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ABSTRACT: Gaussian process regression has recently been explored as an alternative
to standard surrogate models in molecular equilibrium geometry optimization. In
particular, the gradient-enhanced Kriging approach in association with internal
coordinates, restricted-variance optimization, and an efficient and fast estimate of
hyperparameters has demonstrated performance on par or better than standard
methods. In this report, we extend the approach to constrained optimizations and
transition states and benchmark it for a set of reactions. We compare the performance
of the newly developed method with the standard techniques in the location of
transition states and in constrained optimizations, both isolated and in the context of
reaction path computation. The results show that the method outperforms the current standard in efficiency as well as in robustness.

I. INTRODUCTION
The ability of ab initio methods to accurately and efficiently
predict molecular structures such as equilibrium structures and
transition states, or series of structures, as in reaction pathways,
is of fundamental importance as we use more and more
sophisticated computer hardware and theoretical methods
through computer simulations, to understand and categorize,
for example, chemical reactions, decay processes, or molecular
reorganization as an effect of exposure to electromagnetic
radiation−X-ray or optical. In this endeavor, efficient and
robust molecular geometry optimization methods are required
and of essence.
The standard optimization paradigm is a surrogate model

based on second-order Taylor expansion approximations
combined with step restriction,1−3 approximate Hessians,4

and Hessian-update methods.5−14 This standard surrogate
model has, however, several limitations. For example, the
model has almost no flexibility beyond a pure harmonic shape
of the energy hypersurface, i.e., it will never describe the parent
model correctly. The model only strictly interpolates correctly
for the last two data points and can only describe a single
stationary point. Recently an alternative surrogate model−the
Kriging model,15,16 in particular, the gradient-enhanced
Kriging (GEK)17−19 −has been proposed and explored by a
number of research groups for geometry optimizations of
equilibrium and transition state structures and explorations of
reactions paths.20−28 These studies have demonstrated the
potential of the Kriging procedure as a competitive alternative
to the standard. However, these studies have also shown that in
order to excel, as compared with commonly used algorithms, a
GEK-based method not only should be based on internal
coordinates27 but also be able to make use of the empirical and
practical knowledge accumulated through decades of use and
improvement of second-order methods. Raggi and co-work-

ers28 have recently demonstrated how the use of Hessian
model functions4 eliminated the required optimization through
likelihood maximization of the characteristic lengths−hyper-
parameters of the GEK model. Moreover, the same study
proposed a new type of optimization−restricted-variance
optimization (RVO)−in which the explicit variance of the
surrogate model is used in an efficient way as the optimization
explores the multidimensional energy functional. This, in
combination with the use internal coordinates29 that are
invariant to translations and rotations, demonstrated superior
convergence behavior for three different benchmark test suites
for the case of finding molecular equilibrium structures.
In this report, we will investigate the ability of RVO to

contribute to optimizations of transition states, minimum
energy paths−as experienced, for example, in photoinitiated
decay−or whole thermal reaction paths. A key ingredient in
these tasks is the ability to perform geometry optimizations
with geometrical constraints. Let us briefly set the stage by
summarizing the state of the art in association with constrained
molecular optimizations and transition state optimizations in
combination with Gaussian process regression (GPR)−as
Kriging is also known−methods. On the issue of transition
state (TS) optimizations, two investigations stick out. First,
Denzel and Kas̈tner explored the projected rational-function
optimization (P-RFO) of Baker30 in combination with the
GPR Hessian in optimizing TS structures.22 Starting structures
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were generated by the image dependent pair potential (IDPP)
of Smidstrup and co-workers,31 which employs only start and
final structures and does not include any energy calculations.
The IDPP is generated based on pairwise distances and
subsequently investigated by the nudged elastic band method
(NEB).32−36 Using the GPR technique developed for
equilibrium structure optimizations−Cartesian coordinates,
multilevel GPR, a universal characteristic length−Denzel and
Kas̈tner could demonstrate superior behavior (convergence
rate and robustness) as compared to those of conventional
methods. Second, Koistinen et al.26 explored GPR methods in
optimizing TS stuctures starting from a single structure using a
minimum mode following method, in which the so-called
dimer method37−40 generated the minimum modes. The
particular implementation of GPR, to support these
optimizations, used a covariance function based on inverted
interatomic distances, to which the authors attribute the
robustness and success of the implementation. For the case of
constrained optimization in combination with GPR, we would
like to mention four studies on the use of the nudged elastic
band method.20,24,25,41 In all studies, the use of GPR
significantly reduced the number of evaluations of the energy
and gradient of the parent model. It is also worth mentioning
that Koistinen and co-workers41 propose the use of the
variance to identify parts of the reaction path which might
need further improvement.
In the present study, the RVO method will be explored in

connection with TS and constrained optimizations. For the TS
optimization, we will explore the image RFO (I-RFO)
approach.42 We will, in particular, investigate the ability of
the GEK to produce reasonable Hessians, which will guide the
partition of the variable space into the subspace for
minimization and maximization, respectively. Moreover, we
emphasize the use of the restricted variance to make the
approach robust. For the constrained optimization, we will
combine RVO techniques with the restricted-step projected
constrained optimization (RS-PCO) method.43,44 This will, in
particular, be studied in connection with a) a conventional
constrained optimization where a minimum energy structure is
searched, subject to some arbitrary geometrical constraints, b)
a hierarchical TS finder initially using constraints to find the
quadratic region of the TS structure followed by an uphill-
trust-region approach14,45 to locate the stationary point,46,47

and c) a method for reaction path evaluation based on
sequential constrained optimizations.48 Performance will be
assessed by benchmark calculations in which the standard
surrogate model is contrasted against the GEK alternative. It is
our perceived notion that the inherent advantages of the GEK
surrogate model will manifest themselves by superior
optimization characteristics.
The rest of this report will be organized as follows. First, we

will present a theory section outlining GEK-supported RVO in
combination with standard methods for TS, constrained, and
reaction pathway optimization. This will be followed by a
description of the simulations, which will document perform-
ance characteristics and the computational details. Third, the
results will be presented and discussed. Finally, a summary and
conclusion section will end this report.

