HLA-B75 serotype, i.e., HLA-B:15:02, HLA-B*15:08; HLA-B*15:11
and HLA-B*15:21 should take into considerations for optimizing safety of CBZ. A panel of
PGx biomarkers consisting of these HLA-B75 serotype should include in future screening
policy to cover all potential risk alleles to prevent CBZ-induced SCARs substantially.

The biggest challenge for finding a suitable alternative drug for patients positive
with HLA-B75 serotype especially for HLA-B*15:02 positive patients would slow down
the rapid growth of precision medicine (PM). This is because, some doctors prefer to
prescribe oxcarbazepine (OXC) instead of CBZ in HLA-B*15:02 positive patients but this
should not be the ideal option as OXC is also strongly associated with SJS/TEN in HLA-
B*15:02 positive patients [105,116]. Other aromatic anticonvulsant drugs, e.g., phenytoin,
phenobarbital or lamotrigine would be he preferable choice although need careful clinical
monitoring, as some of these drugs may also weakly associated with SCARs due to either
by the HLA-B*15:02 allele or by other genetic variants, e.g., CYP2C9 [117–120].

Along with HLA-B75 serotype, HLA-A genetic variability also need consideration for
optimizing safety of CBZ. For example, the HLA-A*31:01 allele was significantly associated
with CBZ-induced DRESS but not for CBZ-induced SJS/TEN in Chinese and European
patients [121,122]. A very recent study conducted by Sukasem C et al. in 2020 found a
strong association of HLA-A*33:03 with DRESS but no association of HLA-B*15:02 allele
with CBZ-induced DRESS in Thai patients [123].

From colligating overall evidence, it is concluded that HLA-B*15:02 allele is a pheno-
type specific biomarker related to CBZ-induced SJS/TEN but not other SCARs, i.e., mac-
ulopapular exanthema (MPE), DRESS. Additionally, both HLA-A and HLA-B75 serotype
need important considerations for reducing SCARs in patients taking CBZ.

Genetic variability of HLA gene at population level in different ethnic groups varied
widely which is accountable for different degree of drug hypersensitivity reactions as ob-
served in these diverse populations [37,123–128]. Therefore, pharmacogenetics biomarkers
for preventing SCARs may vary accordingly from one country to another country. For
example, due to high prevalence of HLA-B*15:02 allele and strong association of this allele
with CBZ-induced SCARs in Southeast Asia, Chinese and Taiwanese, the FDA and CPIC
recommend to screen HLA-B*15:02 allele in these population before initiation of CBZ ther-
apy. In contrast, because of high prevalence of HLA-A*31:01 allele and strong association of
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this allele with CBZ-induced SCARs in European, Japanese and Korean population, the
FDA and CPIC recommend to screen HLA-A:31:01 allele in these population before starting
CBZ to prevent SCARs magnificently [106,123,129]. These ethnic specific recommenda-
tions are also supported from a recent analysis showing that pre-emptive genotyping of
HLA-B*15:02 was cost-effective in East and South Asian populations only but HLA-A:31:01
testing was likely to be cost-effective almost globally while taking CBZ [97]. Although such
differences at populations level may pose a profound challenge to prevent drug hyper-
sensitivity reactions especially when PGx cannot be uniformly and selectively translated
into clinical practice, however, a population-wide approach for inventing selective PGx
biomarkers may overcome this limitation [123].

10.3. Association of Allopurinol Hypersensitivity with HLA-B*58:01

Allopurinol-induced SJS/TEN is significantly linked to the HLA-B*58:01 allele. While
Hung et al. did not distinguish allopurinol-induced SJS/TEN from DRESS, more than
half of the patients in that study had DRESS, and all of them had the HLA-B*58:01 allele,
indicating that allopurinol induced DRESS is extremely likely to be related with HLA-B*58:0.
In a Korean investigation, this substantial link with allopurinol-induced DRESS was also
verified. In contrast, a recent Australian study discovered that none of the 12 patients
with allopurinol-induced MPE had HLA-B*58:01, possibly implying that this link is only
observed in more severe phenotypes [130]. Furthermore, a Korean study of allopurinol-
treated patients with chronic renal insufficiency found that 18% (9/50) of HLA-B*58:01
positive patients had allopurinol-induced SCARs [131,132]. This is substantially greater
than the previously predicted HLA-B*58:01 PPV of 2.7 percent. In addition, a recent study
indicated that a daily intake of 200 mg or more was linked to a higher risk of SJS/TEN [133].
Combining these findings, it is possible that either renal impairment or greater doses may
result in increased serum levels of allopurinol and/or its metabolite, oxypurinol, which
raises the risk of drug-specific T cell generation. In addition to the availability of drug
levels and HLA associations, viral infections have long been known to play a role in drug
hypersensitivity [91].

