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Diseases by protozoan pathogens pose a significant public health concern, particu-
larly in tropical and subtropical countries, where these are responsible for significant 
morbidity and mortality. Protozoan pathogens tend to establish chronic infections 
underscoring their competence at subversion of host immune processes, an important 
component of disease pathogenesis and of their virulence. Modulation of cytokine and 
chemokine levels, their crosstalks and downstream signaling pathways, and thereby 
influencing recruitment and activation of immune cells is crucial to immune evasion and 
subversion. Many protozoans are now known to secrete effector molecules that actively 
modulate host immune transcriptome and bring about alterations in host epigenome to 
alter cytokine levels and signaling. The complexity of multi-dimensional events during 
interaction of hosts and protozoan parasites ranges from microscopic molecular levels 
to macroscopic ecological and epidemiological levels that includes disrupting metabolic 
pathways, cell cycle (Toxoplasma and Theileria sp.), respiratory burst, and antigen pre-
sentation (Leishmania spp.) to manipulation of signaling hubs. This requires an integrative 
systems biology approach to combine the knowledge from all these levels to identify the 
complex mechanisms of protozoan evolution via immune escape during host–parasite 
coevolution. Considering the diversity of protozoan parasites, in this review, we have 
focused on Leishmania and Plasmodium infections. Along with the biological under-
standing, we further elucidate the current efforts in generating, integrating, and modeling 
of multi-dimensional data to explain the modulation of cytokine networks by these two 
protozoan parasites to achieve their persistence in host via immune escape during 
host–parasite coevolution.

Keywords: cytokine networks, manipulation, Plasmodium, Leishmania, inflammation, signalling hubs, cross 
regulation, system biology
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inTRODUCTiOn

Parasitic protozoa are responsible for some of the major diseases 
of humans affecting several million people each year resulting 
in significant morbidity and mortality and loss of economic 
activity. There have been some gains in reducing the incidence 
of these diseases owing to better intervention strategies, but in 
absence of effective vaccines, diseases like malaria, leishmaniasis, 
trypanosomiasis still pose a major public health problem. These 
protozoans typically establish chronic infections validating their 
success in evasion and manipulation of host defense and of meta-
bolic processes for their survival, proliferation, and transmission. 
Many of these pathogenic protozoa have adapted to intracellular 
habitat as seen in infections by Plasmodium spp., Leishmania 
spp., and others. The intracellular niche makes them vulnerable 
to lysosomal enzymes, reactive oxygen intermediates, and detec-
tion by cytosolic sensors of infection, but also offers some protec-
tion from adaptive immunity (1). This dynamic host–pathogen 
interaction, leads to the activation of a series of intracellular and 
intercellular biochemical signaling processes leading to synthesis 
of diffusible effector molecules that includes cytokines and reac-
tive oxygen species. “The earliest stages of infection are a parasite’s 
first opportunity to establish itself within its host and conversely, 
it is also the host’s chance to mount a rapid and effective response 
to clear, or at least control the infection” (2). Recent studies 
demonstrate that pathogens including protozoa modulate the 
host cell environment by manipulating the host transcriptome 
by epigenetic modifications besides targeting the major signaling 
hubs of metabolic, immune, and cell cycle processes to promote 
their growth, multiplication and survival (3–9). Many protozoans 
secrete effector molecules that actively modulate host immune 
transcriptome to alter cytokine levels and signaling either to 
escape immune processes as in liver stages of P. falciparum or to 
drive their growth as seen in the blood stages of this pathogen.

Considering the diversity of protozoan pathogenesis, this 
review will focus on manipulation and hijacking of cytokine 
networks by Leishmania and Plasmodium spp. for their survival 
in human host. We will highlight few recently published repre-
sentative omics and systems biology based studies on Leishmania 
and Plasmodium parasites, toward understanding modulation of 
cytokine and chemokine networks in the host by the parasite to 
achieve their persistence in host via immune escape.

