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Abstract: Numerous studies have proven that natural particle-packed granular materials, such as
soil and rock, are consistent with the grain-size fractal rule. The majority of existing studies have
regarded these materials as ideal fractal structures, while few have viewed them as particle-packed
materials to study the pore structure. In this study, theoretical analysis, the discrete element method,
and digital image processing were used to explore the general rules of the pore structures of grain-size
fractal granular materials. The relationship between the porosity and grain-size fractal dimension
was determined based on bi-dispersed packing and the geometric packing theory. The pore structure
of the grain-size fractal granular material was proven to differ from the ideal fractal structure, such as
the Menger sponge. The empirical relationships among the box-counting dimension, lacunarity,
succolarity, grain-size fractal dimension, and porosity were provided. A new segmentation method
for the pore structure was proposed. Moreover, a general function of the pore size distribution was
developed based on the segmentation results, which was verified by the soil-water characteristic
curves from the experimental database.
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1. Introduction

In natural environments, various types of materials are formed by grain packing. For example,
soil is directly generated by particle packing, while rock is formed by siliceous or calcareous
cementation on the basis of sediment packing. Concrete is cemented with cement according to
coarse aggregate packing. For such granular materials, let r denote the particle size and N(≥ r) denote
the number of particles larger than r. The grain size distribution satisfies the grain-size fractal rule if
the following relationship exists:

N(≥ r) ∝ r−D, (1)

where D is the number-size distribution fractal dimension (also referred as grain-size fractal dimension
in this research).

It is well known that fractals play an important role in the natural environment [1]. Numerous
studies have reported that soil is a grain-size fractal granular material [2–6]. The grain-size distribution
of sedimentary rock has been found to follow power-laws with a fractal dimension in the range of 2
to 3 orders [7,8]. Fragments of a geological body produced by weathering, explosions, and impacts
often satisfy a grain-size fractal distribution over a wide range of scales, owing to the scale invariant
of the fragmentation mechanism [9–13]. Furthermore, in engineering practice, numerous granular
materials are generated by rock fragment packing, such as ore deposits and concrete coarse aggregates,
which also follow the grain-size fractal distribution [14]. Therefore, it is important to understand the
general properties of grain-size fractal granular materials.
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Similar to most basic characteristics, the pore structure determines various physical and
mechanical properties of granular materials. The soil-water characteristic curve is mainly determined
by the soil pore structure [15]. Therefore, during the early research stages, the pore distribution
coefficient was commonly used to represent the effect of the pore structure [16–18]. Furthermore,
the hydraulic conductivity of granular media is mainly dependent on their pore structure. Numerous
studies have been conducted on the prediction of the permeability based on the pore size distribution
available in the literature [19–21]. The filtration performance of a granular medium is also determined
by its pore structure, particularly the constriction distribution [22–24]. For suffusion and internal
erosion, pore structure also plays a decisive role [25,26]. The pore structure holds the same significance
in various other fields, such as shale gas engineering [27], petroleum engineering [28,29], and pollutant
transport and reaction in environmental engineering [30–32].

At present, numerous studies regarding the pore structure of granular media are available in the
literature. Several researchers regard the granular media formed by particle packing as ideal fractal
structures, such as Menger sponges [33–38]. In these works, the permeability or soil-water characteristics
have been studied based on the ideal fractal structures. In reality, the ideal fractal structure is quite
different from the grain-size fractal granular media formed by particle packing, because the physical
packing process is not considered. Numerous researchers have extracted meso-scopic images of granular
media by means of computed tomography (CT) or nuclear magnetic resonance (NMR), and then studied
their pore structure using digital image processing technology [39–44]. Existing studies on the pore
structure based on CT and NMR could only examine several rock or soil samples simultaneously,
and were therefore unable to obtain general rules. Certain studies have used the discrete element
method (DEM) to generate granular media and investigate their pore structure [24,45–50]. These DEM
studies focused on the pore structures of mono-sized packing, bi-dispersed packing, and packing
with different gradation parameters. To date, except the simple 2D pore-structure studies [51,52],
few studies regarding grain-size fractal granular material based on particle packing are available in
the literature. Furthermore, the aforementioned DEM studies only presented the pore size distribution
curves for several specific cases, and no general law was provided.

The digital image processing approaches used in pore structure studies can be categorized
into Delaunay tessellation, medial axis, and watershed-based methods. Each of these approaches
exhibits limitations. For example, the Delaunay tessellation-based method [24,45,48,50] can only be
applied to spherical particles, and when the number of particles around the pore is greater than
four, the results become inaccurate. In the medial axis-based methods [43,44,53–56], the medial axis
of the pore structure needs to be extracted first. For a complex pore structure, particularly with
a large protuberance on the pore surface, the extraction of the medial axis is generally inaccurate.
In watershed-based methods [42,57], the pore structure first needs to be converted into the Euclidean
distance field, which has a relatively large computational cost. Furthermore, over-segmentation of
the pore structure often occurs when the pore boundaries are complex. In the aforementioned studies,
the identification criteria of the throat and pore are not uniform, and neither are the merging criteria
of the pore. Different criteria will lead to varying results [58–60], therefore, it is difficult to establish
a general rule for pore distribution according to the above methods.