Unlike HLA-B*15:02, the HLA-B*58:01 allele is not an ethnic specific biomarker rather it
is a universal biomarker, as the prevalence of HLA-B*58:01 allele is widely distributed across
the globe [97,134–137]. Additionally, HLA-B*58:01 allele is not a phenotype specific biomarker,
as the association of HLA-B*58:01 with allopurinol induced SJS/TEN/DRESS/MPE has been
established in numerous clinical studies [130,138–140].

A recent guideline released from the American College of Rheumatology (ACR) for
the management of gout has recommended conditional HLA-B*58:01 allele testing before
starting allopurinol therapy for the patients of Southeast Asian descent (e.g., Han Chinese,
Korean, Thai) and African American due to having higher prevalence of HLA-B*58:01
allele in these ethnic groups although the certainty of evidence for this recommendation
was very low [141]. The ACR also strongly recommended to start allopurinol in daily
doses of ≥100 mg in general patients but in particular, even lower doses in patients
with chronic kidney disease (CKD) because high plasma allopurinol concentration in
CKD patients may be susceptible to the greater risk of SCARs as evidenced in multiple
studies [141–147]. Additionally, special attention is required when prescribing allopurinol
to elderly patients, as age related degradation of renal function in these patients may
further exacerbated the risk of developing SCARs [142,143]. All these factors as discussed
above need important clinical considerations when preparing national guidelines for
implementing PGx of allopurinol in clinical practice.

11. International Clinical Recommendations for HLA Genotyping

International pharmacogenetic working group such as the CPIC, the Dutch Pharmaco-
genetics Working Group (DPWG) and the Canadian Pharmacogenomics Network for Drug
Safety (CPNDS) are reviewing the evidence of drug-gene interactions and are developing
PGx based dosing guidelines for more than a decade [148–151].
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Each of these PGx working group has its own method of assessing drug-gene interac-
tions (DGIs), e.g., some group consider one drug and one gene for developing guidelines
whereas others include one or more drugs with two to three genes. In addition, strategy of
grading scientific evidence and the strength of the recommendation differ among these
PGx-based dosing guideline developers [148,152–155]. Of note, only the DPWG and CP-
NDS provide PGx testing recommendations regarding a specific DGI for implementation
in daily clinical practice.

In general, PGx-based dosing guideline development process consists of these steps
(i) a systematic literature search of the DGI of interest; (ii) critical assessment of the level of
evidence for this particular DGI (iii) Based on robust evidence, clinical practice recommen-
dations are prepared by the PGx expert members and presented in a relevant workshop
meeting; (iv) PGx-guideline expert members then undergo internal review of draft guide-
lines based on the feedback received from the workshop meeting; (v) At last, the practice
guideline is reviewed externally by relevant expertise and members of the intended target
audience as well to finalize the guideline [148,153].

To date, The CPIC has assessed more than 400 DGI pairs and has published PGx-
based dosing recommendations on ~106 DGI pairs with sufficient evidence in which
prescribing action is required for at least 24 published guidelines. The CPNDS has reviewed
considerable number of DGI pairs and provide dosing recommendations on at least 13 DGI
pairs. The DPWG also reviewed more than 100 DGI pairs and published recommendations
on considerable number of DGI pairs in which at least 60 DGI pairs are required action
such as either dose adjustment or monitoring toxic effects [148,155]. The total number of
drugs affected by the HLA genetic variability have been reviewed fully or partly by all
these PGx working groups and provided guidelines accordingly.

As shown in Table 5, there were strong associations between certain HLA genetic
variants and drug hypersensitivity/SCARs, as discussed before, and several international
PGx working groups, e.g., CPIC, DPWG, CPNDS and medicine regulatory bodies such as
US-FDA have recommended HLA genotyping for a number of drugs affected by the HLA
genetic variants to optimize the safety of these medications.

Table 5. Comparison of HLA genotyping and clinical recommendations provided by different international pharmacogenet-
ics working bodies and drug regulatory agency.

