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Topology for gaze analyses - Raw data segmentation
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Recent years have witnessed a remarkable growth in the way mathematics, informat-
ics, and computer science can process data. In disciplines such as machine learning,
pattern recognition, computer vision, computational neurology, molecular biology,
information retrieval, etc., many new methods have been developed to cope with the
ever increasing amount and complexity of the data. These new methods offer inter-
esting possibilities for processing, classifying and interpreting eye-tracking data. The
present paper exemplifies the application of topological arguments to improve the
evaluation of eye-tracking data. The task of classifying raw eye-tracking data into
saccades and fixations, with a single, simple as well as intuitive argument, described
as coherence of spacetime, is discussed, and the hierarchical ordering of the fixations
into dwells is shown. The method, namely identification by topological characteristics
(ITop), is parameter-free and needs no pre-processing and post-processing of the raw
data. The general and robust topological argument is easy to expand into complex
settings of higher visual tasks, making it possible to identify visual strategies.

Keywords: gaze trajectory; event detection; topological data analysis (TDA); clus-
tering; parameter-free classification; visual strategy; global scanpath; local scanpath

Introduction

Gaze trajectories can tell us many interesting
things about human nature, including attention, mem-
ory, consciousness, etc., with important applications
(Groner & Groner, 1982; Duchowski, 2002; Van der
Stigchel, Meeter, & Theeuwes, 2006; Russo, 2010) as
well as facilitating the diagnosis and helping to un-
derstand the mechanisms of diseases (Leigh & Ken-
nard, 2004; Munoz, Armstrong, & Coe, 2007; Crabb
et al., 2010). Normally, viewing behavior is studied
with simple paradigms to keep the complexity of nat-
ural viewing situations as low as possible, e.g., in a
search paradigm, a person looks at a computer screen
with a simple static geometric configuration under well
defined optical constraints, i.e., constant illumination,
head immobilized by a chin rest or bite bar, no distrac-
tors, etc.

The task of analyzing, classifying, and interpreting
gaze trajectories for realistic situations proves to be
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much more difficult because of the many different fac-
tors influencing the steering of the eyes. The usual
scientific approach is to break down real world com-
plexity into easy to define and control partial modules,
and then to try to reassemble reality from these sim-
ple modules. This has also been done for gaze trajecto-
ries. The task of analyzing the gaze trajectory data can
roughly be split into two subtasks: the low level de-
scription of the noisy raw data that are produced from
the gaze tracker, and the high level description of the
data in combination with the viewing task and the cog-
nitive processes. The first subtask could be regarded
as the mathematical modeling of high frequency time-
series, given that modern gaze trackers can sample
eye position and orientation at 2000 Hz or even more
(Andersson, Nyström, & Holmqvist, 2010).

The careful choice of the data model and data repre-
sentation is the basis for all of the following analyses.
Only a model capable of incorporating the many sub-
tleties of the gaze trajectory is able to support the com-
plex questions which appear in the context of modeling
the looking task in relation to the assumed cognitive
processes.1 Of course, a more complex model is harder
to implement and interpret. There is a permanent bal-
ancing between data load, explanatory potential, and

1Realistically the model is a strong assumption (prior) and
very often the hypothesized construct is driven by the origi-
nal model.
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model complexity.

Splitting trajectory data into events

In this section a general outline of splitting raw
eye-tracking data into meaningful events is given. At
present, the most important segmentation of the data is
the dichotomous splitting into fixations and saccades.
Although this is a long standing approach, up to now
no definite algorithm for the splitting exists. The rea-
sons are discussed.

The basic oculomotor events

The eyes’ scanning of the surrounding is done in
a sequential manner, since the movement of the eyes,
seen as a mechanical system, is limited to sequential
movements. It has to be remarked that, in many as-
pects, this is not true for the information extraction
and processing of the visual data within the brain,
which can process information in parallel (Thornton &
Gilden, 2007; Trukenbrod & Engbert, 2012). It is well
known that a detailed analysis can only be done for
a very small part of the visual scene, approximately
1 up to 5 degrees of visual angle (Carpenter, 1988;
Duchowski, 2007). This is the part of the scene which
is projected onto the fovea, the region of the retina with
the highest concentration of cone cells. To capture the
whole scene, the eyes have to switch swiftly to other
regions within the scene, which is done via saccades,
i.e., very fast movements (Gilchrist, 2011; Land, 2011).
In fact, saccades are operationally defined by velocity,
acceleration, and amplitude criteria. Saccades exhibit
a clear characteristic, which is relatively stable across
subjects (Leigh & Zee, 2006). Quantitatively this re-
lationship is expressed in the main sequence (Bahill,
Clark, & Stark, 1975; Bahill, Brockenbrough, & Troost,
1981; Bahill, 1983; Bollen et al., 1993). Speed is cru-
cial, because the brain has to integrate many parts of
the whole scene into one consistent and stable internal
representation of our surrounding world, and because
of the fact that the observer has decreased sensitivity
while the eyes are moving fast, a phenomenon called
saccadic suppression (Matin, 1974; Leigh & Zee, 2006).
Information gathering works by swiftly scanning the
scene and minimizing the timespan of decreased sensi-
tivity. This fact makes a bipartition of the gaze trajec-
tory data desirable.

The gaze trajectory is broken down into two general
subsegments, fixations and saccades. Saccades allow
the gaze to change between parts of the scene, while
fixations are intended for analyzing parts of the scene.
Saccades are the segments of the trajectory where eyes
are moving fast and in a preprogrammed, directed

manner, whereas in a fixation eyes are moving slowly
and in a random-like fashion (Rolfs, 2009). The two
modes of movement are displayed alternatively and
exclusively. Fixations may then be defined as the part
between the saccades or vice-versa. This is a sensible
and convenient assumption, but also a major simpli-
fication. It is well known that fixations can contain
microsaccades as subitems (Martinez-Conde, Macknik,
Troncoso, & Hubel, 2009; Rolfs, 2009; Engbert, Mer-
genthaler, Sinn, & Pikovsky, 2011), mixing the two as-
sumed modes of movement.

These two different movement characteristics can be
operationalized. The bipartite classification of gaze
points in saccade points and fixation points is nor-
mally achieved through a combination of space and
time characteristics, i.e., for a fixation, the dispersion of
the gaze points on the display combined with the dura-
tion of a cluster of gaze points in time; for a saccade, it is
the velocity, acceleration, and amplitude of the move-
ment. The exact determination of the parameters and
the algorithmic implementation has a long history and
many parameterizations exist.2

The classification of eye movements into fixations
and saccades is by no means straightforward. One al-
ways has to bear in mind that the dichotomic splitting
of the data follows our desire for simple and parsimo-
nious models,3 it is not Nature’s design. It has to be
noted that the eye has a much broader repertoire of
movements (Liversedge, Gilchrist, & Everling, 2011).
“Patterns” of eye movements other than fixations and
saccades occur in real data, e.g., vestibular and ver-
gence eye movements, dynamic over-/undershooting,
microsaccades, drift, tremor, etc. This becomes even
more complex when viewing dynamic scenes as op-
posed to still images (Crabb et al., 2010). Because of
the moving content, the eyes have to follow the in-

2 (Mason, 1976; Karsh & Breitenbach, 1983; Widdel, 1984;
Scinto & Barnette, 1986; Stampe, 1993; Krauzlis & Miles, 1996;
Wyatt, 1998; Salvucci & Goldberg, 2000; Privitera & Stark,
2000; Larsson, 2002; Engbert & Kliegl, 2003; Smeets & Hooge,
2003; Santella & DeCarlo, 2004; Engbert & Mergenthaler,
2006; Urruty, Lew, & Ihadaddene, 2007; S̆pakov & Miniotas,
2007; Shic, Scassellati, & Chawarska, 2008; Camilli, Nacchia,
Terenzi, & Nocera, 2008; Kumar, Klingner, Puranik, Wino-
grad, & Paepcke, 2008; Munn, Stefano, & Pelz, 2008; Blignaut,
2009; Komogortsev, Jayarathna, Koh, & Gowda, 2009; Nys-
tröm & Holmqvist, 2010; Komogortsev, Gobert, Jayarathna,
Koh, & Gowda, 2010; Dorr, Jarodzka, & Barth, 2010; van der
Lans, Wedel, & Pieters, 2011; Mould, Foster, Amano, & Oak-
ley, 2012; Komogortsev & Karpov, 2012/13; Vidal, Bulling, &
Gellersen, 2012; Liston, Krukowski, & Stone, 2012; Špakov,
2012; Valsecchi, Gegenfurtner, & Schütz, 2013)

3Entia non sunt multiplicanda praeter necessitatem (Enti-
ties must not be multiplied beyond necessity). –John Punch–
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focus part of the scene. The concept of a fixation as
being localized in a small subregion of a still image is
no longer valid and has to be replaced by the concept of
smooth pursuit (Blackmon, Ho, Chernyak, Azzariti, &
Stark, 1999). As of now the most important event types
are fixations, saccades and smooth pursuit. More re-
cently post-saccadic oscillations (PSO) have come into
focus (Nyström & Holmqvist, 2010; Andersson, Lars-
son, Holmqvist, Stridh, & Nyström, 2016). Zemblys,
Niehorster, Komogortsev, and Holmqvist (2017) esti-
mate 15-25 events that, as of now, have been described
in the psychological and neurological eye-movement
literature.