CYTOKineS AnD CYTOKine 
ReGULATiOn

Cytokines are small molecules of the immune system, synthesized 
by various cell types that by virtue of binding to their receptors 
present on a multitude of cells mediate immune cell activation, 
differentiation, and cross talk to maintain immune homeostasis 
(10, 11). Synthesis and regulation of cytokine expression depends 
on the type of stimulus, cell type, and its state of activation 
(12–14). Expression of cytokine genes is also regulated by epi-
genetic modifications that include DNA methylation, histone 
modifications, and higher order chromatin interactions (15, 16)  
and posttranscriptional regulation by micro RNA-mediated 

mechanisms (16–19). Differentiation of immune cells as in T cell 
subpopulations and macrophage phenotypes is determined and 
regulated by cytokine environment (4, 16, 20, 21) and epigenetic 
modifications at cytokine gene loci (22, 23). Cytokine crosstalk 
between IFNα/β and TNF-α was noted to be at level of chroma-
tin wherein IFNs in addition to regulating interferon signaling 
genes, also potentiated the TNF genes (4). Similarly, emerging 
data suggest extensive crosstalk between NLR family proteins 
of inflammation complex for IL-1β and IL-18 secretion and 
other cytokines integrated signalosome facilitating integration 
of diverse pathways for optimal immune response (24). H3K27, 
methyltransferase enhancer of zeste homolog 1 is reported to 
promote TLR-triggered inflammatory cytokine production by 
suppressing the TLR negative regulator toll-interacting protein, 
thereby contributing to the full activation of the innate immune 
response against invading pathogens (25).

CYTOKine SiGnALinG MAniPULATiOn 
BY PROTOZOAn PATHOGenS

Intracellular protozoa modulate cytokine gene expression and 
signaling by some common themes that include targeting of 
transcription factors (15, 23) phosphorylation status of signal-
ing molecules like STATs, immune check point molecules like 
CTLA-4 and PD-1 to drive regulatory pathways (26) as well as 
kinases (5, 6, 27). The pathways usually targeted by pathogens 
include NF-κB, cell cycle, interferons, MAP Kinase JAK–STAT 
and pathways mediated by TLR and NLR receptors because of 
their wide range of functionality and core association with the 
host genome (28–30).

Toxoplasma spp. secrete dense granular protein (GRA) and 
Rhoptry proteins that activate host kinases and possess kinase 
activity, respectively, into host cell, which by phosphorylating 
STAT3 and STAT6, nuclear translocation of NF-κB or activation 
status of MAPK pathways modulate the levels of IL-4, IL-6, IL-12, 
and IFN-g (31–35). “T. gondii inhibitor of STAT1 transcriptional 
is another secretory protein that recruits the host nucleosome 
remodeling and deaceytlase complex to block STAT1-mediated 
gene transcription” (36). Trypanasoma cruzi modulates NF-κB 
pathway by TLR and NLR mediated signaling for favorable 
cytokine environment (37–39) However, the protozoa is also 
reported to manipulate TGF β pathway (40) and also induces 
the production of IL-10 (40, 41) and arginase for its survival and 
replication.

PLASMODIUM AnD HOST 
inFLAMMATORY ReSPOnSe

Malaria, caused by Plasmodium spp. of Apicomplexa phylum, 
has been the strongest evolutionary selective force in recent 
human history and has shaped human genome (42) and is one 
of the major causes of mortality of children below 5 years of age 
particularly in WHO African region, taking the life of a child 
every 2 min (43). The life cycle of the parasite is complex and 
completed in multiple stages in the human and in the mosquito 
(female Anopheles spp.) hosts with stage specific gene and pro-
tein signatures (44). Briefly, sporozoites inoculated into human 
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host by bite of infected mosquito travel to liver to mature into 
merozoites that infect RBCs to continue asexual cycle and also 
develop into gametocytes which, after fertilization in mosquito 
gut, develop and mature into sporozoites.

During the liver stages of the parasite, the host immune 
response tends to be tolerogenic and circumsporozoite protein was 
seen to inhibit NADPH oxidase and IL-12 and suppressed IL-6 
and TNF-α secretion with simultaneous increase of IL-10 levels, 
allowing parasite to escape detection by immune system (45, 46).

Inflammation is recognized as pivotal feature of immune 
response to blood stages of Plasmodium infection (47). Notably, 
clinical manifestations of the disease are related to erythrocytic 
stage of infection. An early and finely balanced inflammatory 
response with increase in levels of pro-inflammatory IL-12, 
IFN-γ, TNF-α, IL-1β, and IL-6 and of anti-inflammatory IL-10 
and TGF-β is essential for resolution of parasitemia and of dis-
ease (48–52). However, pathological activation of exaggerated 
levels of the very same pro-inflammatory cytokines (cytokine 
storm) concomitant with lower levels of regulatory mechanisms 
has been attributed to severe and cerebral malaria syndromes  
(14, 53–57). A recent study examined the levels of different 
biomarkers of immune response and found high concentrations 
of sCDI63 and Fractalkine, which are involved in immune 
response downregulation and modulation of anti-inflammatory 
responses in asymptomatic malaria (58). These authors also 
reported high levels of Neopterin, which is related to increased 
cell-mediated immune responses and macrophage activation in 
severe and cerebral malaria patients, indicating an overall sus-
tained state of inflammation supporting the hypothesis of intense 
and prolonged inflammatory response in severe and in cerebral 
malaria patients.