Drug Gene Phenotype Clinical
Recommendations

Recom.
Authority

Level of
Evidence

Genotyping
Recommendations

Carbamazepine HLA

HLA-B*15:02 negative and
HLA-A*31:01 negative Use standard dose as per guidelines CPIC 1A Strong

HLA-B*15:02 negative and
HLA-A*31:01 positive

If patient is CBZ-naïve and alternative
agents are available, do not use CBZ CPIC 1A Strong

HLA-B*15:02 positive and
any HLA-A*31:01 genotype If patient is CBZ-naïve, do not use CBZ CPIC 1A Strong

HLA-B*15:02,
HLA-A*31:01 and

HLA-B*15:11 carriers
Choose an alternative DPWG 4E Essential

HLA-B*15:02 positive Alternative medication should be used
as first-line therapy. CPNDS +++ B-Moderate

HLA-A*31:01 positive Alternative medication should be used
as first-line therapy CPNDS +++ B-Moderate

HLA-B*15:02 positive CBZ is not recommended unless the
benefits clearly outweigh the risks FDA - -

HLA-A*31:01 positive Risks and benefits should be weighed
before prescription of CBZ FDA - -

Oxcarbazepine HLA-B

HLA-B*15:02 negative Use OXC per standard
dosing guidelines CPIC 1A Strong

HLA-B*15:02 positive If patient is oxcarbazepine naïve, do
not use oxcarbazepine. CPIC 1A Strong

HLA-B*15:02 positive

An alternative is recommended. If not
possible, it is recommended to advise

the patient to report any
rash immediately.

DPWG 4D

Beneficial (patients of
Asian, not-

Japanese and
not-Korean, descent)
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Table 5. Cont.

Drug Gene Phenotype Clinical
Recommendations

Recom.
Authority

Level of
Evidence

Genotyping
Recommendations

HLA-B*15:02 positive
Patients are at higher risk of SCARs.

Genotyping is not a substitute for
clinical vigilance

FDA
- -

Abacavir HLA-B

HLA-B*57:01 negative Use abacavir per standard
dosing guidelines CPIC 1A Strong

HLA-B*57:01 positive Abacavir is not recommended CPIC 1A Strong

HLA-B*57:01 positive Abacavir is contra-indicated. DPWG 4E Essential

HLA-B*57:01 positive Do not use abacavir FDA - -

Allopurinol HLA-B HLA-B*58:01 negative Use allopurinol per standard
dosing guidelines CPIC 1A Strong

HLA-B*58:01 positive Allopurinol is contraindicated. CPIC 1A Strong

HLA-B*58:01 positive
Choose an alternative, e.g., febuxostat

or to precede treatment with
allopurinol tolerance induction.

DPWG 4F -

HLA-B*58:01 positive Results in higher severe skin reactions FDA - -

Phenytoin HLA-B HLA-B*15:02 negative Initiate therapy with recommended
maintenance dose CPIC 1A Strong

HLA-B*15:02 positive If patient is phenytoin naive, do not
use phenytoin CPIC 1A Strong

HLA-B*15:02 positive
Phenytoin can induce the
life-threatening cutaneous

adverse events
DPWG 4E

Beneficial (patients of
Asian, but not Japanese

and Korean descent)

Lamotrigine HLA-B HLA-B*15:02

Considers genotyping of patients to be
beneficial for drug safety. Avoided

lamotrigine if possible, even if both the
incidence and the risk increase are low

DPWG 4E
Beneficial (patients of

Asian but not Japanese
and Korean descent)

Flucloxacillin HLA-B HLA-B*57:01

Regularly monitor the patient’s liver
function. Choose an alternative if liver

enzymes and/or bilirubin levels
are elevated

DPWG 4F -

Lamotrigine HLA-B HLA-B*15:02

Considers genotyping of patients to be
beneficial for drug safety. Avoided

lamotrigine if possible, even if both the
incidence and the risk increase are low

DPWG 4E
Beneficial (patients of

Asian but not Japanese
and Korean descent)

Flucloxacillin HLA-B HLA-B*57:01

Regularly monitor the patient’s liver
function. Choose an alternative if liver

enzymes and/or bilirubin levels
are elevated

DPWG 4F -

HLA = Human leukocyte antigen; Recom = Recommending; CBZ = Carbamazepine; CPIC = Clinical Pharmacogenetics Implementation
Consortium; DPWG = Dutch Pharmacogenetics Working Group; CPNDS = Canadian Pharmacogenomics Network for Drug Safety.

The evidence based PGx-guided dosing recommendations are accelerating clinical
decision taken by the healthcare professionals for implementing these recommendations
into routine clinical practice. Although there are minor inconsistences, however, these
guidelines have great value in terms of strong evidence and unique profiles and may
therefore consider as ‘gold standard’ for many countries to assess drug response variability
due to PGx activity and to generate national drug policy as well.

12. Approach to the HLA Genotype Screening in Clinical Implementation

Generally, the prevalence rates of HLA genetic polymorphisms may be considered
as reference to decide which patients should be screened pre-emptively or reactively. For
example, the FDA label states that in Thailand, Malaysia, Hong Kong and Philippines, over
15% of these population is HLA-B*15:02 positive compared to ~10% in Taiwan and ~4%
in China. However, the prevalence of HLA-B*15:02 ranges from ~2–4% in some parts of
India, but in Korea and Japan it is prevalent in less than 1% of the population. In contrast,
the HLA-B*15:02 allele is largely absent in not Asian ethnic groups such as Caucasians,
African-Americans and Hispanics [129,156]. As over 90% of patients treated with CBZ may
be at risk of developing SCARs, e.g., SJS/TEN within the first few months of treatment,
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therefore, this information is emphasizing the need for genetic screening of patients taking
CBZ being at risk of experiencing SCARs [156].