As common for biological systems, all movements
exhibit a normal physiological variability (Smeets &
Hooge, 2003; van der Lans et al., 2011). Different appli-
cation regimes also show different characteristics, e.g.,
normal reading is different from reading a drifting text
(Valsecchi et al., 2013) as it is now common when read-
ing, or even browsing, texts on mobile devices (swip-
ing the text). Furthermore, gaze tracking data can be
interrupted by blinks. Blinks interrupt the flow of gaze
tracking data, while the eye is still moving consistently.
Though coupled (Horn & Adamczyk, 2012), blinks are
considered noise.

Even if all possible events were known and clearly
defined, the algorithmic processing would introduce a
bias into the results. There are many reasons for this
finding. One reason lies in the different sensitivities to
noise and filter effects (Inchingolo & Spanio, 1985; Tole
& Young, 1981), e.g., numerical differentiation is an op-
eration with notorious “bad behavior”. Furthermore,
the filters used for preprocessing also call for parame-
ters and introduce a bias into the data.

Higher level use for oculomotor events

Another motivation for the development of more
and more sophisticated algorithms is the growing –
one might say exploding – applicability of eye track-
ing devices. In the past eye tracking was restricted to
scientific uses and the tasks people were performing
were relatively low in complexity, e.g., a simple search
task. Nowadays, with the increase of performance in
eye-tracking hardware and computing power, the tasks
under investigation have become more and more com-
plex, producing a wealth of data.

Recent years especially have shown a growing inter-
est in the investigation of complex dynamic settings. In
these settings the viewing subject is no longer looking
at a static image from a (head-)fixed position. In the
extreme, the subject is moving freely and interacting
with its environment, like playing table tennis or driv-
ing a car (Land & Lee, 1994; Land & Furneaux, 1997;

Land & Tatler, 2009; Lappi & Lehtonen, 2013). Driven
by industrial applications such as market research, dy-
namic scenes are playing a more and more important
role. These can be watching TV and movies (Goldstein,
Woods, & Peli, 2007; Brasel & Gips, 2008; Dorr, Vig,
& Barth, 2012), video clips (Carmi & Itti, 2006; Berg,
Boehnke, Marino, Munoz, & Itti, 2009; Tseng, Carmi,
Cameron, Munoz, & Itti, 2009) or interactively playing
a video game (Peters & Itti, 2008; Sundstedt, Stavrakis,
Wimmer, & Reinhard, 2008). Another application is
the assessment of the driving ability in diseases like
glaucoma (Crabb et al., 2010) or Parkinson’s Disease
(Buhmann et al., 2014), where patients view hazardous
situations in a car driving context. The system cali-
bration can be automated, allowing the collection of
data for many subjects. As an example, the eye move-
ments of 5,638 subjects have successfully been recorded
while they viewed digitized images of paintings from
the National Gallery collection in the course of the mil-
lennium exhibition (Wooding, 2002b; Wooding, Mug-
glestone, Purdy, & Gale, 2002; Wooding, 2002a). It is
apparent that such data sets can not be evaluated man-
ually. A recent application is online tracking of eye
movements for integration in gaze contingent applica-
tions, e.g., driving assistance, virtual reality, gaming,
etc. Here the online tracking produces a continuous
stream of highly noisy data, and the system has to ex-
tract the relevant events in real time and has to infer the
users’ intents to adjust itself to their needs.

These more complex settings and large sample sizes
are not only a challenge for the hard- and software, but
also require a rethinking of the concepts being used to
interpret the data, especially when it comes to the theo-
retical possibility of inferring people’s intent from their
eye movements (Haji-Abolhassani & Clark, 2014; Borji
& Itti, 2014; Greene, Liu, & Wolfe, 2012).

In summary, the analysis of eye tracking data can be
organized in a hierarchy spanning different scales, go-
ing from low level segmentation ascending to higher
levels, relevant for the physiological and psychological
interpretation. Topmost is the comparison and analy-
sis of different eye movement patterns within and be-
tween groups of people, as is relevant for the inference
of underlying physiological and cognitive processes,
which forms the basis for important eye tracking ap-
plications, see table 1. Highlighted in light gray back-
ground is the first level aggregation into basic events.
Highlighted in dark gray is the second level aggrega-
tion for higher use, i.e., sets of sequential fixations in a
confined part of the viewing area (Santella & DeCarlo,
2004).4

4In reading called gaze (Just & Carpenter, 1980) and in hu-
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Table 1
Functional overview

Module Description

Preprocessing

• Noise reduction, smoothing
• Outlier and blink elimination
• Gap filling

First level seg-
mentation

• Fixation, saccade, smooth persuit,
post-saccadic oscillation, ...

• Fixation statistics, BCEA,5...
• Main sequence, saccade velocity pro-

file, ...

Postprocessing

• Removal of physiologically implausi-
ble short fixations and saccades

• Merging of nearby fixations
• Human assessment

Higher level
segmentation

• Scan path representation
• Dwell, glance, gaze, ...
• Area (Region) of interest
• Viewing strategy

Process infer-
ence

• Comparison within subject and be-
tween subjects

• Modeling, e.g., bottom-up saliency,
stochastic processes, ...

Application
• Medicine, Biometrics, VR, Gaming
• ...

The problem of defining a fixation

For most areas of inquiry this level of information
in the raw data is not necessary. It is sufficient to re-
duce the gaze-points into oculomotor events, i.e., into
the fixations and saccades forming the scanpath. Here
scanpath6 means any higher level time ordered repre-
sentation of the raw data which form the physical gaze
trajectory. The fixations can further be attributed to re-
gions of interest (RoI), each RoI representing a larger
part of the scene with interesting content for the view-
ing subject.

While intuitively easy to grasp, it is by no means ob-
vious how to explicitly define these concepts and make
them available for numerical calculations (Andersson
et al., 2016). Very often only basic saccade and fixation
identification algorithms are part of the eye-tracking
system at delivery (B. W. Tatler, Wade, Kwan, Find-
lay, & Velichkovsky, 2010), leaving the higher splitting
up to the user. This is desirable in the academic set-
ting, but not in the industrial setting, where time effi-
cient analysis has to be conducted, e.g., in marketing re-
search (Reutskaja, Nagel, Camerer, & Rangel, 2011) or

in usability evaluation (Goldberg & Wichansky, 2003).
Most commercial implementations incorporate disper-
sion threshold methods, e.g., ASL (2007) or velocity
threshold methods, e.g., seeingmachines (2005); Olsen
(2012); Tobii (2014). Some offer the user flexibility in
choosing the thresholds, while others mask the com-
plexity from the user by assuming a sort of lowest com-
mon denominator for the thresholds in different appli-
cation domains, although it is known that parameters
can vary between different tasks, e.g., the mean fixation
duration amounts to 225 ms on silent reading, 275 ms
on visual search, and 400 ms on hand-eye coordination
(Rayner, 1998). To account for these variations, some
implementations have 10 parameters to adjust (Reimer
& Sodhi, 2006), requiring a good understanding of the
theory of gaze trajectories.

It is well known that the parametrization of the al-
gorithm can substantially affect the results, but there is
no rule which algorithm and which parametrization to
employ in a given experimental setting (Smyrnis, 2008;
Nyström & Holmqvist, 2010; Wass, Smith, & Johnson,
2013). A comparison of the different algorithms and
the bias which can result under different parameter-
izations is given in Shic et al. (2008); Špakov (2012);
Andersson et al. (2016). For instance, post-saccadic os-
cillations (PSOs), i.e., wobbling over/under-shootings,
are usually not explicitly mentioned, but form a nor-
mal part of eye movements. The PSOs are attributed
to fixations or saccades, influencing the overall statis-
tics of the measurement (Nyström & Holmqvist, 2010;
Andersson et al., 2016). The algorithms to implement
the classification are therefore different and researchers
aim to improve and extend the algorithms constantly
(van der Lans et al., 2011; Špakov, 2012; Komogortsev
& Karpov, 2012/13; Mould et al., 2012; Liston et al.,
2012; Vidal et al., 2012; Wass et al., 2013; Valsecchi et
al., 2013; Daye & Optican, 2014; Andersson et al., 2016;
Hessels, Niehorster, Kemner, & Hooge, 2016; Zemblys
et al., 2017).

man factors called glance (Green, 2002). To avoid confusion
with the standard meaning of gaze the term dwell is used
(Holmqvist et al., 2011).