II. THEORY
The GEK-supported restricted-variance optimization is a
multilayer optimization method−alternated evaluations on
the expensive parent and the cheap surrogate model in a

computationally optimal way. Here the optimization on the
surrogate model, defined by a fixed number of sample points, is
usually explored to convergence−the microiterations. Sub-
sequently, the updated coordinate is evaluated on the parent
model and included to describe an updated surrogate model−
the macroiteration. Much of the success of the Kriging
approach is that the surrogate model to a large extent is very
accurate and that microiterations can be performed virtually
free of computational cost. This is an excellent recipe for
accelerated convergence.
Below, a brief presentation is given of the gradient-enhanced

Kriging surrogate model, the selection of the associated
characteristic lengths, and restricted-variance optimization as
implemented in our previous work.28 This approach is the
main engine behind the surrogate model that is used in this
study for TS structure optimizations and for performing
constrained geometry optimizations. The initial presentation
will be followed by brief reviews of the specific methods used
for the benchmark calculations. These presentations will pay
special attention to aspects which are relevant to the use of
GEK and RVO.
In what follows here, bold lower- and uppercase symbols

represent column vectors and matrices, respectively.
II.A. Gradient-Enhanced Kriging. The gradient-enhanced

Kriging method has been presented in detail elsewhere.17−19

Thus, we will here just briefly present the approach as
implemented and used in this study. This will be followed by a
short description of how the characteristic lengths of the GEK
are selected and how the variance estimate associated with
GEK is used in connection with step-restricted optimization.
Typically, ab initio simulations provide energies and

gradients as functions of the molecular structure. In this
respect, the most efficient surrogate models use all this
information; one such method is the gradient-enhanced
Kriging. In our implementation, we have used the so-called
direct approach in which the gradient information is used as
additional data to the energy values. This results in a surrogate
model which mathematically is expressed, for a system with K
dimensions and n sample points, as

∑ ∑ ∑μ* = + +
∂
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q q
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where μ is known as the trend function, and w and u are the
sets of weights associated with the energies and gradients,
respectively. The covariance function qv( )i contains the
correlation between the coordinates of the prediction point q
and the ith sample point.
The exact form of the covariance function is at the core of

the method. First we express the generalized distances, dij,
between sample points i and j of the GEK as

∑= =
−

=

i
k
jjjjj

y
{
zzzzzq qd d

q q

l
( , )ij i j

k

K
i k j k

k1

, ,
2

(2)

where K is the number of degrees of freedom of the molecular
system (K = 3N − 6 for a nonlinear system with N nuclei and
no external fields), and lk is a scale parameter that influences
the width of the covariance function−the characteristic
length−in the kth dimension. In our implementation, we
have used the Mateŕn-5/2 covariance function, given as
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a choice we share with other implementations due to the
characteristics of the function, being three times differentiable
with respect to qi,k and allowing an adequate modeling of
chemical systems.21,25

Once the covariance function is defined, the weights w and u
are obtained to ensure that the predicted energy and gradient
at the sample points exactly reproduces the sample data.
II.A.1. Selection of Characteristic Lengths. The character-

istic lengths, lk, are of fundamental importance to the
approach−failure or success is closely related to the selected
values of this parameter. One approach, selected by many, is to
tune them to maximize the likelihood of the surrogate model.49

This step is, however, a potential performance and time
bottleneck of the approachit could render the generation of
the surrogate model as expensive as the parent model it was
called in to replace. This is usually overcome by two
simplifications. First, rather than using individual lk values, a
single value is used. This is a decision that reduces the
parameter space in which the maximization is performed, at
the expense of the inherent potential of the method. Second,
the l value is not optimized on the fly but is rather selected
empirically by optimizing the overall performance using a large
test/training set of data.
We have, however, selected a different route. In this

approach, we view the inclusion of additional data points as
a process similar to the Hessian update associated with
standard quasi-Newton optimization methods. Thus, we select
the lk values such that the surrogate model reproduces our
initial approximation of the parent model through the
empirical Hessian information. In that sense, we first select
the coordinates that will define the GEK as those which
diagonalize the Hessian-model-function (HMF) Hessian.4

Second, we select the lk values from the analytic expression

μ
=

−
= { }
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E
H
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(4)

where lk is the characteristic length of coordinate k, Hkk is the
corresponding eigenvalue of the approximate Hessian (in the
HMF approach these are always positive), and qn is the latest,
or current, sample point. Moreover, to avoid too long
characteristic lengths, Hkk is set to be no smaller than a
threshold set to 0.025 Eh/[a0,rad].