The objective of this study is to investigate the general packing rule and pore structure
characteristics of grain-size fractal granular material. By means of theoretical analysis and DEM
simulation of the packing process, the relationship between the porosity and number-size distribution
fractal dimension was established. Based on the DEM packing pattern, the pore structures of granular
materials with different fractal dimensions and compactness were extracted. Thereafter, the fractal
features of the pore structure, such as the box-counting dimension, lacunarity, and succolarity,
were studied. Moreover, a new method for pore segmentation was proposed, based on the continuous
open operation. A general function of the pore size distribution was also obtained in this study
according to the segmentation results. Finally, the pore size distribution function was verified by the
soil-water characteristic curve.
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2. Porosity

2.1. Theoretical Analysis

As one of basic parameters of granular materials, the porosity is determined by the particle size
distribution. A certain relationship must exist between the porosity and grain-size fractal dimension
(D), which essentially represents the particle size distribution. In this study, a formula for porosity
prediction was derived based on the concept of integrating discrete bi-dispersed packing and discrete
geometric packing, as proposed by Brouwers [61].

The basic idea to derive the porosity prediction formula can be summarized as follows. There is
exact solution of ideal geometric packing. At the same time, the porosity of bi-dispersed packing are
easy to be obtained by simulation or experiment. The exact solution of geometric packing is modified
to a general form by the results of bi-dispersed packing, which is applicable to real particle packing.
According to the particularity of grain-size fractal, the final porosity prediction equation is obtained by
modifying the general form.

2.1.1. Bi-Dispersed Packing

Bi-dispersed packing refers to the packing of two different sized particles. Supposing that the
radius of large particle is dl and that of the small particle is ds, the volume fraction of the large particle
is cl, while that of the small particle is cs. Then, the size ratio dr is defined as

dr =
dl
ds

, (2)

and the volume fraction ratio cr is defined as

cr =
cl
cs

. (3)

The porosity of bi-dispersed packing is dependent on the size ratio dr and volume fraction ratio cr.
In this study, the DEM was used to simulate the packing process of a bi-dispersed particle system

with different size ratios dr and volume fraction ratios cr under the action of gravity. The packing
schematic is presented in Figure 1a. The porosity obtained by the DEM simulation is illustrated
in Figure 1b. It can be observed that, as the particle size ratio dr decreases, the porosity increases,
and maximum values occur at dr = 1. Meanwhile, with the increase in the volume fraction ratio cr,
the porosity first decreases and then increases, and minimum values occur when cr = 1. The variation
in the porosity is consistent with the conclusions of Furnas [62]. The porosity φ of the bi-dispersed
packing can be expressed as a function of dr and cr:

φ = fp(dr, cr). (4)

As there are maximum values of φ at dr = 1 and minimum values at cr = 1, the following
relationship can be obtained:

∂ fp

∂cr

∣∣∣∣
dr=1,cr=1

= 0. (5)
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(a) (b)

Figure 1. Schematic of (a) bi-dispersed packing, and (b) its porosity distribution with radius ratio dr

and volume fraction ratio cr.

2.1.2. Geometric Packing

As illustrated in Figure 2, geometric packing refers to the packing of large particles, followed
by the filling of small particles in the pores of the large particle packing. During the filling of small
particles, only the pores formed by the skeleton of the large particles were filled, which had no effect
on the packing of the large particles.

Figure 2. Schematic of geometric packing (taking 2D as an example).

To satisfy the geometric packing condition, the size ratio of the two adjacent groups (di and di+1)
needs to be greater than a certain value, i.e.,

di
di+1

= dr > drt, (6)

in which the threshold value drt is in the range of approximately 7 to 10 according to the study of
Furnas [62].

As no interaction between large and small particles occurs in the packing process, the porosity of
geometric packing can be strictly derived. Assume that the geometric packing consists of n groups
of particles, in which the maximum particle size is d1 and the minimum particle size is dn. Firstly,
the largest particles are stacked. At this time, the volume fraction of the particles is set to c1 and the
pore volume fraction can be expressed as

φ1 = 1− c1. (7)
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Then, the second group of particles is filled in the pores generated by the packing of the first
group. At this time, the volume fraction of the particles of the second group is

c2 = c1φ1 = c1(1− c1). (8)

After the second group is filled, the total volume fraction of the particles ct2 and pores φ2 can be
expressed as follows:

ct2 = c1 + c2 = c1 + c1(1− c1), (9)

φ2 = 1− ct2 = (1− c1)
2 = φ2

1. (10)

By analogy, it can be concluded that, when n groups of particles are stacked, the total volume
fractions of the particles ctn and pores φn are

ctn = c1 + c1(1− c1) + c1(1− c1)
2 + ... + c1(1− c1)

n−1, (11)

φn = 1− ctn = (1− c1)
n = φn

1 . (12)

When the size ratio of the two adjacent groups is smaller than the threshold value (dr < drt),
the large and small particles will interact with one another, and the formula derived previously is no
longer valid. To obtain the porosity prediction formula in the case of dr < drt, Equation (4), obtained
by bi-dispersed packing, is introduced into (12), i.e., when the second group of particles is stacked
based on the packing of the first group, φ/φ1 is used to multiply the porosity of the first group packing
(φ1) instead of φ1. By analogy, the final porosity after the packing of n groups of particles is

φn = φ1

(
φ

φ1

)n−1
= φ1

(
fp (dr, cr)

φ1

)n−1

. (13)

When dr > drt, φ = φ2
1. At this time, (13) is reduced to (12). Therefore, (13) is applicable to all

cases of the size ratio dr as a general formula.