5Bivariate Contour Ellipse Area
6The term scanpath is somewhat vague and differs in its

meaning and interpretation between different research areas
and authors. Introduced in 1971 by Noton and Stark (Noton
& Stark, 1971b, 1971a, 1971c; Zangemeister, Stiehl, & Freksa,
1996), it was a fairly abstract concept to describe a repetitive
pattern of a single subject while viewing a static stimulus
(Privitera, 2006). Common terminology has been improved
with works such as Holmqvist et al. (2011), research networks
such as COGAIN, or industry driven demands such as the
ISO 15007 and SAE J2396 standards for in-vehicle visual de-
mand measurements (Green, 2002).
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Many researchers agree that a normative definition
and protocol is desirable but at present far from becom-
ing reality (Karsh & Breitenbach, 1983; Komogortsev et
al., 2010; Nyström & Holmqvist, 2010; Andersson et al.,
2016). As Karsh and Breitenbach (1983) stated rightly:

The problem of defining a fixation is
one that perhaps deserves more recognition
than it had in the past. Generally speak-
ing, the more complex the system the more
complex the task of definition will be. ...
Once these needs are recognized and imple-
mented, comparison between studies take
on considerably more meaning.

Topological approach to the problem

Up until now, no single algorithm has been able
to cover all the various aspects in eye tracking data
(Andersson et al., 2016). The aim here is to show that
there exists a strikingly simple argument for demar-
cating the different components of the gaze trajectory
in a normative way. From well-known approaches a
data representation is derived, which forms the basis
for a consistent analysis scheme to cover the basic ag-
gregation steps, see gray parts of table 1. The argument
for the segmentation is a topological one and is by its
very nature global and scale-invariant. It is the math-
ematical formulation that a fixation is a coherent part
in space and time. The meaning of “coherent in space
and time” will be clarified in the next sections. The ar-
gument needs no thresholds or calibration and is inde-
pendent of any experimental setting or paradigm. The
delineation of the gaze trajectory is unambiguously re-
producible.

Overview of existing approaches

This section presents an overview of different ap-
proaches to event detection. From these, a common
argument is isolated, the coherence of sample data in
space and time, which in turn forms the basis for the
new algorithm.

Taxonomy of algorithms

At present, we see a wide variety of different meth-
ods being used to extract the main oculumotor events
from raw eye tracking data (Holmqvist et al., 2011).
Each approach to the data highlights at least one promi-
nent and distinguishing feature of the main oculomotor
events in the trajectory data and makes use of special-
ized algorithms to filter/detect these features against
the noisy background. Noise is to be understood as be-
ing the part of the measurement which is not relevant

for the investigation, e.g., micro saccades can be con-
sidered noise in one study, but be of central interest in
another setting. In its narrow sense noise is the random
part inherent in any measurement. There is a common
logic to all these approaches, from which a data repre-
sentation and global topological argument can be de-
rived. To better understand the topological approach,
algorithms currently in use are systematized in a tax-
onomy. The taxonomy was first introduced in Salvucci
and Goldberg (2000). This classification has often been
repeated and adapted in the literature (Komogortsev
et al., 2010; Koh, Gowda, & Komogortsev, 2010; Ko-
mogortsev & Karpov, 2012/13; Santini, Fuhl, Kübler,
& Kasneci, 2016; Andersson et al., 2016). Here, as in
Salvucci and Goldberg (2000), the classification is based
on the role of time and space as well as algorithms used
to evaluate raw data. Broadly speaking, there are two
different approaches to the data, which differ in com-
plexity.

The algorithmically simplest approach is based on
thresholds for saccades and fixations. In the case of
saccades these are thresholds for velocity (I-VT: identi-
fication by velocity threshold), acceleration, and even
jerk, very often calculated as the discrete numerical
space-time n-point difference approximations to the
continuous differentials. E.g., a saccade is detected
whenever the eye’s angular velocity is greater than 30
deg/s (Poulton, 1962; Stampe, 1993; Fischer, Biscaldi,
& Otto, 1993; Gitelman, 2002; Paulsen, Hallquist, Geier,
& Luna, 2015). These algorithms are called “saccade
pickers” (Karn, 2000).

The second group targets the space dispersion (I-DT:
identification by dispersion (position-variance) thresh-
old) or space-time dispersion (I-DDT: identification by
dispersion and duration thresholds), i.e., when a con-
secutive series of gaze points occur near each other in
display space, they are considered part of a fixation.
E.g., in a reading context, a fixation lasts between 200
and 300 msec and a saccade spans approximately seven
character spaces (Rayner, 1998). Gaze points consistent
with this are aggregated and assumed to form a single
fixation. These algorithms are called “fixation pickers”.

Most algorithms use simple thresholds to cluster
data into saccades and fixations, which in practice need
to be optimized. A fixed parameter approach may per-
form well on a specific record but is very often too
imprecise and error-prone when applied to different
records.7 In order to improve results, researchers adapt

7Two-state Hidden Markov models (HMM) are intrinsi-
cally based on fitting individual data thus avoiding the prob-
lem of setting parameters explicitly (Salvucci & Goldberg,
2000; Rothkopf & Pelz, 2004). A prerequisite is, however,
to assume two states, i.e., saccade and fixation, limiting the
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the threshold in a dynamic way (Engbert & Mergen-
thaler, 2006; Nyström & Holmqvist, 2010), or combine
criteria, e.g., a saccade is detected when the angular
velocity is higher than 30 deg/s, the angular acceler-
ation exceeds 8000 deg/s2, the deflection in eye posi-
tion is of at least 0.1 deg, and a minimum duration of 4
ms is exceeded (B. Tatler, Wade, & Kaulard, 2007; Frey,
Honey, & König, 2008; N. D. Smith, Crabb, Glen, Bur-
ton, & Garway-Heath, 2012; T. J. Smith & Mital, 2013).
Note that dispersion thresholds can be inversely de-
fined for saccades, i.e., in relations to a fixation, a sac-
cade is over-dispersed, i.e., it has a minimum jumping
distance. This is essential when delineating micro sac-
cades from saccades.

Parameters are often chosen subject to individual
judgment or even rather arbitrarily (Itti, 2005). Even
after using more criteria, human post-processing is re-
quired (Wass et al., 2013), and means to reduce the hu-
man interaction are being sought (de Bruin, Malan, &
Eloff, 2013).

A higher sampling rate of the eye-tracker will give
better approximations of velocity and acceleration, but
the devices are more expensive and demand higher re-
strictions for the tested subjects, e.g., a chin rest, etc.
It is remarkable that functional relationships like the
main sequence (Bahill et al., 1975) are rarely employed,
considering that they give good guidance for setting
parameter thresholds (Inchingolo & Spanio, 1985); a re-
cent exception is Liston et al. (2012).

All these approaches are purely operational, call for
experience, and are driven by technical as well as pro-
gramming restrictions. More complex algorithms are
of course harder to code and often suffer from per-
formance issues. The simple velocity and dispersion
based classifiers are exemplified in table 2 (citations
contain an explicit exposure of algorithm).

A considerable advantage of these approaches is that
thresholds are easy to understand, interpret, and im-
plement. The values for thresholds depend on research
domain, e.g., the space-time dispersion values in I-DDT
are different in reading and in visual search. Fixation
times are domain specific, i.e., the duration of a typical
fixation in reading is different to fixation times in vi-
sual search, etc. (Rayner, 1998). Hand-tuning is often
requisite to get good results and is based on heuristics.

Range of advanced methods

The more sophisticated algorithms use ramified ver-
sions of the basic velocity/dispersion features taken
from signal processing, statistics, Kalman filtering,
Bayesian state estimation, clustering, pattern classifier
algorithms, and machine learning.

Table 2
Taxonomy of algorithms

saccade pickers
d
dt velocity threshold I-VT

→ fix (Stampe, 1993)

→ adaptive (Nyström & Holmqvist, 2010)
d2

dt2 acceleration threshold I-AT

→ fix (Behrens & Weiss, 1992; Behrens, MacKeben,
& Schröder-Preikschat, 2010)
d3

dt3 jerk threshold I-JT

→ fix (Wyatt, 1998), (Matsuoka & Harato, 1983, in
Japanese)

fixation pickers

dispersion threshold I-DT

→ fix (Mason, 1976; Kliegl & Olson, 1981)

dispersion and duration thresholds I-DDT

→ fix (Widdel, 1984; Nodine, Kundel, Toto, &
Krupinski, 1992; Manor & Gordon, 2003; Kras-
sanakis, Filippakopoulou, & Nakos, 2014)

These are taken from other disciplines like
• Signal processing

– Finite impulse response filter (Tole & Young,
1981)

– Cumulative sum (CUSUM) (Olsson, 2007;
Tobii, 2014; Gustafsson, 2000)

• Statistics
– F-test and correlation (Veneri et al., 2010,

2011; Veneri, 2013)
– Gap-statistics (Mould et al., 2012)

• Stochastic processes and time series analysis
– Auto-regressive processes and wavelet anal-

ysis (Duchowski, 1998)
• Bayesian approaches

– Hidden Markov model (Salvucci & Ander-
son, 1998; Rothkopf & Pelz, 2004)