2 This expression arises from
the curvature of a surrogate model built with a single sample
point, evaluated at the sample point, which for a Mateŕn-5/2
covariance function, eq 3, is μ − E l5( )/3 k1

2 for each k
coordinate, with E1 being the energy at the sample point.
This therefore guarantees that, when the GEK model is
constructed with a single sample point, the curvature at that
point will exactly match the one suggested by the HMF
Hessian. The inclusion of further samples plays a similar role to
that of the Hessian update. Thus, this selection of the lk values
will ensure a reasonable description of the local curvature of
the surrogate model, which will improve as more sample points
are included.
II.B. Restricted-Variance Optimization. Step size re-

strictions adapted to second-order optimization procedures
have been instrumental to efficient and robust optimization
procedures.1,50 The success of the restriction is that it should
tether the optimization to the part of the surrogate model for

which the approach is expected to be a good approximation−
the quadratic region. However, a simple measure of this has
escaped the quantum chemists, and ad hoc procedures and
equations have been used to dynamically select the so-called
trust radius during the optimization. For a GEK-based
surrogate model, there is, however, an explicit analytical
expression to measure the quality of the fit between the parent
and surrogate model. This estimated quality, as measured by
the expected variance, is expressed as51

μ μ
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where M is the covariance matrix between all the sample
points, y is the column vector of function values (energies and
gradients), and 1 is a column vector with elements equal to 1
where they correspond to energies in y and to 0 where they
correspond to gradients. In the equation, the first factor
accounts for the variance of the sample points, while the
second measures the distance of q to the sample points and
will give zero whenever =q qi. Assuming a Gaussian variance,
the actual energy can thus be estimated, with a 95%

confidence, to lie in the interval * ±q qE s( ) 1.96 ( )2 .
The restricted-variance optimization (RVO) method is

designed such that the optimization is restricted to the
subspace of the surrogate model for which the 95% confidence
interval is within the specified threshold, σRVO, i.e.,

σ≤qs1.96 ( )j
2

RVO (6)

If the variance restriction is invoked, the microiterations are
terminated, and a new macroiteration is executed.
In our implementation, we extensively use the restricted-step

rational-function optimization (RS-RFO)1 when exploring the
surrogate model. However, rather than to apply an ad hoc
geometrically defined step-restriction we will exclusively use
RVO.28

II.C. Transition State Optimization. Transition state
optimization is the search for a first-order saddle point on a
potential energy surface: it is a mixed minimization and
maximization problem−one maximizes the energy in the
subspace spanned by the reaction vector and minimizes the
energy in the complementary subspace. For the TS
optimization, we will explore the restricted-step image RFO
(RS-I-RFO) approach.42,52 The I-RFO method of Helgaker
uses the presumed reaction vector, t , and the corresponding
eigenvalue, ω, to modify the full Hessian and gradients if ω is
negative−the image function technique of Smith52

ω⇒ + | |H H tt2 T (7)

and

⇒ −g g g t t2( )T
(8)

such that the maximization effectively becomes a minimization
using the Hessian and gradient of the image function. The
subsequent minimizations are done jointly. While the use of an
analytic Hessian is optimal, an empirical Hessian in
combination with the MSP Hessian-update method12−14 or
other methods to predict the reaction vector can be sufficient.
The present study will explore the extent to which the Hessian
of the surrogate model, as its quality improves with an

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01163
J. Chem. Theory Comput. 2021, 17, 571−582

573

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01163?ref=pdf


increasing number of sample points, can be a realistic and
efficient substitute.
In the context of the RVO method, the RS-I-RFO is applied

to the microiterations, while the macroiterations are
unchanged; i.e., each macroiteration consists of building the
GEK surrogate model and searching for a stationary point on it
(a minimum with RS-RFO or a saddle point with RS-I-RFO).
II.D. Constrained Optimization. For the constrained

optimization, we will use the projected constrained optimiza-
tion method (PCO).43,44 Below, the PCO approach will be
outlined. This will be followed by two examples: first, on how
this technique can be used to identify regions close to a
transition state, and second, how to follow reaction paths in
which the energy decreases−as in a reaction path between two
minima through a TS or the preferred decay path of a molecule
raised to an excited state by the absorption of a quantum of
electromagnetic radiation.
II.D.1. Projected Constrained Optimization. The main

machinery is a standard Lagrange multiplier approach, that is,
the use of a Lagrangian function of the form

λ λ= +q q r qL E( , ) ( ) ( )T
(9)

where qE( ) is the energy, λ are the Lagrangian multipliers, and

r q( )−a column vector with the elements = −qr Q Q( ( ) )k k k
0

−are the equations of the constraints.
Here qQ ( )k is a constraint, a function of the coordinates,

and Q k
0 is the desired value, a constant, of that particular

function. At convergence =r q( ) 0, that is, the Lagrangian
function and the energy have the same value:

λ* * = *q qL E( , ) ( ). To find the optimal coordinates, *q , the
expression above is Taylor-expanded to second order around
the present coordinates, qn and λn
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Discarding third-order terms, we recast this equation to
(correct to second order)
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where we have defined an effective Hessian, λW q( , )n n , as
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This has to be used in an iterative way for finding the
optimal parameters. At convergence, we note that, since

=r q 0( ) , we have the condition

∇ Δ+ =r q Q q q 0( ) ( )qn n
T

(13)

where Δq is a column vector of coordinate displacements, and
the notation ∇ Qq indicates a matrix with the Qk derivatives−
with dimensions nq × nQ:

∇ =
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∂
q

q
Q
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q
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( )
q ik n
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This allows us to approximately define a unitary trans-
formation, =T T T( , )c m , of the coordinates into two
subspaces−one for the minimization (m) and one to fulfill
the constraints (c), with the associated vector y with
dimension of the numbers of constraints and the comple-
mentary vector x with dimension of the total number of
degrees of freedom minus the number of constraints,
respectively. That is,
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Δ
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The unitary matrix has two required properties

∇ =Q T 0q
T

m (16)

∇ ≠Q T 0q
T

c (17)

sufficient conditions for the definition of the matrix through a
Gram−Schmidt orthonormalization. With this on hand, we can
approximately separate the Lagrangian into one equation to
fulfill the constraints, namely,