2.1.3. Packing of Grain-Size Fractal Granular Material

For grain-size fractal granular media, if the maximum particle size dmax is known, (1) can be
changed into the following form [35]:

N(≥ d) =
(

dmax

d

)D
. (14)

The total number of particles can be obtained by (14), which is

Nt =

(
dmax

dmin

)D
, (15)

where dmin denotes the minimum particle size. The differential form of (14) is

− dN(d) = DdD
maxd−(D+1)dd. (16)

According to (15) and (16), we can obtain

− dN(d)/Nt = DdD
mind−(D+1)dd = ff(d)dd. (17)

From (17), the probability density function for any particle size in grain-size fractal granular
material is provided:

ff(d) = DdD
mind−(D+1). (18)
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It is assumed that continuous fractal porous media are divided into n groups of particles with
the same size ratio of two adjacent groups (when n → ∞, the particle size distribution tends to be
continuous), i.e.,

di/di+1 = dr. (19)

Meanwhile, let the maximum particle size be d1, and the minimum particle size be dn. From (19),
we can obtain

dmax

dmin
=

d1

dn
= dn

r . (20)

Let A = dmax/dmin. Then, the size ratio dr can be expressed as follows, according to (20) and the
Taylor expansion:

dr = A
1
n = 1 +

1
n

ln A + O(
1
n2 ). (21)

Thereafter, the volume fraction ci of the ith group is studied. As illustrated in Figure 3,
based on (19), the distribution width of the ith group can be expressed as

∆di =
di−1 + di

2
− di + di+1

2
=

dr − 1
dr

2
di. (22)

di-1 di di+1

di-1+di

2
di+di+1

2

Δdi

Figure 3. Schematic of distribution width of ith group.

Let the total volume fraction of particles be Fvt, and the volume of a single particle be Bd3
i (B is

the shape factor). According to (18) and (22), the volume fraction ci can be obtained as follows:

ci =
ff(di)∆diBd3

i
Fvt

=
1

Fvt
DdD

min
dr − 1

dr

2
Bd3−D

i . (23)

From (23), the volume fraction ratio of two adjacent groups is provided:

cri =
ci

ci+1
=

(
di

di+1

)3−D
. (24)

As can be observed in (24), the volume fraction ratio cri does not vary with the groups, and is
only related to the size ratio and fractal dimension. Thus, cr is used instead of cri in the following.
The Taylor expansion is applied to (24) at dr = 1, and the volume fraction ratio can be expressed as

cr = d3−D
r = 1 + (3− D)(dr − 1) + O(dr − 1)2. (25)

Substituting (21) into (25) yields

cr = 1 +
3− D

n
ln A + O(

1
n2 ). (26)
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At this time, the size ratio (dr) and volume fraction ratio (cr) of the adjacent groups in the grain-size
fractal granular material are expressed as functions of the number of groups (n), fractal dimension (D),
and size ratios of the maximum and minimum particles (A), respectively, as indicated in (21) and (26).

Continuous grain-size fractal granular material refers to the case in which the number of groups
n→ ∞, which implies that the size ratio dr → 1 and the volume fraction ratio cr → 1. Based on (21)
and (26), the Taylor expansion of (4) is applied near dr = 1 and cr = 1 along the direction indicated in
Figure 4, which can be expressed as

fp(dr, cr)
∣∣∣
dr→1,cr→1

= fp(1 +
1
n

ln A + O(
1
n2 ), 1 +

3− D
n

ln A + O(
1
n2 ))

= fp(1, 1) +
cos α

n
ln A

∂ fp

∂dr

∣∣∣∣
dr=1,cr=1

+
sin α(3− D)

n
ln A

∂ fp

∂cr

∣∣∣∣
dr=1,cr=1

+ O(
1
n2 ).

(27)

((3
-D

)/n
)ln

A

( 1 / n ) l n A

( c o s α, s i n α)

α
( 1 , 1 )

c r

d r
Figure 4. Direction of Taylor expansion.

According to Figure 4, when ∆dr takes 1
n ln A, the corresponding ∆cr takes 3−D

n ln A, so that
a certain relationship of α exists:

cos α =
1

1 + (3− D)2 . (28)

Let β =
∂ fp
∂dr

∣∣
dr=1,cr=1, and the porosity of the mono-sized packing is φ1 (i.e., fp(1, 1) = φ1).