– Kalman filter (Sauter, Martin, Di Renzo,
& Vomscheid, 1991; Komogortsev & Khan,
2007)

– Bayesian mixture model (Tafaj, Kasneci,
Rosenstiel, & Bogdan, 2012; Kasneci, Kas-
neci, Kübler, & Rosenstiel, 2014)

– Particle filter (Daye & Optican, 2014)
• Data clustering

classification.
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– k-means clustering (Privitera & Stark, 2000)
– Projection clustering (Urruty et al., 2007)
– Mean shift clustering (Santella & DeCarlo,

2004)
– Mean shift clustering and entropy (Vella, In-

fantino, & Scardino, 2016)
– Two-means clustering (Hessels et al., 2016)

• Machine learning
– Random forest classifier (Zemblys et al.,

2017)
– Neural networks (Hoppe & Bulling, 2016;

Anantrasirichai, Gilchrist, & Bull, 2016)
• Graph theory

– Minimum spanning tree (Goldberg &
Schryver, 1995; Rigas, Economou, & Fo-
topoulos, 2012)

• Fuzzy-set methods
– (Arzi & Magnin, 1989; Czabanski, Pander, &

Przybyla, 2014)
• Shape features8

– Single feature (simple) (Jüttner & Wolf,
1992), (Berg et al., 2009)

– Multiple features (complex) (Vidal et al.,
2012)

– Mathematical morphology (Longbotham et
al., 1994)

• Speech recognition
– Mel-frequency cepstral analysis (Cuong,

Dinh, & Ho, 2012)
• Template matching

– Velocity-Duration template (Liston et al.,
2012)

• Dynamic system analysis
– Time-delay reconstruction (Shelhamer, 1998;

Shelhamer & Zalewski, 2001)

As of now threshold based methods are common
standard. Probabilistic methods are promising candi-
dates inasmuch as they offer the possibility to imple-
ment an online learning algorithm to adjust to chang-
ing viewing behavior. Very recent candidates for event
classification are neural networks (Hoppe & Bulling,
2016; Anantrasirichai et al., 2016), random forests
(Zemblys et al., 2017) or machine learning in general
(Zemblys, 2016).

Topological data analysis

A relative recent field of data analysis is topological
data analysis (TDA). In this section, a topological ap-
proach to the data is given. To this end, the notion of
different spaces, projections and metrics for the trajec-
tory is introduced. The idea of trajectory spacetime co-

herence is given a precise meaning in topological terms,
i.e., “no holes in trajectory spacetime”, a strikingly sim-
ple topological argument for the separation of the sam-
ple data. An intuition and first use for the argument is
given by the visual assessment of the trajectory space-
time, showing the coarse/fine (global/local) structure
of a scanpath.

Configuration in physical space

The crucial aspect for partitioning the data is the rep-
resentation of space and time. Space is here under-
stood as the three-dimensional physical space, called
world space, which contains as objects the viewer, items
viewed, and tracking equipment. Essentially, the
viewer’s head and eyes have position (location) and
orientation, together called pose, in world space. In the
case of the eyes, very often only the direction is deter-
mined. The starting point for analysis is the set of raw
data from the gaze tracker. The logging of continuous
movement of head and eyes consists of the discretely
sampled position and orientation of head and eyes
in three-dimensional space at equidistant moments in
time during the timespan of the experiment.

If it were the intention only to detect fixations or sac-
cades, it would be sufficient to analyze the movement
of the eyes in head space. In the context of, e.g., cogni-
tive studies, position and orientation of head and eyes
is not interesting in itself; of interest are the visual field,
the objects within the visual field and the distribution
of allocated attention within the viewer’s internal rep-
resentation of the visual field, “the objects looked at”.
Because of this, the motion of the visual field in world
space will be modeled.

The visual field encompasses the part of the environ-
ment which is in principle accessible for gathering op-
tical information. It is well known in visual optics that
the way of light from an object onto the retina is a multi-
stage process which depends on the optical conditions
in world space as well as the geometry and refractive
power of the different parts of the individual eye (Artal,
2014; Mosquera, Verma, & McAlinden, 2015). Taken to-
gether, this is a complex setting to analyze.

In order to cope with the complexity, several as-
sumptions and simplifications have to be made in the
course of modeling. The visual field is not directly ac-
cessible to the eye tracker. The eye tracker can only
measure related signals. These signals are linked by
calibration to the point of regard. E.g., in video based
head-eye tracking, camera(s) take pictures of the head

8E.g., a saccade epoch in the trajectory is in first approxi-
mation a straight line, which is a geometric shape feature (a
closer look shows it is curved (Inhoff, Seymoura, Schad, &
Greenberg, 2010).
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and eyes of a subject. The individual images are pro-
cessed to identify predefined external features of the
head and the eyes, e.g., the corners of the mouth and
the eyes, the pupil, and glints from light emitting
diodes on the light reflecting surfaces of the eyes. From
the relative position of these features in image space(s)
and the calibration, the gaze9 can be determined.

The visual field for one eye is approximated as a
right circular cone of one sheet with the gaze-ray as
its axis, the center of the entrance pupil as its apex,
and with a varying aperture, neglecting any asymme-
try of the visual field. For foveated objects the cone
angle of a bundle of rays that come to a focus is very
small, approximately 0.5 degrees. In the limit of 0.0 de-
grees only a ray remains, which is convenient for calcu-
lations. One calculates the point of intersection of the
gaze-ray (starting from the center of the entrance pupil)
with an object in world space, and not the projection of
the content of the gaze cone onto the retina. Very of-
ten one does not work with the gaze-rays of the two
eyes separately but instead with only one of the two
(the dominant eye); alternatively, the two gaze-rays are
combined into a single gaze-ray, i.e., a mean gaze-ray
known as “cyclops view” (Elbaum, Wagner, & Botzer,
2017). In addition, very often the head is fixed to pre-
vent head movements at the cost of a somewhat non-
physiological setting.

To describe the geometric and topological approach
to the data in detail, we will choose the situation where
a subject is looking at a screen presenting a visual task
(which is a common experimental setting). The point
of regard (PoR) is the location toward which the eyes
are pointed at a moment in time, i.e., the point of inter-
section of the (mean) gaze-ray with the screen. Please
note that the topological method can work just as well
in a three-dimensional setting, e.g., navigating in out-
door scenes. The 3D case is of recent interest for orien-
tation in real and virtual space. For the sake of clarity
of explanation, we will now discuss a typical two di-
mensional setting.

Coherence in space and time

The rationale behind the intended clustering is that
trajectory points which have a certain coherence in
space and time should be grouped together. The ques-
tion is how to define and express spacetime coherence
for trajectory points. The argumentation starts with the
continuous gaze trajectory tr. The gaze trajectory con-
sists of the time-ordered points of intersection Pts of the
mean gaze-ray with the screen or screen space Σ, within
the timespan ts of the experiment. In mathematical ab-
straction:

R ⊃ ts
tr
−→ Σ ⊂ R2, tr ⊂ R × R2

The terminology and notation is not a mathematical
pedantism. In the following, different spaces will be in-
troduced and it is essential not to lose track of one’s cur-
rent conceptual location. It is important to note that the
unparametrized Ps form a multiset because the gaze-
ray can visit the same screen point at many time points
(within a fixation and recurrently). Contrary to screen
points, a time point, representing an instant or moment
in the flow of time, can be visited or passed only once.
In practical terms we only have a finite number of dis-
crete data, i.e., the protocol pr of sampled tr. The pr
results from a discretization of continuous space and
time. The screen consists of a finite number of square
pixels all with equal side length ∆x = ∆y = constant,
the constituting discrete elements of screen space Σ′ =

{Px,y : x ∈ {0, 1, ..., 1023}, y ∈ {0, 1, ..., 767}}, here XGA
resolution is assumed, and the tracker takes pictures at
moments in time with a constant sampling rate (time
points or moments) ts′ = {Mi : i ∈ {0, 1, ...,N − 1},
therefore pr = {PM0 , PM1 , PM2 , ..., PMn }. Time is consid-
ered to be an ordering parameter, and because of the
constant sampling rate, only time index is noted pr =

(P0, P1, P2, ..., Pn) with the ordering parameter i ∈ N0.
It is important to note that the points of intersection
alone do not carry any time information. If we want to
convey the information about time ordering, we must
label points, i.e., show the index. Graphically we can
also show a polyline with the line segments sensed, i.e.,
showing an arrowhead, see fig. 1.
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Figure 1. Trajectory in screen space

The crucial step for the following is to take a different
position with regard to the subject, the combinatorial
view. In analogy to space dispersion algorithms, the

9Here gaze is understood as the ray from the center of the
entrance pupil and the point-of-regard, essentially the first
part of the line-of-sight. For a detailed discussion of the re-
lated notions line-of-sight, pupillary axis, visual axis, etc. see
(Bennett & Rabbetts, 2007; Schwartz, 2013).
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spatial distance of two points is taken, but this time not
only for consecutive points in time but all possible 2-
point combinations over time. This could be regarded
as taking the maximal window size in the dispersion
algorithms. This way one obtains the time indexed ma-
trix D of all combinatorial 2-point distances for the tra-
jectory space. D serves as the basis for further eval-
uation. The representation as a time indexed matrix
of combinatorial 2-point distances makes the trajectory
independent of Euclidean motions because distances
are the invariants of Euclidean geometry. The prop-
erty of being independent of Euclidean motions is espe-
cially desirable when comparing scanpaths (Jarodzka,
Holmqvist, & Nyström, 2010). At first sight this ap-
proach may seem to resemble a superfluous brute force
dispersion approach. The advantage of such an ap-
proach will be clear from the subsequent sections.