Δ ∇= −y Q q T r q( ( ) ) ( )q n n
T

c
1

(18)

and the complementary equation for the minimization in a
reduced space, now completely expressed in terms of Δx and
λn.
In terms of an RVO implementation, we proceed as follows:

while the first step (computing Δy and Δqc) is performed
completely independent of the minimization, the latter
(computing Δx and Δqm) is performed in the presence of
the former displacement. The global variance restriction σRVO
is defined as in the standard RVO,28 but if Δqc were allowed to
use this whole variance, there would be no further room for
minimization. Therefore, we apply a reduced threshold for the
computation of Δqc, by multiplying σRVO by a factor that
depends on the maximum gradient of any of the constraints

σ σ=
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In addition, we note that the evaluation of the constraints and
the associated gradients usually requires the Cartesian
coordinates of the system. While in an unconstrained RVO
the microiterations can be carried out completely in internal
coordinates; the incorporation of the constraints means that
the internal coordinates must be converted to Cartesian at
every microiteration. This has the benefit that inconsistencies
in the internal coordinates (e.g., negative bond lengths) can be
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detected and the microiterations can be interrupted. As for the
unconstrained RVO, microiterations are also interrupted if the
maximum allowed variance is reached, or if a stationary point is
found on the surrogate model. In either case, a new sample
point is then evaluated at the level of the parent model.
II.D.2. Transition State Finding Procedure. The transition

state optimization method described in section IIC is not
guaranteed to converge or to converge to the desired saddle
point. In fact, it will typically only converge to a saddle point
when starting within the region where the PES has the right
curvature−one and only one negative Hessian eigenvalue.
Thus, for effectively locating transition states, it is crucial to be
able to guide the search toward this region. Several methods
exist for this task that require more or less input from the user.
In this investigation, we will use the option that in
OpenMolcas is activated by using the “FindTS” keyword,
and which we will therefore call FindTS. This is an
opportunistic approach relying heavily on the computational
chemist’s ability to guess the main feature of the transition
state structure. The initial part of the procedure is a
constrained optimization using constraints the user believes
to be important coordinates of the transition state structure.
The purpose of this initial step is to lead the optimization on
the PES such that either the Hessian-update method or the
GEK picks up a negative curvature−something which some-
times fails. Once a negative curvature is found, the constraints
are eliminated, and the optimization proceeds as a normal
transition state optimization.
II.D.3. Reaction Path Optimization. Reaction paths,

understood as the trajectory in nuclear geometry space that a

system follows during a reaction or other chemical process, are
properly approached through molecular dynamics simulation,
either quantum or semiclassical. However, as part of a static
PES analysis, it is useful to obtain optimal paths that link
different distinguished structures or points on the surface, such
as a saddle point and a minimum, or two minima, or a Franck−
Condon (FC) point and a crossing point, or a FC point and a
minimum, etc. The most commonly explored type of path is
the steepest descent path (SDP), which is defined as the path
that, from its initial point, is always tangent to the local
gradient and proceeds downhill. Unlike stationary points, an
SDP is not invariant to coordinate choice; when mass-
weighted coordinates are used, the SDP corresponds to an
infinitely damped MD trajectory with zero kinetic energy. If
every point of a path has positive curvature along the directions
orthogonal to the path, the path can be seen as proceeding
along a “valley” of the PES and is then known as minimum
energy path (MEP), but there is no guarantee an SDP will
satisfy this condition, although the terms are sometimes used
interchangeably.53−56 For an SDP starting at a saddle point,
where the gradient is zero, the path is taken as tangent to the
Hessian eigenvector with negative curvature at the initial point;
if this is done in mass-weighted coordinates, the displacement
along this path−and by extension the path itself−is known as
intrinsic reaction coordinate (IRC).
There are two main strategies for optimizing a reaction path:

sequential and collective. In a sequential optimization,
successive points on the path are optimized one by one;
once a point is found, it is not modified, and the next point is
searched. In a collective optimization, all (sampled) points on

Figure 1. Two algorithms for computing an SDP as a series of constrained optimizations. The points x0...x4 represent the optimized points, and the
arrows represent the force (negative gradient) at those points. In a), each point is optimized on a hypersphere (dashed) centered on the previous
point, and the distance between points is exactly the radius. In b), the centers of the hyperspheres (small circles) are located along the line defined
by the previous point and its gradient (dotted). The distance between points is only approximately the diameter; but by construction all the
gradients are perpendicular to two hyperspheres, and the path can be described as a chain of circular arcs.
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the path are optimized simultaneously. The NEB34 and string57

methods are examples of collective approaches. In this work,
we use a sequential method based on successive constrained
optimizations. Initially,44 the algorithm implemented in Molcas
was that of Müller and Brown,58 where each point is
constrained to lie on the surface of a hypersphere centered
on the previous point. In current OpenMolcas versions, the
algorithm of Gonzalez and Schlegel48 is preferred, the
difference is that the hypersphere is now centered a “half
step” away from the previous point, in the negative gradient
direction (see Figure 1).
The constraints applied during the optimization can be

expressed as

∑= −q q qQ w x x( ) ( ( ) ( ))
i

i i i ref
2

(20)

where qx ( )i is the ith Cartesian coordinate corresponding to
the geometry described by q, qref is the reference geometry
(the center of the hypersphere), and wi is the weight assigned
to the ith coordinate. If all weights are equal to 1, this is just
the Euclidean distance, and if the weights are the masses of the
corresponding atoms, it is the distance in mass-weighted
coordinates, as required for an IRC calculation. Since the
Cartesian coordinates qx ( )i are, in general, not unique, they are
translated and rotated to minimize the value of qQ ( ).
So, the procedure, according to the Gonzalez−Schlegel

algorithm, is as follows. From the initial point, a new reference
geometry is obtained by displacing the geometry along the
direction given by the gradient, a distance half the desired path
resolution. A new starting geometry is generated by further
displacing the reference geometry by the same amount in the
same direction. From this starting geometry, a constrained
optimization is performed, with the constraint described above.