The question then arises is that why and how would the para-
site drive intense inflammatory response that has the potential 
to be fatal which could limit parasite transmission and hence 
not be in interest of the pathogen? The answer appears to lie in  
(a) enhanced expression of adhesion molecules on endothelial 
cells by pro-inflammatory cytokines (IFNγ and TNFα) (59) 
and (b) by requirement for endothelial adhesion mediated by 
P. falciparum membrane protein 1 (PfEMP1) with CD36 and 
endothelial protein C receptor (EPCR) (60, 61). From the parasite 
view, endothelial sequestration is essential to escape clearance 
in spleen and to facilitate falciparum merozoite maturation. The 
highly diverse PfEMP1 proteins encoded by parasite var genes 
contain a Duffy-binding like and cysteine-rich interdomain 
region (CIDR) domains. Most CIDRα1 domains bind to EPCR 
and CIDRα2–6 bind CD36 (60, 61). Notably, interaction of EPCR 
with its ligand the activated protein C (APC) has a role in anti-
inflammatory, coagulation homeostasis, and endothelial barrier 
protection functions (62) and its blockade of these functions by 
PfEMP1–EPCR interaction that is postulated to contribute to 
cerebral malaria pathology (59, 61). Interestingly, Smith et  al. 
(61) found increased association of severe malaria with EPCR 
binding CIDRα1domain containing isolates supporting the 
contention. Interactions with CD36 are also reported to inhibit 
IL-12 synthesis and suppressing dendritic cell (DC) maturation 
and T cell activation.

It is, therefore, not unimaginable that parasite manipulates 
NF-κB and Type 1 interferon pathway to drive inflammation. 

Plasmodium-derived PAMPs that include GPI anchors, CpG 
motifs, AT-rich motifs, and haemazoin are sensed by PRRs of 
host that include TLRs, NLRs, and AIM2 on cells of monocyte/
macrophage lineage and on DCs (61, 63–65). These ligand–
receptor interactions initiate MyD88 and STING-IRF3 mediated 
downstream signaling leading to activation of NF-κB and IRF3 
pathways and synthesis of pro-inflammatory cytokines and 
interferon α/β (55, 65–68). It is the exaggerated activation of these 
pathways “mediated by IFN-γ pro-inflammatory priming with 
extreme levels of pro-inflammatory mediators” with concomitant 
loss of regulatory cytokines that drives malaria pathogenesis  
(46, 57, 68). It has also been proposed that in addition to driving 
inflammation, P. falciparum by downregulating GATA3 expres-
sion suppresses IL-10 and SOCS3 that are necessary to control 
inflammation, possibly by exploiting the IFNα/β pathway as 
summarized in Figure 1.

LEISHMANIA: T CeLL DiFFeRenTiATiOn 
AnD CROSS ReGULATiOn OF CYTOKine 
SiGnALinG

Leishmaniasis caused by Leishmania spp. is a public health 
problem with 1.3 million reported Leishmaniasis cases world-
wide which is intensified by availability of few effective drugs 
(70) and vaccine (71, 72). Being an intracellular parasite, it 
needs to overcome host-resistance mechanisms and exploit host 
environment for survival. From the parasite context, metabolism 
of Leishmania possesses a unique metabolic organization that 
can re-route metabolites, the uptake of which is constrained in 
different host environments toward synthesis of specific biomass 
metabolites; thereby providing novel mechanisms for metabolic 
adaptations (73, 74). From the host context, the contribution 
of specific virulence factors in immune suppression or the 
inability of the host to generate a sufficient immune response 
against the parasite, which promotes infection. Survival strategy 
of Leishmania is to modulate the signaling pathways of the 
macrophages after entering the phagolysosome. Depending on 
the type of infection and the parasite burden, either Th-1 heal-
ing or the Th-2 non-healing immune responses are generated, 
but detailed mechanism is poorly explored. This can be largely 
understood with respect to the interaction of parasite molecules 
with the host signaling pathways to suppress host immunity 
against infection (71).