First, we can make the spatio-temporal relationship
of the Pis directly visible with an imaging technique. To
this end, we convert, for all time ordered pairs of tra-
jectory points (Pi, P j), the screen space distance values
di, j into gray values of a picture, img(D), of size |pr|× |pr|.
E.g., when the gaze tracker takes 633 samples one ob-
tains an image measuring 633 by 633 pixels.10

In the first line fig. 2 should seem suggestive. For the
visual system of the human observer, the square block
structure of img(D) along the diagonal is easy to iden-
tify. The squares along the diagonal represent the fixa-
tions. While fixations are spatially confined, their sam-
ple distances are short and their gray level is near black.
The duration of a fixation is the diagonal (side) length
of the square. The first off-diagonal rectangles repre-
sent the saccades between successive fixations. Spa-
tially wider saccadic jumps are brighter and shorter
jumps are darker. The building blocks form a hierar-
chy. First level squares are the fixations, second level
squares are clusters of fixations, and so on, see fig. 3 (a).
The hierarchy of squares along the diagonal is the vi-
sual representation for the trajectory (screen)spacetime
coherence over different time spans, i.e., the scaling
property in time. The scale runs from the base-scale, set
by the sampling rate of the tracker, into its first phys-
iological scale, i.e., the time-scale in a single fixation,
showing, e.g., tremor, drift, and microsaccades, into the
time-scale of several fixations within a dwell, viewing
interesting regions, and finally into the time-scale of
shifts in interest, changing the viewing behavior.

Visual assessment of trajectory spacetime

The higher level splitting of the viewing behav-
ior in space and time is a much debated subject
(Velichkovsky, Joos, Helmert, & Pannash, 2005). The
rationale comes under various names in different con-

Figure 2. Image of time indexed matrix of 2-point com-
binatorial distances img(D)

texts. At its base, there is a dichotomy in terms of
global/local (Groner, Walder, & Groner, 1984; Menz
& Groner, 1985; Groner & Groner, 1989), coarse/fine
(Over, Hooge, Vlaskamp, & Erkelens, 2007; God-
win, Reichle, & Menneer, 2014), ambient/focal (Helo,
Rämä, Pannash, & Meary, 2016), where/what (Sheth &
Young, 2016), examining/noticing (Weiskrantz, 1972),
which is backed by anatomical findings, i.e., the con-
cept of a ventral and dorsal pathway for visual infor-
mation processing (Ungerleider & Haxby, 1994; Sheth
& Young, 2016).

If this dichotomous splitting is right, it would be
sensible to find a corresponding splitting in the out-
put of visual processing, i.e., in the spatio-temporal
pattern of fixations and saccades. Here, the visual
assessment of tendency of the spacetime representa-
tion will proove helpful. As an example, in fig. 3,
three scanpaths from the publicly available database
DOVES (van der Linde, Rajashekar, Bovik, & Cormack,
2009) are shown. DOVES contains the scanpaths of
29 human observers as they viewed 101 natural im-

10Plotting a distance matrix is a technique used in differ-
ent research areas and comes under different names, e.g., vi-
sual assessment of cluster tendency (VAT) (Havens, Bezdek,
Keller, & Popescu, 2008; Bezdek & Hathaway, 2002), or see,
e.g., Junejo, Dexter, Laptev, and Pérez (2011). In the context
of dynamical systems it is called recurrence plot (Eckmann,
Kamphorst, & Ruelle, 1987). Recurrence analysis is a suc-
cessful tool for describing complex dynamic systems, see,
e.g., Marwan, Romano, Thiel, and Kurths (2007). The refer-
ence also includes a simple statistical model for the move-
ment of the eyes, i.e., the disrupted Brownian motion. Re-
currence analysis is also known in eye movement research
(Anderson, Bischof, Laidlaw, Risko, & Kingstone, 2013; Far-
nand, Vaidyanathan, & Pelz, 2016).
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(a) Segmentation (b) ABT2-01177

(c) ABT2-00077 (d) KW2-00031

Figure 3. Hierarchy of sample clusters, first level are fix-
ations, second level are clusters of fixations, rectangles
of the first off-diagonal represent saccades

ages (van Hateren & van der Schaaf, 1998). Studying
human viewing behavior while viewing pictures and
images is a common subject in vision research. Since
the seminal work of Buswell (1935), one often repeated
general statement is that people tend to make spatially
widely scattered short fixations early, transitioning to
periods of spatially more confined longer fixations as
viewing time increased (Babcock, Lipps, & Pelz, 2002).

This behavior is exhibited in fig. 3 (b). Here, ob-
server CMG2 looks at stimulus img01019. Visible are
three major second level blocks. The classical interpre-
tation would be that the second block, with its more
variable structure, reflects the global examining phase,
while the following more homogeneous block reflects
the noticing phase. The first block at the beginning
represents the well known central fixation bias in scene
viewing (B. W. Tatler, 2007; Bindemann, 2010).

Interestingly, the database contains also good exam-
ples for the inverse behavior, e.g., observer ABT2 look-
ing at image img00077, see fig. 3 (c). Here the spatio-
temporal pattern could be interpreted as: first the cen-
tral fixation bias, second a local noticing, and only then
a global scanning. This behavior is not uncommon, as
Follet, Le Meur, and Baccino (2011) have noted.

These are only two examples from the database

DOVES, which contains approximately 3000 scanpaths.
The visual inspection makes it possible to get a quick
overview of the spatio-temporal patterns for many
scanpaths and to get an intuitive understanding of
prevailing pattern classes. Scanning DOVES visually
shows that a significant portion of the scanpaths exhibit
a spatio-temporal pattern which does not fit into the
classical coarse-fine structure, e.g., subject KW2 look-
ing at img00031 in fig. 3 (d). Of course, the examples
are cursory and it is not our intention at this stage to
discuss image scanning behavior. The purpose of the
examples is twofold: firstly, to show that by a visual
assessment of img(D)s, one can reach a good intuitive
understanding of spatio-temporal patterns and regu-
larities in scanpaths. The human visual system is an
excellent pattern detector, a resource for investigations
that should be utilized, notwithstanding the fact that
a statistical examination of the data and the statistical
test of hypotheses must confirm “seen” patterns. The
search for simple scanpath patterns is a common task
for many research questions (McClung & Kang, 2016).

Secondly, that the time course of the scanpaths is an
important factor, especially when discussed in the con-
text of top-down strategies versus bottom-up saliency.
A good quantitative model should replicate the empir-
ical observed spatio-temporal pattern classes, reflect-
ing the order of transits between different scanning
regimes and their internal substructure. The whole pat-
tern shows a global statistics as well as substatistics in
the different regimes. When modeling scanpaths, very
often scanpath data are aggregated into simple fea-
ture vectors containing summary statistics as features,
i.e., mean number of fixations, mean fixation duration,
mean saccadic amplitude, etc. A model is considered
good if it can replicate the empirical summary statis-
tics. This neglects any time course and hierarchy in the
patterns.

The next step will be to exploit the representation as
a time indexed matrix of all combinatorial 2-point dis-
tances as a precise instrument of trajectory segmenta-
tion and interpretation.

Homology for spacetime coherence

At this stage, the human visual system has still been
serving as pattern detector. The goal is to extract the in-
teresting part of the information about the hierarchical
spatio-temporal configuration of fixations, clusters of
fixations and returns from the distance representation,
and to do so on an automated basis, without any user
defined parametrization, in a robust way. The ques-
tion is how to express and implement this coherence
algorithmically. The task will be accomplished in three
steps.
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Step 1: The image represention of the time indexed
matrix of combinatorial 2-point distances is equiva-
lent to a 3D surface representation, i.e., the distances
are interpreted as height values over the combinato-
rial time × time coordinates, see fig. 4.

D
img(D) surf(D)

Figure 4. Surface plot of time indexed matrix of combi-
natorial 2-point distances

Clearly visible in the surface plot representation are
rectangular columns with a small on-top variation. The
small variation in blocks is considered noise. In the
image view it could be regarded as a kind of texture.
For a better intuitive understanding of the topologi-
cal approach consider the 3D surface plot as kind of
a landscape which is progressively flooded. Coherent
are parts of the landscape which are below a certain sea
level and form an area like a lake, without internal is-
lands. Lying under or lying above sea level is filtering
the level values according to a threshold. This is done
in the next step.