Neglecting the high-order small term (O( 1
n2 )), and substituting (5) and (28) into (27) yields

fp(dr, cr)
∣∣∣
dr→1,cr→1

= φ1 +
β

(1 + (3− D)2)

1
n

ln A. (29)

When n→ ∞, the discrete grain-size fractal granular material is converted into a continuous form.
After substituting (29) into (13), the final porosity of the grain-size fractal packing can be obtained by
calculating the limit as follows:

φ = lim
n→∞

φ1

(
fp(dr, cr)

φ1

)n−1

= lim
n→∞

φ1

(
1 +

β

φ1(1 + (3− D)2)

1
n

ln A
)n−1

= φ1 A
β

φ1(1+(3−D)2) .

(30)

As indicated in (30), the porosity of the grain-size fractal granular material is expressed by
a function of the porosity of the mono-sized packing (φ1), fractal dimension (D), size ratio of the
maximum and minimum particles (A), and porosity partial derivative of the bi-dispersed packing at
dr = 1 and cr = 1 (β). Equation (30) is a semi-empirical formula, in which the values of φ1 and β can
be obtained by DEM simulation, as discussed in the following section.
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2.2. Numerical Simulation

The DEM proposed by Cundall and Strack [63] was used to simulate the packing process of
particles under the action of gravity. Although there are some new packaging algorithms which are
more efficient and flexible [64], DEM is still the closest algorithm to the real gravity packing process.
In this study, the DEM was implemented by the software of PFC3D. The linear elastic model of PFC3D

was used for the interactions among particles. When the elastic modulus is large, the deformation of
particles is very small, and the effect on the porosity can be ignored. Newton’s second law is used in
the DEM to describe the movement of particles, which is the same as the packing process in reality.

The friction coefficient of the particles has a significant influence on the packing results [65].
A larger friction coefficient results in a faster kinetic energy loss, which leads to looser packing of
particles. In soil mechanics, the relative density is used to represent the soil compactness. According to
the study of Huang et al. [65], a certain relationship exists between the friction coefficient and relative
density when the DEM is used to simulate particle packing. Therefore, granular material with different
compactness values can be produced by changing the friction coefficient µp of the particles.

In (30), the parameters φ1 and β of the granular material differ under varying compactness
conditions. As illustrated in Figure 5, the porosity φ1 of mono-sized packing with different compactness
values can be obtained by DEM simulation with different particle friction coefficients. It can be observed
from the figure that, with an increase in the friction coefficient, the porosity increases nonlinearly.
A fitting formula with a strong fitting degree (R2 = 0.9913) was provided, which is expressed as:

φ1 = arctan(63.0µp + 11.2)− 1.1. (31)

The parameter β was defined as β =
∂ fp
∂dr

∣∣
dr=1,cr=1, which indicates the value of the porosity partial

derivative with respect to the size ratio (dr) at dr = 1 and cr = 1 under bi-dispersed packing. For each
compactness value, the porosity of several discrete points at cr = 1 and dr → 1 was calculated by
simulating the bi-dispersed packing. As illustrated in Figure 6, the slope obtained by linear regression
of the calculated porosity was the β value corresponding to each friction coefficient (compactness).
Note here that these two parameters are obtained by PFC3D which is spherical DEM. In practice,
because the shape of the particles is not spherical usually, the coefficient of friction of the particles is
different, etc., φ1 and β needs to be given by experiments.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 4 0

0 . 4 2

0 . 4 4

0 . 4 6

0 . 4 8

 r e s u l t s  o f  D E M  s i m u l a t i o n
 f i t t i n g  c u r v e  

 

po
ros

ity

f r i c t i o n  c o e f f i c i e n t

R 2 = 0 . 9 9 1 3

Figure 5. Relation between friction coefficient and porosity of mono-sized packing.

After obtaining the values of φ1 and β under the conditions of different friction coefficients,
and substituting these into (30), the porosity corresponding to different fractal dimensions could be
predicted by (30). To verify (30), the packing process of the grain-size fractal granular material with
different fractal dimensions and compactness values was simulated by means of the DEM.
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Figure 6. β values of different friction coefficients obtained by bi-dispersed packing.

The simulation of the packing process can be divided into three steps. Firstly, according to the
probability density function (18) and total number of particles, the numbers of each particle size
are calculated. Secondly, as illustrated in Figure 7, particles with different diameters are randomly
distributed in the space. Finally, the randomly distributed particles are stacked under the action of
gravity until the packing is stable, following which the porosity is calculated. The simulation results
are presented in Figure 8.

Figure 7. Packing process of grain-size fractal granular material (taking D = 2.7 as an example).

The sphere packing problem has attracted the interest of mathematicians and physicists for many
centuries, and great names, such as Kepler, Newton, and Descartes, are associated with this problem.
A jamming phenomenon occurs in hard-particle packing. Owing to the uncertainty of the jammed
structure, it is difficult to obtain an exact solution for the porosity, even for mono-sized particle packing.
Jammed bi-dispersed packing and multi-sized packing have received a certain amount of attention,
but their characterization is far from complete. It is impossible to precisely predict the porosity of
multi-sized particle packing using the currently available techniques [66,67].