Genetic screening of HLA-B*15:02 in Asian patients taking CBZ demonstrated that
substantial number of CBZ-induced SCARs were prevented due to this genetic screening
and suggesting that, the simple and rapid HLA screening tests in the routine clinical setting
are very important for widespread uptake of population screening to prevent morbidity
and mortality associated with SCARs [105,121,137,157–159]. As discussed above, not only
just HLA-B*15:02 allele but the HLA-B75 serotype, i.e., HLA-B*15:02, HLA-B*15:08, HLA-
B*15:11 and HLA-B*15:21 as well as the HLA-A*31:01 and HLA-A*33:03 were associated
with significantly increased risk of SCARs for the patients taking CBZ. For preventing
SCARs, screening of HLA genotype may be implemented by the following model as shown
in Figure 4 to adhere in routine clinical practice.
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13. Reimbursement and Cost Effectiveness Screening of HLA

Cost-effectiveness of genetic testing is often an important part of debate especially
in the case of reimbursement issues. If the genetic screening is undertaken based on the
recommendations of high-quality recommending body, e.g., the USFDA or CPIC, there
may be high chance to get reimbursement from their own country after claiming the cost
of screening especially when the patients are taking treatment from overseas, e.g., from
Thailand. This may facilitate rapid and reasonably large uptake of genetic screening of
overseas patients in the countries where such facilities are available, e.g., in Thailand.

Although it is evident that PGx consideration is optimizing the safety or efficacy
of many clinically important medications and is reducing the morbidity and mortality,
however, genetic testing for the integration of PGx into routine clinical practice must be
cost-effective [117,156,158]. Cost-effectiveness analysis of HLA screening to prevent SCARs
compare to treatment costs without HLA screening has been undertaken in some studies.
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Using a computational model, Tiamkao and colleagues showed that the total cost savings
would be approximately USD 3285 in 100 cases if the HLA-B*15:02 genotype screening was
performed prior to treatment with CBZ [158,160]. Another study conducted by Dong et al.
examined detailed cost-effectiveness analysis of HLA-B*15:02 screening in newly diagnosed
epilepsy patients in Singapore. The findings of this study showed that genetic screening
was more cost-effective in Singaporean Chinese and Malaysian populations where the
prevalence of HLA-B*15:02 was more than 5% compared to Singaporean Indians where the
prevalence of HLA-B*15:02 was less than 2.5%. This study concluded that screening was
likely to be cost-effective where the prevalence of HLA-B*15:02 was at least greater than
2.5% [158,161].

Cost-effective analysis was also carried out for HLA-B*58:01 in patients taking allop-
urinol. In a Thai study lead by Saokaew et al. showed that pre-emptive HLA-B*58:01
screening was cost-effective before initiating allopurinol therapy after calculating all associ-
ated direct costs of alternative treatment, genetic testing, SCARs, quality adjusted life years
(QALYs) gained and gout management [158,162]. This is also in line with the findings of a
Korean study where the investigators concluded that pre-emptive screening of HLA prior
to treating gout with allopurinol was cost-effective [158,163].

The success of HLA screening and cost-effectivity will be dependent on some impor-
tant considerations. Firstly, the availability of alternative medications suggested due to
HLA positivity, and it should be less expensive. Secondly, the prevalence of risk alleles as-
sociated with SCARs should be reasonably high, at least greater than 2.5% in the screening
population. Lastly, the cost of molecular HLA genotyping at the clinical setting should be
minimum to ensure universal uptake of screening programs in the risk populations [158].