Figure 2. Starting structures for the Baker-TS test suite. The bottom row of spheres shows the color code.
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On convergence, the optimized point is saved, and a new
reference geometry is generated as above. This is repeated until
termination, which occurs when the total gradient at an
optimized constrained structure is below a threshold, when the
geometry difference between two optimized structures is too
small, when a maximum number of steps is reached, or when
the energy of an optimized point increases with respect to the
energy of the previous optimized point. The sequence of
optimized points is an approximated sample of the path.
There is a small difference when the initial point of the path

is a saddle point. In this case, the first constrained optimization
takes the initial point as reference, with no displacement, and
the starting geometry is generated by displacing it half the path
resolution distance along the direction given by an input
“reaction vector”. Ideally, this vector should be the Hessian
eigenvector with negative eigenvalue at the initial point, but
almost any approximate vector that is not orthogonal to the
true reaction vector works in practice, and the procedure can
be initiated without computing the full Hessian. Once the path
in this “forward” direction is concluded, a new “backward” path
is computed from the same initial saddle point, but now the
first starting geometry is displaced in the opposite direction.

III. COMPUTATIONAL DETAILS
Benchmark calculations are performed to compare the
performance of a standard second-order optimization
technique in combination with a Hessian-update method
(RS-RFO and BFGS) and the method proposed in this work
(GEK-supported RVO), applied to the optimization of
transition state structures and other constrained geometry
optimizations.
All the benchmarks are based on the Baker-TS test suite,59

for which the initial structures are displayed in Figure 2, but we
will test different features of the optimization approach. First,
starting from the Baker-TS initial structures, a saddle-point
optimization is performed using the FindTS option with
suitable guiding constraints. Our expectation here is that the
GEK surrogate model will eliminate the need of a special
Hessian-update procedure and in a stable way provide a
realistic approximation of the surface around the saddle point.
Second, a constrained optimization is carried out with the
same initial structures and constraint definitions, but aiming for
a constrained minimum instead of an unconstrained saddle
point. In this case, we expect the RVO method to enable a
faster achievement of the constraints without sacrificing the
quality of the energy minimization. Third, starting from the
optimized saddle-point structures, we will perform an IRC
optimization, computing the backward and forward reaction
paths. This entails a series of constrained optimizations, and we
hope that the information from the previously optimized
structures will contribute to a significant performance
enhancement in RVO with respect to RS-RFO.
The new optimization procedure has been implemented in a

development (public) branch of the SLAPAF module of the
open-source OpenMolcas quantum chemistry program pack-
age60 and will be incorporated into the main release shortly.
Energies and gradients were computed at the DFT level of

approximation, using the B3LYP functional and def2-SVP61

basis set, with unrestricted SCF for the open-shell cases: #4,
#5, and #8. Two-electron integrals were computed with atomic
compact Cholesky decomposition (acCD)62 with default
threshold (10−4 Eh). To reduce the influence of numerical
noise in the comparisons, the accuracy of the computed

energies and gradients was increased 2−3 orders of magnitude
from the default.
Unless explicitly stated, the defaults in OpenMolcas were

used for geometry optimizations. This includes the definition
of nonredundant internal coordinates from force-constant-
weighted redundant coordinates, and the approximate Hessian
was expressed through the Hessian Model Function
(HMF);4,29 Hessian updates with BFGS over the last 5
iterations; a restricted-step rational-function optimization (RS-
RFO) procedure with a step restriction of 0.3 au; convergence
criteria: gradient root-mean-square (rms) and maximum
component below 3 × 10−4 Eh a0

−1 and 4.5 × 10−4 Eh a0
−1,

respectively; and displacement rms and maximum component
below 1.2 × 10−3 a0 and 1.8 × 10−3 a0. For saddle-point
optimizations, the default method is the “image” variant (RS-I-
RFO),1 with MSP Hessian updates over the last 10 iterations.
No symmetry was enforced in any of the calculations.
In the case of RVO, the defaults are as given in our previous

work:28 using at most 10 previous samples (energies and
gradients) for building the GEK surrogate model; a baseline or
trend function 10.0 Eh above the maximum energy of the
samples; a Mateŕn-5/2 covariance function; and a maximum
variance 0.3 a0 times the largest Cartesian gradient at the last
iteration. For saddle-point optimizations, the maximum
number of samples is increased to 20, and only during the
initial constrained phase of a FindTS optimization, the
maximum variance factor is decreased to 0.1 a0.
The IRC calculations were done with the Gonzalez−