Step 2: D is filtered, ft(D), according to a threshold t,
i.e., ft : R → {0, 1}, where D 3 di, j ≤ t then ft(di, j) = 1
else ft(di, j) = 0.

Dt
..= ft(D)

img(Dt) surf(Dt)

Figure 5. Filtered time indexed matrix of combinatorial
2-point distances. Magnification shows small compo-
nents.

Notice the punctuated block structure in the image
representation img( ft(D)), see fig. 5. While the over-
all square block structure along the diagonal and the
off-diagonal rectangle block structure is still visible, the
holes are representing the incoherence or noise. The in-
coherence is eliminated by closing the holes, i.e., raising
the threshold.

Step 3: The threshold t is raised in steps from 0 un-
til one coherent pattern along the main diagonal is
formed, tc. Coherent means that there are no holes
in the connected component. The number of con-
nected components is β0 and the number of holes is
β1, Dβ0,β1

t .
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6
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D5,36
30

D3,0
41

img(D217,6
6 ) surf(D217,6
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The coherent white part along the diagonal in the im-
age representation is the partition of the data that we
have been seeking.

It should be stated explicitly that the parameter tc for
separation is not preassigned. The definition for sep-
aration is the coherent structure/pattern of trajectory
spacetime. The distance threshold is increased until co-
herence is reached. This is done individually for ev-
ery trajectory. The pattern is global for the trajectory
and does not depend on local specifics. It is important
to note that a more detailed analysis within each block
will separate the noise into physiological noise (tremor,
drift, micro saccades, etc.) and instrument noise. In the
supplementary document this approach can be interac-
tively investigated.

All this is easy to understand for human intuition,
but needs a formal mathematical theory along with
an algorithm and efficient computer implementation.
Generally speaking, there exist three methods to tackle
the problem. The first is the obvious way, i.e., a human
observer varies the “sea level”. Human evaluation es-
pecially of noisy data is common practice in eye track-
ing data analysis (Saez de Urabain, Johnson, & Smith,
2015). The second way is using a simple “brute force”
image analysis algorithm. The third, more elegant, way
is to use algebraic topology in the form of homology.
Homology tells us about the connectivity and number
of holes in a space, in our representation the “islands
and lakes” created while flooding the space. Counting
the number of connected components and the number
of holes is calculating the first two Betti numbers, β0
and β1, which is a fairly simple topological characteris-
tic. The detailed description of the theory can be found
in any good book on algebraic topology, e.g., Munkres
(1984), Hatcher (2002), or Kaczynski, Mischaikow, and
Mrozek (2010). At first sight, a formal theory might
seem daunting, but the important fact is that a simple,
almost trivial topological argument “no holes in trajec-
tory spacetime” is sufficient to unambiguously deter-
mine sample clusters on different scales. The very na-
ture of an event and a cluster of events is its “coher-
ence” in space and time. Time comes with an order
(consecutive) and space comes with a topology (vicin-
ity, nearness).

What we have obtained is the adjacency matrix
A = [ai, j] of graph theory for our gaze trajectory.
The side length of a square around the diagonal is
proportional to the duration of fixation (the time scale
is fixed by the sampling rate of the gaze tracker).
The rectangles in the upper and lower triangular
matrix represent a return (recurrence). The length
of each block contains the time information, i.e., the
duration of a cluster. Separating the blocks results in

the sequence of fixations and their durations as well
as the duration of intermediate gaps. Suppressing
the time information in the matrix, i.e., shrinking the
squares along the diagonal to one point entries, one
arrives at the classical scanpath string representation
of ABCDEC in the form of a matrix, see fig. 6.



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1


Figure 6. Matrix representation for scanpath

The off-diagonal elements are the coupling, i.e.,
recurrence of the fixations. The same argument for the
second level squares yields the dwells, i.e., one obtains
(ABC)1(DE)2C1 (superscript numbers the dwell).

To summarize: for trajectory separation, three com-
putational steps are needed. A distance representation
for the gaze-trajectory in form of a time indexed matrix
of all combinatorial 2-point distances is calculated. To
separate the matrix into subparts a sliding threshold t
is set, which is the sought diameter of a fixation. The
threshold t is increased from 0 in steps and the number
of connected parts, β0, and holes, β1, is traced. As soon
as the square blocks along the diagonal form a simply
connected area without holes, the minimum threshold
tc for the segmentation into fixations has been found.
Further raising the threshold yields the dwells.

Abstract spacetime clustering

So far, the segmentation process for the gaze trajec-
tory in screen space has been discussed, but the method
can be made much more far-reaching. In order to do so,
the meaning and interpretation of space will be gener-
alized.

Up to now the concept of space has been the physical
space and its Euclidean modeling, specifically its Eu-
clidean metric. The crucial point is that the eyes, seen
as a mechanical system, are moving in physical space,
but the driving physiological and psychological pro-
cesses are working in “physiological and psychologi-
cal spaces”. An example of a physiological space is the
color space and a much more complex space is the so-
cial space of humans when interacting, say, at a cocktail
party. In this space the items or “points” are interlocu-
tors, and the eyes are switching between these points
with motivations such as signaling interest in the in-
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terlocutor’s small talk, which is a gesture of politeness,
and does not have the primary goal of gathering visual
information. Gathering information is looking at the
face to feel out the mood, etc. What counts is not the
physical distance between the interlocutors, but rather
some sort of social communication-distance. Relevant
are the “content” of the scene and the “strategy” of the
observer while interacting, which in turn is reflected in
the saccade-and-fixate pattern. Physical space-distance
is not a restricted resource for the eyes. The eyes can
move effortlessly from one point to each other point in
physical space.

As an example for the approach try for yourself the
following search paradigm, see fig. 7. In the collage of
colored shapes all but two colored shapes occur three
times, one colored shape occurs twice and another col-
ored shape occurs four times: which two are they? Ad-
mittedly, searching for numerosity is hard! Neverthe-
less, numerosity is a good example for an abstract fea-
ture, not tied to a primary sensory input. You can track
and visualize your own search strategy in the supple-
mentary interactive document.

Figure 7. Search plus path

At the beginning many trajectories have fixations
on a color. This derives from the fact that humans
can identify color-blobs very easily in their view field.
Thus, the first “search channel” is very often color.11

The second channel is an easily detectable “geometry”.
While the distinct color blobs are far apart in terms of
geometric Euclidean distance they are near in color-
space, i.e., the red disk (0,9) is near, actually identical,
in color to the red disks (5,3) and (5,11). The same holds
true for the “geometry channel”, e.g., the motives with
a circular boundary. It is likely that most subjects will
start out with a random search strategy, which after a
while will be abandoned in favor of a systematic, row-
by-row, search strategy.

The qualitative approach to the geometric stimuli
analysis is taken in “Gestaltpsychology". A more re-
cent and formal approach to it is taken in structural

information theory and algorithmic information the-
ory, which can be made quantitative. Using specialized
metrics differentiates the channels in the search strat-
egy in a metric way and helps to classify viewers. It
is helpful to change the terminology and to say that
the eyes are moving in “feature space”. This space has
different dimensions like color, shape, etc., which form
subspaces. The feature space is a topological space. For
ease of use it could be modeled as a metric space and
the path is encoded in feature distance. Of course, the
metric has to be adapted for special purposes. A simple
example is the distance in color-space. Simple is cer-
tainly relative, taking into account the long way from
first color theories of the 19th century into the elabo-
rated color spaces like the HUE space, used in printing
and computer imaging. This development has by no
means come to an end. A (much) more complex exam-
ple is the distance in social interaction.

Nevertheless, the starting point is always the basic
notion of a metrizable “neighborhood or nearness” re-
lation in the form of a metric. The metric is the crucial
starting point to emphasize different aspects in the tra-
jectory. Let us start with the metric on a space X. The
general mathematical notion of a metric is a function

d(x, y) : X × X → R

satisfying for all x, y, z ∈ X the conditions

Positiveness: d(x, y) ≥ 0 with equality only for x = y

Symmetry: d(x, y) = d(y, x)

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

This definition is only the bare skeleton of a metric. By
itself it does not preassign any structure in the data, as
is shown in the example:

d(Pi, P j) = 0 for i = j else 1

A more complex metric gives a much richer structure,
emphasizing interesting aspects in the data. In RGB
color space the distance between two colors C1(R,G, B)
and C2(R,G, B) simply is:

dRGB(C1,C2) =
√

(R1 − R2)2 + (G1 −G2)2 + (B1 − B2)2

A different example is reading. Here it would be appro-
priate to work within text space. For the understand-
ing of reading patterns, not only the physical spacing
of characters, but also the semantic distance is impor-
tant. The semantic distance measures the difficulty of

11Anatomically a separate pathways for color can be dis-
tinguished (Schwartz, 2010).
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understanding words in a reading context. In the flow
of reading, words can be physically close together, but
if a word does not fit into the context or is not known to
the reader, the reader will have difficulties in process-
ing the word and a regression is most likely. Under-
standing a text requires coherence of word semantics
as well as with the narrative in which they occur. The
reader is traveling in general feature spaces and coher-
ence is maintained or broken.