During invasion, the surface molecules of Leishmania 
interact with the toll-like-receptor proteins present on the 
macrophages membrane (75). The activation of the TLRs trig-
gers the downstream signaling pathways such as the RAS–RAF-
mediated MAPK pathway, canonical and non-canonical NF-κB 
pathway, JAK–STAT pathway, PI3K–PLC Gamma pathway, and 
the JNK pathway (76). Subsequently several transcription fac-
tors, such as ERK1/2, NF-κB, NFAT, AP1, STAT3, are activated 
that initiate the synthesis and secretion of several cytokines, 
growth factors, chemokines and antimicrobicidal molecules 
which are responsible for the host immune responses during 
the infection (77).

However, during chronic infection (Figure 2), the antigenic 
molecules of the Leishmania parasite activate the phosphatase 
proteins in the macrophage, e.g., SHP-1 and PTP1B, which leads 
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FiGURe 2 | Immuno-modulation by Leishmania parasite: Leishmania antigens interfere with the signaling cascade of the macrophage and promote the Th-2 
non-healing response that helps in the survival of the parasite inside the host.

FiGURe 1 | A hypothetical model summarizing the probable mechanisms of severe inflammation in malaria. Parasite molecules like Haemazoin, Pf AT-rich DNA 
recruited by TLR and TLR independent (STING) pathways (63, 69). High load of Pf AT rich DNA would lead to increased levels of TRAF3 and of IFN-α. And IFN-α, in 
turn, suppresses GATA3 expression in Th2 cells resulting in low levels of IL-10 and hence down regulated SOCS3 (68). In addition, low levels of IL-2 and T-bet fail to 
mediate switch from IFN-γ+/IL-10− to IFN-γ+/IL-10+ Th1 cells that requires T-bet and IL-2 levels, also explain low levels of IL-10. Finally, downregulated SOCS3, 
which is known to mediate the anti-inflammatory functions of IL-10, fails to regulate an exaggerated proinflammatory response. Another contributory role to severe 
inflammation in malaria is the high prevalence of IL-8-251T/A, which increases IL-8 expression for enhanced recruitment and activation of inflammatory cells 
neutrophils resulting in increased activation of NF-κB via IL-1β-mediated pathway.

4

Mahanta et al. Protozoa and Cytokine Networks

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 296

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Mahanta et al. Protozoa and Cytokine Networks

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 296

to the dephosphorylation and deactivation of selected signal-
ing pathways (78). This leads to downregulation of expression 
of iNOS and nitric oxide in the infected macrophages, thereby 
compromising microbicidal functions of the cell and creating 
an immune-suppressed condition, which is favorable for the 
continued survival of the pathogen inside APC. Simultaneously, 
the production of the cytokines, such as IL-12 and TNF-α, gets 
severely reduced. Such changes in the cytokine expression pat-
tern of the antigen-presenting cells leads to the alteration of the 
phenotypic responses of the T-cells that now start showing a bias 
toward the non-healing Th-2 immune response that is character-
ized by an increased production of IL-4, IL-10, IL-13, and TGF-β 
cytokines (79), and the suppression of IFN-γ that regulates the 
healing Th-1 response (71). The transcription factors T-bet and 
GATA3 play a pivotal role in the regulation of the Th-1/Th-2 ratio 
during the infection (80). Leishmania also inhibits the ability of 
the host cell for antigen presentation to other immune cells, by 
repressing the MHC class II gene expression (81) and by modu-
lating the interaction of the co-stimulatory molecules B7-1/CD28 
(82) and CD40/CD40L (83).

The difference in the antigenic challenge posed to the host 
gives rise to differences in expression of the macrophage 
proteins, as seen in visceral versus the cutaneous infections 
(84). The difference in macrophage protein expression profile, 
as exemplified by increased production of COX2 and PGE2 
production in case of L. donovani infection (as opposed to  
L. major) (85) indicates different Leishmania species selectively 
activate or inhibits different host pathways due to differences 
in the antigenic challenge. Also, it has been observed in a study 
that L. donovani, which is known to cause visceral leishmaniasis, 
may in rare cases give rise to cutaneous leishmaniasis (86). This 
behavior of L. donovani infection may be attributed to host’s 
resistance to the disease which restricts the spread of the infec-
tion to the visceral organs and keeps it localized to cutaneous 
regions (86).

The CD4+ CD25+ regulatory T cells also play a major role 
in regulating the persistence of the parasite L. major inside 
the host. Inhibition of the T-reg promoting cytokines such as 
IL-10 leads to the clearance of the pathogen from the host (87). 
However, during Leishmaniasis the low production of the IFN-
γ and IL-12 cytokines leads to the increased proliferation of 
the T-reg cells that leads to the re-activation of the Leishmania 
parasites inside the host (87).