14. Drug Hypersensitivity and HLA: Clinical Implementation in Thailand
14.1. Genomics Thailand

Enforcement of PM initiatives by the president of USA in 2015 has facilitated the
government of Thailand to launch the Genomics Thailand Initiative (GTI). Thai govern-
ment has established GTI in 2019 in order to create a genomic database of 50,000 Thai
people to advance PM and PGx research in Thailand. Robust evidence found as part of
GTI will then help to develop PGx-based dosing guidelines and will serve as focal point
for regulatory framework [117,164]. The GTI is working along with Thailand’s Center for
Medical Genomics (CMG) and Center of Excellence for Life Sciences (TCELS) as a collabo-
rative research team for bridging the gap between PM and clinical practice. The outcome
of GTI project may benefit the country’s economy by 70 billion baht annually either by
intervening the five major diseases (i.e., stroke, ischemic heart disease, diabetes, cancer
and HIV infection) or by interfering the cost of PGx test, treatments etc. The PGx research
undertaken at Mahidol University, Bangkok, Thailand suggested that approximately six
billion baht (~USD 185 million) was probably saved due to only undertaking PGx screening
test from 2013 to 2018 [164]. Recently, the GTI has set a 20-year roadmap outlining various
objectives. One of the very important objectives of the GTI is to establish robust PGx
evidence for at least 14 therapeutic areas (oncology, respiratory, infectious diseases, en-
docrinology and metabolism, gastroenterology and hepatics, rheumatology, anesthesiology,
chronic kidney diseases, hematology, transplantation, neurology and psychiatry, adverse
drug reactions: SCAR and DILI, cardiovascular diseases, cannabinoid compound) which
may accelerate the translation of PGx into routine clinical practice in the form of PM [117].
The outcomes of GTI will profoundly enhance the development of updated national health
policy in Thailand.

14.2. From Research into the National Policy: A Model of HLA-B*15:02
14.2.1. Carbamazepine

Through funding from the TCELS, PGx research started in June 2004 in Thailand [117,165].
Among many PGx research projects, CBZ-induced SCARs had been considered for inves-
tigation because of the HLA genetic variability affecting hypersensitivity of CBZ [166].
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A retrospective study conducted by Locharernkul et al. in 2008 first documented the
association of CBZ-induced SJS/TEN with HLA-B*15:02 allele in the Thai population [167].
Another large retrospective case-control study lead by Tassaneeyakul et al. in 2010 revealed
a strong association between the HLA-B*15:02 allele and CBZ-induced SJS/TEN in Thai
population [168]. Further study was conducted in 2012 by Kulkantrakon K et al. and
reported the strong association between HLA-B*15:02 allele and CBZ-induced SJS/TEN. In
2013, two studies assessed the cost-effectiveness of HLA-B*15:02 allele screening in Thailand
and concluded that pre-emptive screening of HLA-B*15:02 allele was cost effective before
prescribing CBZ after calculating all other associated costs. These findings expedite the
health policy maker of Thailand to take initiatives for starting PGx testing of HLA-B*15:02
allele prior to CBZ therapy, and therefore, it was commenced from the 1 October 2013 as
part of the standard care in Thailand to prevent CBZ-induced SJS/TEN [165].

Later, based on the robust evidence of the association of HLA-B*15:02 with CBZ-
induced SJS/TEN from some other prospective studies, Epilepsy Society of Thailand
published national guideline in 2017 for the CBZ therapy. At the same time, CPIC also
published PGx-based dosing guidelines for CBZ inheriting HLA genetic polymorphisms.
A recent study lead by Sukasem C et al. 2018 reported a strong association between
HLA-B*15:02 with CBZ-induced SJS/TEN/MPE [105]. Later in 2018, the universal health
coverage operated by the National Health Security Office (NHSO) has declared the cov-
erage for HLA-B*15:02 genetic screening with a reimbursement of THB 28 per person in
Thailand [169]. It takes almost 10 years from CBZ research to develop public health policy
in Thailand. This approach may also be applicable to other therapeutic drug classes, e.g.,
for allopurinol, dapsone and cotrimoxazole etc.

14.2.2. Allopurinol

Strong association of HLA-B*58:01 allele and allopurinol induced SJS, TEN or DRESS
has been reported in multiple studies conducted in Thailand [139,142,170]. A cost-effective
analysis undertaken by Saokaew S et al. in 2014 revealed that pre-emptive genetic test-
ing of HLA-B*58:01 allele before administering allopurinol was highly cost-effective in
Thailand [162]. It is worth mentioning that CPIC released PGx-based dosing guidelines
of allopurinol in 2013 based on strong associations of HLA-B*58:01 and allopurinol in-
duced SCARs in different ethnic groups [171]. Following the robust evidence and clinical
guidelines, the screening of HLA-B*58:01 allele before allopurinol prescription is expected
to be included into Thailand’s public health policy very soon. In Thailand, already the
reimbursement for the HLA-B*58:01 genetic test in susceptible risk patients expected to take
allopurinol in future has been included within the universal health coverage in 2021 [117].