As can be observed in Figure 8a, a linear correlation exists between the results of the DEM
simulation and calculated values of (30). This demonstrates that (30) can capture the rule of the
grain-size fractal packing to a significant extent. Meanwhile, if φ1 and β are used as fitting parameters,
and (30) is used to fit the porosity obtained by the DEM simulation, excellent fitting degrees appear,
as indicated in Figure 8b. It can also be observed from Figure 8 that the relationship (30) is invalid in
the area where the random packing is close (µp < 0.3) and the fractal dimension is large (D > 2.6).
This is because tighter packing results in a more obvious jamming phenomenon, which implies that
the theoretical state of the densest packing cannot be achieved. For the region in which the relationship
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is invalid (µp < 0.3, D > 2.6), the porosity does not continue to decrease as the fractal dimension
increases, so the porosity of D = 2.6 can be regarded as the porosity of the cases when D > 2.6.
In summary, the relationship between the porosity and fractal dimension of the grain-size fractal
granular material was established by means of theoretical analysis and DEM simulation, which can be
used to predict the porosity.
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Figure 8. (a) Comparison of porosity measured from DEM simulation with values calculated by (30);
(b) porosity of grain-size fractal granular media with different fractal dimensions and friction
coefficients (the scattered points represent the results of the DEM simulation, while the solid lines
represent the results calculated by (30)).

3. Geometric Characteristics of Pore Structure

Based on the packing results presented in Section 2.2, the pore structure of each grain-size fractal
granular material was extracted by MATLAB programming for geometric feature analysis. Taking three
cases (D = 2.1, µp = 0.7; D = 2.5, µp = 0.5; and D = 2.9, µp = 0.0) as examples, the final pattern of the
packing particles and extracted pore structure are illustrated in Figure 9. In this study, the voxel matrix
size of the pore structure was 512× 512× 512. Then, based on the three-dimensional (3D) binary image
of the pore structure, digital image processing technology was applied to study the fractal properties
and pore size distribution.

packing 

pattern 

pore 

 structure 

 

D=2.1, mp=0.7  D=2.5, mp=0.5  D=2.9, mp=0  

Figure 9. Packing patterns and pore structures of three typical cases.
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3.1. Fractal Properties

3.1.1. Box-Counting Dimension

The box-counting dimension, also known as the Minkowski dimension, is the natural structural
property of a fractal object, representing the amount of measurement space occupied by the object,
i.e., the object complexity (fragmentation degree). The 3D box-counting fractal dimension Dbc used in
this study can be described as follows [1]:

ln Nb = Dbc ln(
1
rb
) + ln k, (32)

where Nb is the number of boxes covering the pore space, rb is the side of a box, and k is a constant
which has no effect on the box-counting dimension. Moreover, Dbc is the slope of the linear part within
the cutoff lengths in the log-log plot.

As illustrated in Figure 10, taking two cases (µp = 0.0, D = 2.9 and µp = 0.7, D = 2.1) as
examples, the log-log plots of the box side (rb) and corresponding number of boxes covering pore
Nb are provided. It can be observed that the linear fitting degrees are very high. The results of the
other cases are same as the two cases presented in Figure 10 with a fitting degree of R2 > 0.998,
which implies that the pore structures of grain-size fractal granular materials are typical fractal objects.
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(a) (b)

Figure 10. Log-log plots of box size and number of boxes covering pore ((a) µp = 0.0, D = 2.9;
(b) µp = 0.7, D = 2.1).

The calculated box-counting dimensions of the pore structures with different grain-size fractal
dimensions and friction coefficients (compactness) are illustrated in Figure 11. Overall, the variation in
the box-counting dimension of the pore structure is very small. The friction coefficient is more sensitive
to the box-counting dimension than the grain-size fractal dimension. When the friction coefficient
is small (µp < 0.5), the box-counting dimension tends to increase with an increase in the grain-size
fractal dimension. There are no obvious trends of the box-counting dimension with the increase in the
grain-size fractal dimension when µp > 0.5.

For an ideal fractal structure (such as the Menger sponge), a certain relationship exists between
the porosity and box-counting dimension of the pore, obtained by Yu and Li [35]:

Dbc = 3− ln φ

ln
(

Rmin
Rmax

) , (33)

in which Rmin denotes the minimum pore size and Rmax represents the maximum pore
size. As illustrated in Figure 12a, (33) is not accurate for the grain-size fractal granular material.
The relationship between the fractal dimension and calculated value of (33) is discrete. Therefore, it is
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impossible to obtain the fractal dimension of the pore from the porosity directly, and other geometric
information, such as the grain-size fractal dimension, is needed. In this study, a new relationship,
which meets the grain-size fractal granular material, was proposed according to multiple regression:

Dbc = 2.729 + 0.3049(Dφ2), (34)

It can be observed from Figure 12b that the fitting degree of (34) is very strong, and much better
than (33).
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Figure 11. Box-counting dimensions of pore structures with different grain-size fractal dimensions and
friction coefficients.
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Figure 12. Comparison of box-counting dimensions measured from DEM simulation with values
calculated by two different formulae ((a) analytic solution (33) of ideal fractal structure; (b) empirical
relationship (34) provided in the present study).