Along these lines more complex spaces can be con-
structed and analyzed. Clustering the data in feature
space reveals directly the process related time ordering
without intermediate separation of data into fixations,
saccades, and then assigning areas of interest. The pro-
cess pattern works directly on the items of interest. To
cite Stark and Ellis (1981)

Sensory elements are semantic subfea-
tures of scenes or pictures being observed
and motor elements are saccades that repre-
sent the syntactical structural or topological
organization of the scene.

The ITop algorithm is essentially meant for stimuli-
space based analyses. The idea of directly connecting
stimuli information and eye tracking data is also pro-
posed in (Andersson et al., 2016).

Results for fixation identification

To show the algorithm’s potential for level one eye-
tracking data segmentation, a basic comparison with a
state-of-the-art algorithm is given. An in-depth evalu-
ation together with a MATLAB R© reference implemen-
tation will be provided in a follow-up article.
Current research has raised the awareness that algo-
rithms commonly in use, especially when used “out
of the box”, markedly differ in their results and an
overall standard is lacking (Andersson et al., 2016).
This situation escalates with each new algorithm pro-
posed. The topological approach introduced herein is
no exception. To make results comparable as much as
possible a common reference set together with com-
puted results, e.g., number and duration of events,
event detected at samples, would be preferable. In
a recent article, (Hessels et al., 2016) introduced a
new algorithm, identification by two-means clustering
(I2MC), together with an open source reference imple-
mentation as well as ten datasets to show the perfor-
mance of their approach. The I2MC algorithm is eval-
uated against seven state-of-the-art event detection al-
gorithms and is reported to be the most robust to high
noise and data loss levels, which makes it suitable for
eye-tracking research with infants, school children, and

certain patient groups. To ensure performance and
comparability the identification by topological argu-
ments (ITop) is checked against I2MC. The data are
taken from www.github.com/royhessels/I2MC. The
datasets comprise two participants, each participant
having five trials, resulting in ten datasets overall. Both
eyes are tracked. I2MC makes use of the data from both
eyes for fixation detection, ITop classifies solely on the
basis of the left eye data series. I2MC uses an interpola-
tion algorithm for gap-filling. ITop works without gap
filling. Fig. 8 shows the classification results for the ten
datasets under the ITop and I2MC algorithm.

Figure 8. Performance of ITop and I2MC on ten
datasets. The y-axis is in participant.trial, the x-axis
is in samples. ITop fixation periods are in yellow and
I2MC fixation periods are in orange. Dark blue is the
gap between detected fixations or periods of data loss.

At some positions the ITop signal is splitted into two
peaks, e.g., 1.3 (at samples 360–382 and 533–542) and
2.5 (at samples 1155–1165). This is no error, it is a finer
view of the data. This is discussed in the following ex-
amples. The two approaches are in good agreement.
Whenever I2MC detects a fixation ITop also does. ITop
detects two additional fixations, one for 2.2 (at samples
1048–1049) and one for 2.3 (at samples 17–19). A closer
look at the scatter plot as well as the position plot re-
veals two very close fixations, see (fig. 9, fig. 10) and
(fig. 11, fig. 12).
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Figure 9. Scatter plot for dataset 2.2 at sample 1048 (red
square at sample 1048) shows two clusters very close to
each other.

Figure 10. Position plot for dataset 2.2 at sample 1048
(red line at sample 1048) shows a small jump in the
mean. The small jump is detected in spite of significant
noise.

Figure 11. Scatter plot for dataset 2.3 at samples 17–19
(red square at sample 18) shows two clusters.

Figure 12. Position plot for dataset 2.3 at samples 17–19
(red line at sample 18) shows a small jump in the mean.

Although no data interpolation is done, ITop can
identify a shift in the direct neighborhood of data loss.
This is shown for 2.1 at samples 242–246, see fig. 13.

Figure 13. Position plot for dataset 2.1 at samples 242–
246 (red line at sample 242) shows a small jump in the
mean after a period of data loss.

At some positions the gap between fixations is split,
e.g., for 1.3 at samples 360–382. This is a finer view
of the data. As discussed, a saccade very often shows
a complex stopping signal (Hooge, Nyström, Cornelis-
sen, & Holmqvist, 2015), post saccadic oscillations are a
prominent example (Nyström & Holmqvist, 2010). The
term complex is meant in contrast to abrupt stopping.
It does not necessarily mean a post-saccadic oscillation
(PSO). A PSO is only an example for a named event
with a more complicated “braking” pattern. This is re-
flected in the splitting of the signal. The position plot
for 1.3 at samples 360–382 shows such a complex be-
havior, see fig. 14.
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Figure 14. Position plot for dataset 1.3 between sample
360 (green line) and sample 382 (red line) showing a
complex transit between two fixations.

The splitting according to braking can be much finer
but is still detected by ITop. An example is 1.3 at sam-
ples 533–543. Here, a very small shift in the mean of the
y-position signal occurs shortly after stopping, show-
ing the high sensitivity of ITop, see fig. 15.

Figure 15. Position plot for dataset 1.3 between sample
533 (green line) and sample 543 (red line) showing a
small jump in the mean of the y-position after stopping.
The jump occurs at the red line.

It must further be noted that the saccades according
to ITop are longer (spatially wider) than under I2MC.
As an example, dataset 2.3 at samples 499–515 is shown
in detail. I2MC detects a gap between two fixations at
samples 502–507, see fig. 16.

Figure 16. Scatter plot for dataset 2.3 between sample
502 (green square) and sample 507 (red square).

ITop detects the gap at the same location at samples
499–515 and is therefore approximately twice as long,
see fig. 17.

Figure 17. Scatter plot for dataset 2.3 between sample
499 (green square) and sample 515 (red square).

The position plot shows a jag in the y-signal, which
could potentially mislead an algorithm, see fig. 18.

Figure 18. Position plot for dataset 2.3 between sample
499 (green line) and sample 515 (red line). A jag occurs
at sample 504, potentially misleading algorithms.

ITop also indicates other changes in the data se-
ries, like stationarity, e.g., the double peaked signal for
dataset 2.5 at samples 1155–1165 indicates the onset of
a drift in a fixation, see fig. 19.
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Figure 19. Position plot for dataset 2.5 shows a drift
beginning at sample 1155 (red line).

Notwithstanding that I2MC and ITop are in good
overall agreement they also show differences on a finer
scale. If one takes into consideration the broad num-
ber of algorithms and different approaches for event
detection it must be clear that the overall results can
be markedly different. This can only be mitigated by
defining events in an unambiguous and definite way
and comparing algorithms on the basis of standard
data on a sample by sample level.

Discussion

A general overview of the algorithms currently in
use for event detection in eye-tracking data is given,
showing that there is no standard for event detection,
even in the case of the most basic events such as fixa-
tions and saccades.

A topological approach to event detection in raw
eye-tracking data is introduced, ITop. The detection
is based on the topological abstraction of coherence in
space and time of the sample points. The idea of tra-
jectory spacetime coherence is given a precise meaning
in topological terms, i.e., “no holes in trajectory space-
time”, a strikingly simple topological argument for the
separation of the sample data. The topological argu-
ment is a kind of common rationale for most of the al-
gorithms currently in use. The basis for the topological
approach is the representation of raw eye-tracking data
in the form of a time indexed matrix of combinatorial
2-point distances. This representation makes the coher-
ence of sample data in space and time easyly accessible.
The time ordered 2-point combinatorial distances rep-
resentation makes the gaze trajectory independent of
Euclidean motions, which is a desired property when
comparing scanpaths, since distances are the invariants
of Euclidean geometry.

For visualization, the matrix is displayed as a
grayscale image to show the spatio-temporal order-
ing and coherence of the gaze-points in display space.

For the human visual system the interesting parts are
easy to detect, e.g., fixations, dwells, etc. The visual
assessment of spatio-temporal coherence is discussed
and exemplified in the context of coarse-fine (global-
local) scanpath characteristics. It is argued that the vi-
sual assessment of the trajectory spacetime is helpful
to identify general patterns in viewing behavior and to
develop an intuitive understanding thereof.

To separate fixations and higher level clusters of fix-
ations out of eye-tracking data, the common argument
of spatio-temporal coherence, implicitly used in exist-
ing algorithms, is converted into an explicit topological
argument, i.e., “no holes in trajectory spacetime”. The
method encompasses the well known criteria which are
partially expressed as thresholds for velocity, accelera-
tion, amplitude, duration, etc. Tracking the number of
connected parts and holes while varying the scale al-
lows the partitioning of the distances matrix into the
classical scanpath oculomotor events, i.e., segments of
fixations and saccades. The segments are identified by
their spatio-temporal coherence by means of simple ho-
mology, which is a classical tool of algebraic topology.
For processing the data no preprocessing is needed,
i.e., gap-filling, filtering, and smoothing, preserving the
data “as is”. This approach makes it possible to identify
the single events without any predefined parameters.
A postprocessing of the found events, like merging of
nearby fixations or the removal of physiologically im-
plausible short fixations and saccades is not needed.