14.2.3. Abacavir

Abacavir directed hypersensitivity reactions may usually occur in ~2–9% of patients
within the first six weeks of treatment [172]. Mallal et al. 2002 first reported the evidence
for the association of HLA-B*5701 allele and the risk of abacavir hypersensitivity reactions
in Western Australian HIV patients [173]. This association has been reported in several
other ethnic groups and concluded HLA-B*5701 as strong risk factor for abacavir induced
hypersensitivity reactions [94,174–177]. Meanwhile, the CPIC guideline published in 2012,
recommended not to use abacavir in those patients who are positive of HLA-B*57:01 allele
and also suggested HLA-B*57:01 screening before administering abacavir and the guideline
was updated in 2014 [178]. Thailand national guidelines on HIV/AIDS treatment and pre-
vention that was originally published in 2017 but has updated in 2020, has recommended
to HLA-B*57:01 screening in these patients before initiating abacavir therapy. Appropriate
intervention including cost-effectiveness and HLA-B*57:01 screening may eliminate aba-
cavir hypersensitivity reactions and thus PGx of abacavir may be efficiently implemented
globally in HIV/AIDS clinical practices [179,180].



Pharmaceuticals 2021, 14, 1077 21 of 34

14.2.4. Cotrimoxazole

A multicenter case-control study collecting data from Taiwan, Thailand, and Malaysia
showed a strong association between HLA-B*13:01 allele with co-trimoxazole induced SCARs
(OR: 8.7, 95% CI 5.7–13.4; p = 7.2 × 10−21) driven from SJS/TEN(OR: 2.71, 95% CI 3–5.4;
p = 0.006) and DRESS (OR: 45, 95% CI 18.7–134; p = 1.1 × 10−26). After meta-analysis of data
from Taiwan, Thailand and Malaysia and phenotype stratification indicated a strong asso-
ciation between HLA-B*13:01 allele and co-trimoxazole induced DRESS (OR: 40.1, 95% CI
19.54–82.32; p < 0.00001 [181]. Another case-control study conducted only in Thai patients
lead by Sukasem C et al. 2020 demonstrated that genetic association of cotrimoxazole
driven SCARs was phenotype-specific in which HLA-B*15:02 and HLA-C*08:01 alleles were
significantly associated with cotrimoxazole induced SJS/TEN only. In contrast, the HLA-
B*13:01 allele was significantly associated with co-trimoxazole induced DRESS only but
not the SJS/TEN [182]. The association of HLA-B*15:02 allele with cotrimoxazole induced
SJS/TEN has been replicated in another study conducted in Thailand [183]. However,
phenotype specific biomarkers as identified in Sukasem C et al. 2020 study for cotrimoxa-
zole warrant further quantification in other parts of Southeast Asia for incorporation into
clinical practice and making local prescribing guidelines.

14.2.5. Dapsone

A very recent study identified a strong association of HLA-B*13:01 allele with dapsone-
induced SCARs O (OR: 39.0, 95% CI 7.67–198.21; p = 5.3447 × 10−7) SJS/TEN (OR: 36.0, 95%
CI 3.19–405.89; p = 2.1657×10−3 and DRESS (OR: 40.5, 95% CI 6.38–257.03, p = 1.0784 × 10−5

as compared to dapsone-tolerant controls in Thai non-leprosy patients [184]. These findings
are also supported by another study conducted in Thailand for non-leprosy patients [185].
Similar trends were also found with leprosy patients in other parts of Asia concluded that
HLA-B*13:01 allele was a strong predictor for dapsone induced SCARs including SJS/TEN
or DRESS [186–189]. However, such genetic associations were not identified in European,
Caucasian, American, African, or Oceanic population indicating that HLA-B*13:01 allele
associated dapsone induced SCARs were only prevalent in Asian population especially in
China and Southeast Asia. This may be partly because either low frequency of this allele in
these population (European, Caucasian, American, African or Oceanic) or may be due to
not undertaking any clinical studies in these ethnic regions [188].

As strong association of HLA-B*13:01 allele with dapsone induced SCARs has been
well-established in Asian population especially in Chinese and Southeast Asian population.
Genetic screening of HLA-B*1301 in these population is urgently needed before dapsone
therapy to optimize patient’s safety. Additionally, the genetic expertise and policy makers
of these regions should focus on to create national prescribing guidelines based on the
robust evidence to incorporate this into routine clinical practice.