SYSTeMS BiOLOGY BASeD inTeGRATive 
APPROACHeS FOR UnDeRSTAnDinG 
THe HOST–PARASiTe inTeRACTiOn AnD 
CO-evOLUTiOnARY PATTeRnS in 
PROTOZOAn DiSeASeS

During the interaction of hosts and protozoan parasites, both 
employ mutual selective pressures on each other, which may 
facilitate rapid reciprocal adaptation. Different stages of the 
parasite life cycle introduce another layer of complexity (88). 
Significant amount of molecular, omics, clinical, epidemiologi-
cal as well as ecological data has been generated at in vitro and 

in  vivo levels using various pathogens and respective diseases. 
Integrative analysis of such discretely generated and located data 
from the host and protozoan parasite variants, in laboratory 
as well as natural populations is the most essential necessity 
to identify the complex mechanisms of protozoan evolution 
via immune escape during host–parasite coevolution. Public 
resources such as EuPathDB (89), Pathogen–Host Interactions 
(90), ProtozoaDB (91), together with protozoan species-specific 
databases are tremendously useful to collect useful information 
for initiating systems based integrative analysis. The key steps 
in such integrative approach involves data generation/data col-
lection, data organization, data integration, integrative network 
construction, network analyses, and finally computer-based 
mathematical simulation and predictive modeling (92). As an 
example, using a reconstructed genome scale metabolic model 
of Leishmania infantum adaptations, (73) have identified the 
robustness of the parasite metabolic network against accidental 
errors and demonstrated the wide array of choices for the parasite 
to achieve optimal survival (73).

Recent advancement in RNA-Seq based techniques has 
facilitated the simultaneous sequencing of both host and parasite 
(including non-model parasites) transcriptomes (93). In a first 
of its kind RNA-seq experiment in control human neutrophils 
during priming with pro-inflammatory cytokines (TNF-α and 
GM-CSF), Wright et  al. have shown the rapid expression of a 
common set of transcripts for cytokines, chem okines, and cell 
surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1) 
(94). They have demonstrated the utility of this approach to define 
functional changes in neutrophils following cytokine exposure. 
During a mega scale analysis of 116 malaria patients and infecting 
P. falciparum parasite, Yamagishi et  al. have identified variable 
behaviors of the field malaria parasites, which were far more 
complex than those observed under laboratory conditions (95). 
Pittman et al. have generated a large scale T. gondii–host inter-
actome, using dual transcriptional profiling of mice and parasite 
during acute and chronic infection (96) to demonstrate the influ-
ence of parasite development on host gene transcription as well 
as the epigenetic influence of the host environment on parasite 
gene transcription. Various systems-wide studies on malaria 
parasites have reported posttranscriptional (97) and translational 
(98) control at various points of the parasite lifecycle. One of such 
controlling mechanism is translational delay, by which protein 
expression in parasite is actively suspended for expressed mRNA 
transcripts. It was shown in P. falciparum that by suppressing 
more than 30% of its genes, the parasite rapidly adapts to new 
environments within the host by remaining undetected to the 
host immune system and undergo developmental switching in 
order to survive (99).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

There is large apparent heterogeneity in offense strategies 
employed by the protozoan pathogen in human infections. In 
contrast to this, there appears to be a broad consensus on the 
major signaling hubs manipulated by the pathogens. It would 
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be worthwhile to dissect the host–pathogen interactions at 
cellular, molecular, and systems level to discriminate between 
infections that are virulent with potential for fatal outcomes 
from asymptomatic or uncomplicated infections with limited 
morbidity. It may be hypothesized that immuno regulatory 
mechanisms that confer disease tolerance are distinct from 
immune and metabolic responses to severe diseases and demand 
to be determined by large global studies employing different 
protozoan pathogen systems. However, despite the availability 
of huge amount of multi-dimensional data in host–protozoan 
interaction, functional characterization, and annotation of 
parasite genomes is severely limited by lack of both genetic 
tools and resources in protozoa. Given the size, heterogeneity 
and complexity of the host–parasite interaction data, develop-
ment of new computational tools and user-friendly methods for 
integrating heterogeneous “Big Data” will facilitate to fill up the 
missing links. This will be beneficial for better understanding of 
the evolutionary arm race between the host and the parasite, and 
finally for the efficient management and control of the protozoan 
diseases in humans.
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