Schlegel algorithm, with a step size of 0.1 a0 in normalized
mass-weighted Cartesian coordinates, so the constraint
corresponds to a hypersphere of 0.05 a0 radius. The starting
structure was the saddle point optimized with RS-I-RFO in all
cases. After every step of the path, the previous optimized
structure is displaced along the direction of the gradient to
provide an initial structure for the next optimization. In some
circumstances, the SDP can pass through a valley−ridge
transition point,63 continue on a ridge, and end at a saddle
point. This happens, for instance, when the initial structure has
some symmetry that is reduced along the path, as in reactions
#12 and #13, which would end at the eclipsed conformation of
CH3CH3 and CH3CH2F, respectively. Although this is in
accordance with the SDP definition, it is an undesirable
occurrence, since the resulting path is unstable with respect to
numerical noise and it does not directly connect the saddle
point and a minimum. In order to avoid this situation, a small
random displacement is added to each initial structure along
the path to break a possible symmetry. The reaction paths were
computed for a maximum of 15 steps on either side. The step
size was reduced to half the above value in some cases where a
finer resolution seemed desirable, especially where the reaction
involves mainly the movement of hydrogen atoms: #2, #4, #8,
#22, #23, #24, and #25. For the IRC calculations of #9, the
default geometry convergence criteria were increased by a
factor of 20 to reduce the total number of iterations, as it was
the slowest case in the benchmarks.
For the first two benchmark calculations (saddle-point

optimization and constrained optimization), we established
specific constraints for each system. The goal of these
constraints is only to initially guide the TS optimization
toward a saddle point, until a negative curvature is found on
the PES, at which point the constraint is discarded and a
normal saddle-point optimization proceeds. These constraints
therefore imply some arbitrariness and chemical knowledge
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from the user. They were designed in a simple way such that
the optimization proceeds smoothly with RFO, but they were
not further optimized to minimize the iteration count, and the
same constraints were used for RVO without change. The
specific constraints are described in Table 1.

IV. RESULTS AND DISCUSSION
The first set of calculations consisted in the optimization of
saddle-point structures, starting from the structures in the

Baker-TS set and providing the initial constraints specified in
Table 1 for the FindTS method.
The optimizations converged with no major issues with both

the conventional RS-I-RFO method and the new RVO
method. A comparison of the performance of both methods
is displayed in Figure 3, where it is evident that, in general,
RVO outperforms RS-I-RFO. In most cases, the constraints are
only active for 1−5 iterations, and a saddle point is found in
10−20 iterations. The root-mean-square displacement (rmsd)
between the optimized structures with both methods is smaller
than around 10−3 Å, except for a handful of cases commented
below; this confirms that RVO provides a faster route from
starting to optimized structure, using the same initial
information. The total number of iterations was reduced
from 400 to 294, a 26.5% decrease. The number of iterations
with active constraints is actually larger with RVO (74 vs 63),
and the main improvement comes in the saddle-point
optimization itself, where RVO is able to explore the PES
more efficiently.
The system with the largest number of iterations and the

largest differences is #7, ring opening of bicyclo[1.1.0]butane
(TS 2). According to the original source for the starting
structure,14 the ring-opening reaction proceeds in two steps at
the AM1 level, which is why there are two TS structures in #6
and #7. However, at our B3LYP/def2-SVP level, we could not
find an intermediate, and it seems the reaction occurs in a
single step. Nevertheless, it was possible to locate a saddle
point distinct from the one found for #6. The apparent
discrepancy between the AM1 and B3LYP PESs is probably
the reason for the large number of iterations required,
especially with active constraints.
System #20, +HCONH3

+NH4F + CO, yielded the largest
rmsd between the two methods, almost 0.25 Å. The converged
structure contains well-separated CHO and NH3 fragments;
the H−N−C−H dihedral specified in the constraints is −43°
with RS-I-RFO, while it is −4° with RFO. A calculation of the
harmonic frequencies indicated that the RS-I-RFO structure is
a second-order saddle point with a lowest imaginary frequency
of 24i cm−1, and the RVO structure is a first-order saddle point
with a lowest real frequency of 31 cm−1 and about 0.025 kcal/
mol lower in energy than the RS-I-RFO structure. In all other
systems, the frequencies confirmed both structures as first-
order saddle points.
The other two systems with relatively large rmsd are #8 and

#18 (8 × 10−3 Å and 6 × 10−3 Å, respectively). In these cases,

Table 1. Description of the Constraints Used As a Guide for
Saddle-Point Optimization and for the Constrained
Optimizations of the Baker-TS Set

system constraint(s)

#1 C−N−H angle: 45°
#2 C−H bond that forms: 1.3 Å
#3 H−H bond: 1.3 Å
#4 C−O−H angle (with migrating H): 50°
#5 C−C bond that breaks: 1.5 Å
#6 C2−C4 bond (product numbering): 1.85 Å
#7 C1−C3 bond (product numbering): 1.4 Å
#8 C−O bonds that break/form: 1.6 Å
#9 C−C bonds that form: 1.8 Å
#10 C−N and N−N bonds that break: 1.7 Å
#11 C−C−C−C dihedral: 90°
#12 H−H bond: 1.0 Å; C−H bond that breaks (outer one at the initial

structure): 1.6 Å
#13 F−H bond: 1.0 Å; C−F and C−H bonds that break: 2.0 Å
#14 O−H bond: 1.0 Å; C−C−O--H dihedral (with migrating H): 5°
#15 Cl−H bond: 1.8 Å
#16 sum of P−O1 and O2−H bonds (both forming) equal to sum of P−

O2 and O1−H bonds (the latter breaking)
#17 C−O bond that breaks: 1.8 Å; C−C bond that forms: 2.2 Å
#18 C−Si bond that forms: 2.0 Å
#19 C−C bond: 1.8 Å
#20 N−H bond that forms: 1.8 Å; H−N−C−H (with migrating H):

−15°
#21 C−C−C-O dihedral: 70°
#22 O−H bond that forms: 1.5 Å; C−N−O−H (with spectator OH):

160°
#23 H−H bond: 1.2 Å
#24 N−H bond that forms: 1.4 Å
#25 N−H bonds that break: 1.4 Å