14.3. Cost-Effective Analysis

Cost-effectivity of PGx-directed treatment should be assessed before applying in
clinical practice. When the routine genetic screening of pharmacogene is found to be
cost-effective with the prescription drugs affected by that pharmacogene, health insurance
companies are likely to influenced to reimburse routine PGx testing [190]. With the advent
of cutting-edge genomic technology such as NGS and DNA microarray, the cost of genetic
analysis has reduced substantially now a days and is expediting the wider acceptance
of PM at the very few cost [191]. In Thailand, cost-effective analysis has undertaken for
CBZ and allopurinol and found that pre-emptive screening of HLA was cost-effective
before prescribing either CBZ or allopurinol [162,192,193]. These findings are facilitating
the translation of CBZ/allopurinol PGx into the development of national drug policy and
implementation in clinical practices in Thailand.
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14.4. Pharmacogenomics Laboratory Distribution and Local Accessibility

For ensuring high-quality genetic testing, equipment of the PGx laboratories must
be high standard with international certification and staffs of these laboratories must be
highly trained and qualified [194]. Patients or doctors should have easy access to the
PGx laboratory for ordering PGx test. Workflow at the PGx laboratory should be smooth
and efficient in genotyping and transferring the results to the patients or doctors [117].
Currently, there are 19 PGx laboratories functional in Thailand, however, PGx laboratory at
Ramathibodi Hospital and Siriraj Hospital in the Mahidol University, King Chulalongkorn
Memorial Hospital in the Chulalongkorn University, Songklanagarind Hospital in the
Prince of Songkla University and Srinagarind Hospital in the Khon Kaen University
are notables. Government of Thailand should take adequate measures to confirm the
establishment of large number of PGx laboratories throughout the country to ensure easy
accessibility of PGx laboratories to everyone with affordable cost for wider uptake of
genetic screening at the door corner.

14.5. Workflow

A systematic workflow as shown in Figure 5 is needed to implement PM efficiently in
clinical service through multidisciplinary team. The PGx testing could be implemented
through either pre-emptive or reactive approach. Doctors are alerted through a PGx alert
software to see the patient’s PGx test report before prescribing medications in a reactive
PGx testing approach. In contrast, in pre-emptive approach, patients could show the
PGx test report at the first visit to doctor and doctor could then prescribe medications
accordingly. Pre-emptive PGx testing approach is more useful and favorable because test
reports are readily available to doctors and may expedite the entire treatment process for
optimizing safety or efficacy of drugs. For successful integration of PM in daily clinical
practice, following factors should take into considerations.
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14.6. PPM CARD

The PPM card is a pharmacogenomics identity card (PGx ID) cardfrom Division of
Pharmacogenomics and Personalized Medicine (PPM), Department of Pathology, Faculty
of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. PPM card is
a purple rectangle and wallet size card conferred to each patient having unique PGx test
results in it which can carry by the patients to show their doctors anytime. Dr. Chonlaphat
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Sukasem first invented this low-tech plastic card at Bangkok’s Ramathibodi Hospital in
2011 and presented in front of the Global Leaders in Genomic Medicine Summit organized
by the National Human Genome Research Institute (NHGRI) and National Institute of
Health (NIH), USA in 2014. The scientists attended from over 20 countries in this multina-
tional genomic medicine summit much appreciated this invention and were interested to
implement this PGx ID card approach in the resource-rich countries that were discussed
further extensively in the follow up meeting held in 2015 at NHGRI/NIH. The PGx ID card
is a simple, rapid, and cost-effective technique which can accelerate the PM implementation
in routine care setting [169]. Currently, the modified version of this simple PGx card is
under-construction, in which a QR barcode (Figure 6) will be added to increase the security
and confidentiality of the patient’s genetic information.
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14.7. Multidisciplinary Team

The successful adoption of PGx in routine clinical care warranted a multidisciplinary
approach where doctors, pharmacists, pathologists, medical technologists and medical
informatics will be working as a team for the implementation and delivery of PGx results.
Most importantly, the interaction and perception between doctors and pharmacist is key
to the successful implementation of PGx in clinical settings. Doctors should be positive
and reasonably receptive to the recommendations made by the pharmacists to ensure the
appropriate medication provided to the patients based on the PGx test results. Doctors take
final clinical decision based on recommendations made by pharmacist. Pharmacists should
inform and assist doctors and patients in the use and interpretation of PGx information
provided in the results [117,195]. Pathologists are usually involved in the management
of PGx lab including taking and preparing samples for PGx test. Medical technologists
alternatively called pharmacogenetic specialist perform lab experiment and prepare PGx
test results. Medical informatics usually handle computer software and generate PGx alert
based on test results.

14.8. Electronic Health Record

Insertion of evidence based PGx information into electronic health record (EHR) soft-
ware is a crucial step to integrate the PGx alert into clinical decision support (CDS), system.
The CDS system having PGx information could be used to deliver either synchronous
or asynchronous interventions. In synchronous interventions, pop-up alert will appear
at the time of prescribing medications advising the clinician to order a PGx screening
test based on specific PGx evidence of a particular drug. In contrast, in asynchronous
interventions, clinicians are notified when new PGx test results are available through either
inbox message or e-mail so that they could alter or adjust the dose for the achievement
of PM accordingly [196,197]. Although some countries preceded this approach, however,
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in Thailand, currently there is no PGx alert system integrated into the EHR. There may
have serious clinical manifestations for not integrating PGx alert into the EHR system. For
example, recently in Thailand, an inpatient positive for HLA-B*15:02 allele was prescribed
phenytoin but was later prescribed CBZ in the follow-up period due to lack of PGx alert
system in EHR and the patient was finally died because of CBZ-induced TEN [117].