The topological segmentation is introduced in the fa-
miliar setting of Euclidean space and its well known
metric. The advantage of this approach is that it
can be easily expanded to general spaces like color
spaces, shape spaces, etc., allowing the analysis of com-
plex patterns in higher human activities. The ITop al-
gorithm is essentially meant for stimuli-space based
analysis.

In order to facilitate the intuitive understanding the
article is accompanied by a supplementary interactive
document.

ITop is considered as a fourth approach to eye-
tracking data in addition to the well known thresh-
old based approaches and the newer probabilistic and
machine learning methods. An expanded compari-
son, analysis, and classification of the ITop detection
patterns together with an open source MATLAB R© ref-
erence implementation will be provided in a further
work.
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and ŚwhereŠ in the human brain. Current
Opinion in Neurobiology, 4(2), 157 - 165. Retrieved
from http://www.sciencedirect.com/
science/article/pii/0959438894900663
doi: http://dx.doi.org/10.1016/0959-4388(94)
90066-3

Urruty, T., Lew, S., & Ihadaddene, N. (2007). Detecting
eye fixations by projection clustering. ACM Trans-
actions on Multimedia Computing, Communications
and Applications, 3(4).

S̆pakov, O., & Miniotas, D. (2007). Application of clus-
tering algorithms in eye gaze visualizations. In-
formation Technology and Control, 36(2), 213–216.

Valsecchi, M., Gegenfurtner, K. R., & Schütz, A. C.
(2013). Saccadic and smooth-pursuit eye move-
ments during reading of drifting texts. Journal of
Vision, 13(10), 8.

van der Lans, R., Wedel, M., & Pieters, R. (2011). Defin-
ing eye-fixation sequences across individuals and
tasks: the binocular-individual threshold (bit) al-
gorithm. Behavior Research Methods, 43, 239–257.

van der Linde, I., Rajashekar, U., Bovik, A. C., &
Cormack, L. K. (2009). Doves: A database
of visual eye movements. Spatial Vision, 22(2),
161-177. Retrieved from http://live.ece
.utexas.edu/research/doves

Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006).
Eye movement trajectories and what they tell us.
Neuroscience and Biobehavioral Reviews, 30, 666–
679.

van Hateren, J. H., & van der Schaaf, A. (1998).
Independent component filters of natu-
ral images compared with simple cells in
primary visual cortex. Proceedings of the
Royal Society of London B: Biological Sci-
ences, 265(1394), 359–366. Retrieved from
http://rspb.royalsocietypublishing
.org/content/265/1394/359 doi:
10.1098/rspb.1998.0303

Velichkovsky, B. M., Joos, M., Helmert, J. R., & Pan-

24

http://dx.doi.org/10.1167/7.14.4
http://dx.doi.org/10.1167/9.7.4
http://www.sciencedirect.com/science/article/pii/0959438894900663
http://www.sciencedirect.com/science/article/pii/0959438894900663
http://live.ece.utexas.edu/research/doves
http://live.ece.utexas.edu/research/doves
http://rspb.royalsocietypublishing.org/content/265/1394/359
http://rspb.royalsocietypublishing.org/content/265/1394/359


Journal of Eye Movement Research
10(1):1, 1-25

Hein, O., & Zangemeister, W. H. (2017)
Topology for gaze analyses

nash, S. (2005). Two visual systems and their eye
movements: evidence from static and dynamic
scene perception. In Proceedings of the xxvii confer-
ence of the cognitive science society (p. 2283-2288).
Retrieved from https://tu-dresden.de/
mn/psychologie/applied-cognition/
ressourcen/dateien/publikationen/
pdf/velichkovsky2005.pdf?lang=de

Vella, F., Infantino, I., & Scardino, G. (2016). Per-
son identification through entropy oriented mean
shift clustering of human gaze patterns. Multime-
dia Tools and Applications, 1–25.

Veneri, G. (2013). Pattern recognition on human vision.
In (p. 19-47). Transworld Research Network.

Veneri, G., Piu, P., Federighi, P., Rosini, F., Federico, A.,
& Rufa, A. (2010, June). Eye fixations identifi-
cation based on statistical analysis - case study.
In Cognitive information processing (cip), 2010 2nd
international workshop on (pp. 446–451).

Veneri, G., Piu, P., Rosini, F., Federighi, P., Federico, A.,
& Rufa, A. (2011). Automatic eye fixations identi-
fication based on analysis of variance and covari-
ance. Pattern Recognition Letters, 32, 1588–1593.

Vidal, M., Bulling, A., & Gellersen, H. (2012). De-
tection of smooth pursuits using eye movement
shape features. In Proceedings of the symposium on
eye tracking research and applications (pp. 177–180).

Špakov, O. (2012). Comparison of eye movement fil-
ters used in hci. In Proceedings of the symposium on
eye tracking research and applications (pp. 281–284).
ACM.

Wass, S., Smith, T., & Johnson, M. (2013). Parsing eye-
tracking data of variable quality to provide ac-
curate fixation duration estimates in infants and
adults. Behavior Research Methods, 45(1), 229–250.

Weiskrantz, L. (1972). Review lecture: Behavioural
analysis of the monkey’s visual nervous system.
Proceedings of the Royal Society of London B: Biolog-
ical Sciences, 182(1069), 427–455. Retrieved from

http://rspb.royalsocietypublishing
.org/content/182/1069/427 doi:
10.1098/rspb.1972.0087

Widdel, H. (1984). Operational problems in analysing
eye movements. In Theoretical and applied aspects
of eye movement research (Vol. 22, pp. 21–29).

Wooding, D. S. (2002a). Eye movements of large popu-
lations: Ii. deriving regions of interest, coverage,
and similarity using fixation maps. Behavior Re-
search Methods, Instruments, & Computers, 34(4),
518–528.

Wooding, D. S. (2002b). Fixation maps: quantifying
eye-movement traces. In Etra ’02: Proceedings of
the 2002 symposium on eye tracking research & appli-
cations (pp. 31–36). New York, NY, USA: ACM.

Wooding, D. S., Mugglestone, M. D., Purdy, K. J., &
Gale, A. G. (2002). Eye movements of large pop-
ulations: I. implementation and performance of
an autonomous public eye tracker. Behavior Re-
search Methods, Instruments, & Computers, 34(4),
509–517.

Wyatt, H. J. (1998). Detecting saccades with jerk. Vision
Research, 38, 2147–2153.

Zangemeister, W. H., Stiehl, H. S., & Freksa, C. (Eds.).
(1996). Visual attention and cognition (Vol. 116).
North-Holland.

Zemblys, R. (2016). Eye-movement event de-
tection meets machine learning. In The
20th international conference biomedical engi-
neering 2016. Retrieved from https://
www.researchgate.net/publication/
311027097_Eye-movement_event
_detection_meets_machine_learning

Zemblys, R., Niehorster, D. C., Komogortsev, O., &
Holmqvist, K. (2017). Using machine learning to
detect events in eye-tracking data (accepted pa-
per). Behavior Research Methods.

25

https://tu-dresden.de/mn/psychologie/applied-cognition/ressourcen/dateien/publikationen/pdf/velichkovsky2005.pdf?lang=de
https://tu-dresden.de/mn/psychologie/applied-cognition/ressourcen/dateien/publikationen/pdf/velichkovsky2005.pdf?lang=de
https://tu-dresden.de/mn/psychologie/applied-cognition/ressourcen/dateien/publikationen/pdf/velichkovsky2005.pdf?lang=de
https://tu-dresden.de/mn/psychologie/applied-cognition/ressourcen/dateien/publikationen/pdf/velichkovsky2005.pdf?lang=de
http://rspb.royalsocietypublishing.org/content/182/1069/427
http://rspb.royalsocietypublishing.org/content/182/1069/427
https://www.researchgate.net/publication/311027097_Eye-movement_event_detection_meets_machine_learning
https://www.researchgate.net/publication/311027097_Eye-movement_event_detection_meets_machine_learning
https://www.researchgate.net/publication/311027097_Eye-movement_event_detection_meets_machine_learning
https://www.researchgate.net/publication/311027097_Eye-movement_event_detection_meets_machine_learning

	Introduction
	Splitting trajectory data into events
	The basic oculomotor events
	Higher level use for oculomotor events
	The problem of defining a fixation
	Topological approach to the problem

	Overview of existing approaches
	Taxonomy of algorithms
	Range of advanced methods

	Topological data analysis
	Configuration in physical space
	Coherence in space and time
	Visual assessment of trajectory spacetime
	Homology for spacetime coherence
	Abstract spacetime clustering

	Results for fixation identification
	Discussion
	Acknowledgement
	References