Figure 3. Number of iterations to converge the Baker-TS structures to a saddle point. The darker color in the bars indicates the iterations with
active constraints. The circles represent the root-mean-square displacement between the converged structures.
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the differences are hardly appreciably even after superimposing
both structures and are probably due to a somewhat flat PES.
The RVO structures are, respectively, 5 × 10−3 kcal/mol and 2
× 10−4 kcal/mol lower than the RS-I-RFO structures. For #13,
the RVO structure is 3 × 10−4 kcal/mol lower, and for #25 it is
2 × 10−4 kcal/mol lower; for all other systems, the difference is
smaller than 10−4 kcal/mol.
After verifying the good behavior of the RVO method for

optimizing saddle points, we check its performance for the

optimization of constrained minima. First we carried out
constrained optimizations using the same constraints as in
Table 1, i.e., the same as in the first benchmark, but where the
constraints are never turned off. The results are shown in
Figure 4. Since the optimization now searches for a minimum,
the “conventional” method is RS-RFO and not RS-I-RFO.
We note at once that five systems−#8, #9, #12, #16, and

#20−failed to converge with the RS-RFO method (in the
maximum number of iterations allowed, which was 100). In all

Figure 4. Number of iterations to converge the Baker-TS structures to a constrained minimium. The circles represent the root-mean-square
displacement between the converged structures.

Figure 5. Number of iterations to converge the IRC optimization from the saddle point. The horizontal division in each bar separates the iterations
toward reactants (below) and products (above).

Figure 6. Comparison of performance for the IRC optimization of reaction #22. The bars show the number of iterations needed for optimizing
each step of the path (0 is the initial saddle point, negative steps go toward reactants). The circles represent the root-mean-square displacement
between the corresponding optimized structures.
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these cases, the imposed constraints are quickly satisfied and
the gradient is reduced, but the geometry starts to oscillate
close to convergence. In contrast, the RVO method achieves
convergence in all the test systems and always with fewer or, at
most, the same number of iterations as the RS-RFO method.
The rmsd between the converged structures is in all cases
smaller than 2 × 10−3 Å, except for #3, H2CO ⇌ H2 + CO
(0.1 Å). The optimized structure with RVO consists of an
almost linear arrangement of H2 (elongated) and CO, while
with RS-RFO the H−C−O angle is 168° and the energy is 8 ×
10−3 kcal/mol higher. The total number of iterations,
excluding the systems that did not converge with RS-RFO, is
reduced from 321 with RS-RFO to 233 with RVO (a 27.4%
saving).
Our final benchmark is the computation of the reaction path

passing through the optimized transition states, also known as
intrinsic reaction coordinate (IRC). This implies a series of
constrained optimization where each optimization involves a
constraint that is expressed as a distance in (3N−6)-
dimensional space from a previous reference structure. We
expected that the gains of RVO would be especially important
in this benchmark, due to its use of the previous points for
building the surrogate model; on the other hand, with RS-
RFO, the previous points can only influence the guessed
Hessian.
The results, summarized in Figure 5, show that indeed RVO

affords a significant reduction in the number of iterations
required to compute the IRC paths. The total number was
3730 with RS-RFO and 1893 with RVO, representing almost a
50% decrease. We observe a reduction in all systems but very
particularly in #16, #20, and #25.
It is not straightforward to provide a single measure of the

similarity between the paths computed with the two methods,
but as an illustration we show in Figure 6 a more detailed
comparison of the paths for system #22, HCONHOH ⇌
HCOHNOH, which is quite typical. Each constrained
optimization takes 4−8 iterations with RS-RFO and only 2−
4 iterations with RVO. The rmsd between the two methods
tends to be smaller close to the initial saddle point, which is
logical as differences accumulate, but does not grow beyond 2
× 10−3 Å, indicating that the computed paths are essentially
identical. Similar figures for the other systems are provided in
the Supporting Information.
A clear advantage of RVO with respect to RS-RFO in

constrained optimizations is that it can use the microiterations
to converge the constraints as much as needed, within the
limits of the maximum allowed variance. This means that when
a system is close to convergence but still far from satisfying the
constraints, with RS-RFO several expensive iterations are still
necessary, especially when the step size is limited; with RVO,
however, the fulfillment of the constraints can be ensured with
the very cheap microiterations, and the number of macro-
iterations required can be greatly reduced. If, in addition, the
surrogate model is accurate enough, the energy (or, in fact,
gradient) minimization can effectively be done at the same
time, and the fulfillment of the constraints will not degrade the
energy convergence. We see signs of this in the IRC
optimizations, where very often RVO takes only 2−3 iterations
per point (the practical minimum is 2, since the first iteration is
always setting up the initial structure), while RS-RFO more
typically takes 4−6 iterations. This is reflected in Figure 6, and
also in Figure 7, which displays the frequency at which each
number of iterations required occurs. It is evident that the

number of iterations necessary to optimize each point is
significantly lower with RVO than with RS-RFO.