3.1.2. Lacunarity

The lacunarity, from the Latin “lacuna” meaning “gap” or “lake,” can reflect the clustering
degree (gappiness), heterogeneity, and texture of a fractal structure. Patterns with more or larger
gaps generally exhibit higher lacunarity. Beyond providing an intuitive measure of gappiness, it can
indicate the differences between structures that have the same or very close fractal dimensions [1].

In this study, the gliding box method described by Allain and Cloitre [68] was used to calculate
the lacunarity. A box with a side rb was glided along all possible directions of the binary image of the
pore structure. If the sliding box contains M points of which the voxel values are 1, the box mass is M.
The number of boxes with mass M is denoted by n(M, rb). The probability density function Q(M, rb)

can be obtained by dividing n(M, rb) by the total number of gliding boxes. To analyze the probability
density function conveniently, the statistical moments function is constructed as follows:
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Z(q)
Q (rb) = ∑

M
MqQ(M, rb). (35)

The lacunarity can be defined as the statistical moments function of q = 2 divided by the square
of the statistical moments function of q = 1:

Λ(rb) =
Z(2)

Q (rb)[
Z(1)

Q (rb)
]2 . (36)

The lacunarities of the pore structures with different grain-size fractal dimensions and friction
coefficients were calculated by the approach described previously. The calculated lacunarity differs
when using different gliding box sizes. The effects of the box size on the lacunarity is illustrated in
Figure 13. Figure 13a presents the results of the cases in which the grain-size fractal dimension D = 2.5
with different compactness values. Figure 13b illustrates the results of the cases in which the friction
coefficient µp = 0.5 with different fractal dimensions. It can be observed from the log-log figures that
the curve can be divided into two parts by the minimum particle size, which implies the smallest gap
for the pore structure, and the lacunarity decreases linearly with the box size in the two parts with
different slopes. With the increase in the gliding box size, the distinction of the lacunarity of the pore
structure with different compactness values becomes less obvious. Meanwhile, the distinction of the
lacunarity of the pore structure with different fractal dimensions becomes more obvious.
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Figure 13. Variation in lacunarity with sliding box size ((a) the fractal dimension D is 2.5, while the
friction coefficient takes different values; (b) the friction coefficient µp is 0.5, while the fractal dimension
takes different values).

The lacunarity values of the pore structures with different grain-size fractal dimensions
and friction coefficients (compactness) are presented in Figure 14. As discussed in Section 3.1.1,
the box-counting dimension of each pore structure is very close. It can be observed that the variation
in the lacunarity is obvious. When the box size is small (<minimum particle size), the lacunarity can
reflect the compactness characteristics effectively, and it decreases obviously with the increase in the
friction coefficient (see Figure 14a). When the box size is large (>minimum particle size), the lacunarity
can reflect the grain-size gradation characteristics effectively, and it decreases obviously with the
increase in the grain-size fractal dimensions (see Figure 14b).

By means of multiple regression, the empirical relationship between the lacunarity (Λ) and
porosity (φ), and the fractal dimension (D) was obtained in this study. When the box size is small
(<minimum particle size), the lacunarity is mainly related to the porosity, which can be expressed as:
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Λ(rbmin) ∝ 1− 1
ln(1− φ)

. (37)

As indicated in Figure 15a, the fitting degree of (37) is 0.9993. When the box size is large
(>minimum particle size), the empirical expression of the lacunarity obtained in this study is:

Λ(rbmax) ∝
3− D

φ
. (38)

The fitting degree of (38) is 0.9794, as illustrated in Figure 15b. Note here that it is difficult to get
a box size smaller than the minimum particle size in practice. Therefore, the lacunarity calculated by
large box size (>minimum particle size) is more reasonable and important.

In this study, the lacunarity was proven to be a reasonable parameter for distinguishing pore
structures with close fractal dimensions. Moreover, the lacunarity can measure the clustering degree of
the pore structure. It is generally known that various granular materials are formed by cementation based
on particle packing, such as concrete and sedimentary rock. Areas in which the pore concentration of the
packing structure before cementation is more pronounced tend to be more vulnerable in these materials.
Therefore, it can be stated with certainty that the conclusions regarding lacunarity obtained in this
study offer great application potential in the strength theory of these materials.
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Figure 14. Lacunarity of pore structures with different grain-size fractal dimensions and friction
coefficients ((a) box size = 2 (<minimum particle size); (b) box size = 16 (>minimum particle size)).
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Figure 15. Comparison of lacunarity measured from DEM simulation with values calculated by two
empirical relationships provided in this study ((a) box size = 2 (<minimum particle size); (b) box
size = 16 (>minimum particle size)).
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3.1.3. Succolarity

Succolarity is used to measure the connectivity of the fractal structure in different directions,
and can represent the ability of the fluid passing through the medium [69]. In this study, the box
counting-based approach proposed by de Melo and Conci [69] was used to calculate the succolarity.
The 3D granular media should have six succolarity values in six different directions, owing to the
directionality of succolarity. In this study, the particles were arranged randomly in the packing process.
Thus, the granular media should be isotropic, and the succolarity should be the same in all directions.
The succolarity along the positive direction of z was calculated. Briefly, the pore structure was divided
into sub-boxes with a side length of b. As with the calculation of the lacunarity, the pore coverage (PO)
was calculated based on the pore mass of each box:

PO(b, i) =
M(i)

b2 . (39)

Then, the “pressure” (PR) exerted on each box was stored in an array of pressures. The pressure
increases from layer to layer along the positive z direction, which can be expressed as

PR(b, i) = (0.5 + l − 1)× b, (40)

in which l represents the layer of the ith box in the z positive direction. Finally, the succolarity for the z
positive direction was calculated by

σ(z+, b) =
∑Nb

i=1 PO(b, i)× PR(b, i)

(Nb)2/3 ∑Nb
i=1 PR(b, i)

, (41)

where Nb is the total number of boxes.
The effect of the box size on the lacunarity is presented in Figure 16. Similar to lacunarity,

the succolarity-log(box size) curve of each case can be divided into two parts according to the minimum
particle size. The succoularity takes two different invariant values in each part, and these values are
not independent. Therefore, It can be concluded that the succoularity is not affected by the box size.
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Figure 16. Variation in succolarity with box size (taking D = 2.5 as an example).

The succolarity values of pore structures with different grain-size fractal dimensions and friction
coefficients (compactness) are presented in Figure 17a (box size takes large value which is larger than
the minimum particle size). It can be observed that the variation in the succolarity is highly consistent
with the variation in the porosity. Taking the relationship between the succolarity and porosity as

σ ∝ φ, (42)
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the fitting degree R2 is equal to 0.9998, as indicated in Figure 17b, i.e., a strict linear correlation exists
between the succolarity and porosity.

Because the particles used in this study were spherical and the packing was random, the pore
structure was isotropic and all of the pore locations were interconnected. Therefore, the ability of
the fluid passing through was mainly determined by the porosity, which is why the strict linear
correlation appeared.
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Figure 17. Variation in succolarity with (a) grain size fractal dimension and (b) porosity.

3.2. Pore Size Distribution

3.2.1. Pore Segmentation Method

At present, numerous studies exist concentrating on the pore size distribution of the granular
material from the pore scale [42–44,48,50,53,60]. Several methods have been proposed in these studies,
each with its own limitations, as described in Section 1. One of the core issues in these studies is the
manner in which to distinguish between pore throats and pores. Different identification criteria can
lead to significant variations in the results. In fact, in many cases, it is very difficult to distinguish the
throat and pore, particularly for porous media formed by particle packing. For example, as illustrated
in Figure 18, there is no doubt that Aa is a pore and Ac is a throat. However, Ab is a throat as it is
a constriction to Aa. Meanwhile, Ab is a pore as it is an enlarged part to Ac. Therefore, it is difficult to
define whether Ab is a pore or a throat. In many cases, the artificial distinction between a pore and
throat makes no sense. Whether for hydraulics or filtration, the movement of fluid or particles in the
channel is only sensitive to the size of the cross-section through which they are passing, regardless
of whether the size belongs to a pore or throat. Therefore, in many cases, a general segmentation is
required, without distinguishing between the pore and throat.

Figure 18. Example of dilemma of distinguishing between pore and throat.
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To obtain reasonable segmentation without identifying the pore and throat, a new approach based
on continuous morphological open operation was proposed in this study. The mathematical expression
for open operation in morphology is

Io = Ii ◦ Se, (43)

in which Ii is the origin image (the 3D binary image of the pore structure in this study), Se is the
structuring element object (a sphere with radius re in this study), and Io is the binary matrix after open
operating. Taking the two-dimensional (2D) structure as an example, herein, the physical meaning of
the morphological open operation is described, as illustrated in Figure 19. Taking a disk with a radius
re as the structuring element, the open operation of the pore channel can be regarded as the disk
rolling in the channel with the area that the disk cannot roll through being deleted and area that the
disk can roll through being retained. As expressed in (43), Io represents the part of Ii through which
the structuring ball Se can roll. Let Ia = Ii− Io; then, Ia represents the part of Ii through which Se
cannot pass.

Figure 19. Physical meaning of open operation.

By changing the radius re of the structuring ball from the minimum to maximum, the continuous
open operation is applied to the pore structure, recording the radius of the maximum ball that can pass
through at each pore structure point. Taking the 2D structure as an example, as illustrated in Figure 20,
the distribution contour of the maximum passing ball radius of two types of 2D granular media
formed by circular and irregular particles, respectively, are obtained by the continuous morphological
open operation. It can be observed that a reasonable segmentation appears after the continuous open
operation, following the physical process of filtration. The radius of the maximum ball that can pass
through is regarded as the pore size (rp) of each point in the pore structure, without identifying the
pore and throat. Then, the pore size distribution can be obtained based on the segmentation. The pore
segmentation process was implemented by MATLAB programming in this study.