14.9. Counseling

Clinical pharmacogeneticians or pharmacists obtained training in PGx may provide
pre or post PGx test counseling to the patients through face-to-face counseling, telephone
or e-mail. The PGx counselors should provide education to the patients explaining the
necessities of genotyping to facilitate CDS system. Counselors should also discuss with
the patients about PGx test findings and therapeutic recommendations to make them
comfortable about it [117,198].

14.10. Knowledge and Education

Pharmacists and doctors must take complementary roles in interpreting and imple-
menting PGx test results in routine clinical practice [199,200]. Although many pharmacists
currently have limited knowledge and understanding of PGx in general and in particular
for delivering PGx test throughout the world, however, pharmacists are well-suited to
offer this newly evolving service in the clinic/hospital. By supplementing their existing
knowledge and expertise with available specialized training in PGx, pharmacists may
provide essential support to doctors and other clinicians for making PGx testing services
effective in daily clinical practice [201–205]. In Thailand, PGx knowledge is enhancing by
the introduction of different PGx certificate program to healthcare professionals through
the Pharmacy Council of Thailand (PCT) [206]. For example, three levels of pharmacists
are proposed by the PCT in which Level 1 pharmacist will complete a core competency
by one week training, Level 2 pharmacist will operate clinical pharmacogenomics after
taking four months training and finally Level 3 pharmacist will be the clinical pharma-
cogenomics specialist after completing four years learning and training. In addition, the
PCT has launched four months program called ‘training curriculum for certificate of pro-
ficiency in pharmacogenomics and precision medicine’ to increase expertise of PGx in
the country. These initiatives must be integrated into the standard curriculum of medical
disciplines and continuing medical education (CME) across Thailand for increasing PGx
knowledge and confidence of the doctors for successful implementation of PGx in clinical
care settings [117,207].

15. Expert Opinion

As there are well-established evidence for the associations of some HLA variants with
drug induced SCARs in Thailand, therefore, it is high time for the implementation of HLA
PGx testing in routine clinical practice throughout the country. This can be implemented
either pre-emptively or reactively. Pre-emptive HLA PGx testing could prevent SJS/TEN
substantially whereas reactive approach could facilitate the selection of right drug with
right dose in right patients and may also reduce SJS/TEN significantly. As these approaches
are currently functional in some parts of Thailand, the incidence of SJS/TEN has decreased
dramatically since the introduction of the PGx study. However, it is highly suggested to
consider the following points carefully in order to effective adherence of HLA testing in
clinical practice.

(A) Introduce appropriate HLA test such as screening of family members for risk genes of
CBZ, e.g., HLA-B75 serotype, i.e., HLA-B*15:02, HLA-B*15:08, HLA-B*15:11, HLA-B*15:21.

(B) Introduce relevant HLA test for all population in the settings. For example, HLA-
B*15:02 test only for Han Chinese, Thai, Indian, Malaysian and Singaporean popu-
lation. In contrast, HLA-A*31:01 test only for Caucasian, European, Japanese and
Korean population.
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(C) Prepare alternative drugs for those patients who may be at HLA associated risk of
SCARs and incorporated these into the local prescribing guidelines.

(D) Caution should be taken for interpreting and reporting PGx test results, as some
biomarkers are phenotype specific while others are universal markers as discussed in
this review.

Thailand is advancing PGx research and is now working collaboratively within the
country and along with some other parts of Southeast Asia to eradicate SJS/TEN com-
pletely and the associated morbidity and mortality from the country through generation of
evidence-based prescribing guidelines and policy making. Thailand should now focus on
ethical, legal and social issues (ELSI) more broadly, quality and cost-effectiveness of PGx
testing and finally PGx education of health professionals to ensure effective and successful
implementation of HLA PGx universally into clinical practice.

16. Conclusions

Associations of HLA genetic variants with drug induced SCARs have been extensively
studied especially in Southeast Asian populations. The associations of different HLA
alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive
for clinical considerations. Prescribing guidelines generated by different national and
international working groups for translation of HLA pharmacogenetics into clinical practice
are underway and functional in many countries including Thailand. Cutting edge genomic
technologies may accelerate wider adoption of HLA screening in routine clinical settings.
There are great opportunities and several challenges as well for effective implementation
of HLA genotyping globally in routine clinical practice for the prevention of drug induced
SCARs substantially, enforcing precision medicine initiatives.
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