V. SUMMARY
We have extended the restricted-variance optimization
method, based on a gradient-enhanced Kriging surrogate
model,28 to work with arbitrary geometrical constraints. The
resulting method combines the projected constrained opti-
mization43 and the RVO. This also allows a straightforward
application of the algorithm to the location of saddle points on
potential energy surfaces.
We have tested this development on a common set of 25

transition state structures. The calculations included the
optimization of saddle points, of constrained minima
structures, and the computation of reaction paths by
performing a series of constrained optimizations. In all cases,
we observed that the new RVO method outperforms a state-of-
the-art conventional second-order method, as implemented in
the OpenMolcas quantum chemistry package,60 reducing the
total number of iterations by 25% to 50%. It is also observed
that the RVO method seems to be more robust and less
susceptible to convergence problems.
This work complements our previous one, proving that the

GEK surrogate model built from very limited hard data
(previous optimization iterations) and empirical “chemical
knowledge” (embedded in the use of internal coordinates and
in the HMF that defines the characteristic lengths) can be
superior to the commonly employed second-order expansions
for applications not limited to the location of minimum energy
points. The GEK surrogate model can easily describe a saddle
point on the potential energy surface, and this already occurs
after a reduced number of macroiterations. On the other hand,
the very fast microiterations on the surrogate model make it
possible to ensure that geometrical constraints are satisfied,
without the unnecessary evaluation of the parent energy and
gradient, which comes with a high cost.
Finally, we note that it is possible to define constraints that

are not of a strictly geometrical nature. For instance, for the
location of conical intersections, an energy difference
constraint is used,64 or one could desire to constrain the
value of some other property, like the dipole moment or NMR
chemical shifts. The PCO method can still be used as long as
the derivatives of the constraints with respect to the geometry
can be computed or obtained. However, the RVO as
implemented here requires the computation of the constraints
(and their gradients) during the microiterations, where no

Figure 7. Histogram of the number of iterations needed for
optimizing each IRC point. The tallest bar, for example, means that
250 points converged on 3 iterations with RVO.
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quantum-chemical calculation is done, and this is currently not
implemented for nongeometrical constraints. Possible approx-
imations could be assuming that the constraint does not
change during the microiterations or using an auxiliary
surrogate model for the constraints. These approaches are
under investigation in our group.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01163.

Graphs comparing number of iterations and rmsd along
IRC for all systems (PDF)
Input files for the benchmark calculations and resulting
Molden65 files, including initial, intermediate, and final
structures (ZIP)

■ AUTHOR INFORMATION
Corresponding Authors
Ignacio Fdez. Galván − Department of Chemistry − BMC,
Uppsala University, Uppsala 75123, Sweden; orcid.org/
0000-0002-0684-7689; Email: Ignacio.Fernandez@
kemi.uu.se

Roland Lindh − Department of Chemistry − BMC, Uppsala
University, Uppsala 75123, Sweden; orcid.org/0000-
0001-7567-8295; Email: roland.lindh@kemi.uu.se

Author
Gerardo Raggi − Department of Chemistry − BMC, Uppsala
University, Uppsala 75123, Sweden

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c01163

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Funding from the Swedish Research Council (grant 2016-
03398) and the Olle Engkvist foundation (grant 18-2006) is
recognized. Part of the computations were enabled by
resources provided by the Swedish National Infrastructure
for Computing (SNIC) at the Uppsala Multidisciplinary
Center for Advanced Computational Science (UPPMAX)
and the National Supercomputer Centre (NSC), partially
funded by the Swedish Research Council (grant 2018-05973).

■ REFERENCES
(1) Besalu,́ E.; Bofill, J. M. On the automatic restricted-step rational-
function-optimization method. Theor. Chem. Acc. 1998, 100, 265−
274.
(2) Schlegel, H. B. Geometry optimization. Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 2011, 1, 790−809.
(3) Thøgersen, L.; Olsen, J.; Yeager, D.; Jørgensen, P.; Sałek, P.;
Helgaker, T. The trust-region self-consistent field method: Towards a
black-box optimization in Hartree−Fock and Kohn−Sham theories. J.
Chem. Phys. 2004, 121, 16.
(4) Lindh, R.; Bernhardsson, A.; Karlström, G.; Malmqvist, P.-Å. On
the use of a Hessian model function in molecular geometry
optimizations. Chem. Phys. Lett. 1995, 241, 423−428.
(5) Broyden, C. G. The Convergence of a Class of Double-rank
Minimization Algorithms 1. General Considerations. IMA J. Appl.
Math. 1970, 6, 76−90.

(6) Goldfarb, D. A family of variable-metric methods derived by
variational means. Math. Comput. 1970, 24, 23−23.
(7) Fletcher, R. A new approach to variable metric algorithms.
Comput. J. 1970, 13, 317−322.
(8) Shanno, D. F. Conditioning of quasi-Newton methods for
function minimization. Math. Comput. 1970, 24, 647−647.
(9) Fletcher, R. Practical Methods of Optimization; John Wiley &
Sons, Ltd.: 2000; DOI: 10.1002/9781118723203.
(10) Nocedal, J. Updating quasi-Newton matrices with limited
storage. Math. Comput. 1980, 35, 773−773.
(11) Liu, D. C.; Nocedal, J. On the limited memory BFGS method
for large scale optimization. Math. Program. 1989, 45, 503−528.
(12) Murtagh, B. A. Computational experience with quadratically
convergent minimisation methods. Comput. J. 1970, 13, 185−194.
(13) Powell, M. J. D. Recent advances in unconstrained
optimization. Math. Program. 1971, 1, 26−57.
(14) Bofill, J. M. Updated Hessian matrix and the restricted step
method for locating transition structures. J. Comput. Chem. 1994, 15,
1−11.
(15) Krige, D. G. A statistical approach to some basic mine valuation
problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 1951,
52, 119−139.
(16) Matheron, G. Principles of geostatistics. Econ. Geol. Bull. Soc.
Econ. Geol. 1963, 58, 1246−1266.
(17) Liu, W.; Batill, S. Gradient-Enhanced Response Surface
Approximations Using Kriging Models. 9th AIAA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization; 2002; p 5456,
DOI: 10.2514/6.2002-5456.
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