In the introduction to the continuous open operation method described previously, 2D binary
images were used as an example, while the pore structure calculated in this study was 3D (see Figure 9).
For a 3D binary image, the calculation principle is the same, and only the operation into the 3D
open operation needs to be changed, with the 3D sphere as the structuring element. Based on the
segmentation methods proposed in this study, the pore size distribution of the pore structures with
different grain-size fractal dimensions and friction coefficients were calculated.
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(a) (b)

(c) (d)

Figure 20. Results of continuous morphological open operation (taking 2D as example) ((a) is the origin
image and (b) is the pore segmentation of the granular media formed by circular particles; (c) is the
origin image and (d) is the pore segmentation of the granular media formed by irregular particles).

3.2.2. Results and Discussion

The volume accumulation curves for the pore size are presented in Figure 21. Figure 21a illustrates
the results of the cases in which the grain-size fractal dimension D was 2.5 with different compactness
values. When the fractal dimensions are the same, the compactness is smaller, while the maximum
pore size is larger, i.e., the pore size has a larger distribution range. Figure 21b presents the results
of the cases in which the friction coefficient µp was 0.5 with different fractal dimensions. When the
friction coefficients are the same, the fractal dimension is larger, the content of small pores is larger,
and the content of the large pores is smaller. Although the differences between these curves are
obvious, the variation law of the curves is consistent, which can be described by a general function.

In this study, the rule whereby the pore size distribution accords with the well-known
two-parameter Weibull distribution [70] was established. The expression of the two-parameter Weibull
cumulative function is as follows:

F(rp) = 1− e−
( rp

η

)λ

, (44)

where F(rp) denotes the cumulative volume fraction of the pore size in the 0− rp range, η is the
distribution scale parameter, and λ is the shape parameter. To determine the rule, the normalized
process was applied to the results presented in Figure 21 by first dividing each total pore volume,
following which curve fitting was performed on the normalized results using (44). As indicated in
Figure 22, the fitting degree of each curve was over 0.999. All other cases not presented in the figure
also exhibited a fitness of more than 0.999. Therefore, there is no doubt that the pores of the grain-size
fractal granular material following segmentation conform to the two-parameter Weibull distribution.
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Figure 21. Volume accumulation curves for pore size ((a) D is 2.5, while the friction coefficient takes
different values; (b) µp is 0.5, while the fractal dimension takes different values).
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Figure 22. Curve fitting of normalized value of cumulative volume by Weibull cumulative density
function ((a) D is 2.5, while the friction coefficient takes different values; (b) µp is 0.5, while the fractal
dimension takes different values).

It must be pointed out that the conclusion of this section is not inconsistent with that of
Section 3.1.1, which shows that the pore structures of grain-size fractal granular materials are fractal
objects. The box-counting dimension only measures the complexity of the pore structure, but the real
pore size distribution is obtained in this section by the pore segmentation method which has strict
physical meaning. The curve shape of pore size distribution obtained in this paper is consistent with
the theoretical estimation results of Rouault and Assouline [71]. However, Rouault and Assouline [71]
just gave the shape of the curves based on some rough theoretical assumptions. In this paper, the pore
structure of the particle-packed material is measured directly, and it is proved that the pore distribution
of the grain-size fractal granular material satisfies the weibull distribution.

In the Weibull distribution, a change in the scale parameter η has the same effect on the distribution
as a change in the abscissa scale (see Figure 23a). In this study, the scale parameter is mainly related
to the average pore size. The shape parameter λ is equal to the slope of the regressed line in
a probability plot, which determines the shape of the volume probability density function of the
pore size (see Figure 23b). The two Weibull parameters of pore structures with different grain-size
fractal dimensions and friction coefficients (compactness) are presented in Figure 24. It can be observed
that the scale parameter η decreases with an increase in the fractal dimension and increases with
an increase in the compactness. The shape parameter λ increases with an increase in the fractal
dimension and decreases with an increase in the compactness.
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Figure 23. Effects of parameters on Weibull probability density function ((a) scale parameter η; (b) shape
parameter λ).
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Figure 24. Variation in parameters with fractal dimension and friction coefficient ((a) scale parameter
η; (b) shape parameter λ).

By means of multiple regression, the empirical relationships between the two Weibull parameters
(η, λ) and porosity (φ), and the fractal dimension (D) were obtained:

η ∝
φ

D
, (45)

λ ∝ e
D√

φ . (46)

As indicated in Figure 25, the fitting degrees of (45) and (46) were 0.9895 and 0.9417, respectively.
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Figure 25. Comparison of values of two parameters obtained from DEM simulation with values
calculated by two empirical relationships provided in this study ((a) scale parameter η; (b) shape
parameter λ).
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3.2.3. Verification of General Pore Distribution Function

The pore structure of soil has a decisive effect on the soil-water characteristic curve [15,72].
The soil-water characteristic curve is a macro relationship, which can easily be measured in the field
or laboratory. However, the real pore structure is difficult to measure. Therefore, an alternative
method involves reflecting the pore structure characteristics through the soil-water characteristic curve.
To verify the general pore distribution function (44) proposed in this study, a new equation for the
soil-water characteristic curve was derived based on (44). Then, the correctness of the new soil-water
characteristic equation was verified by comparison with experimental data, which implies that the
pore distribution function was verified.

According to the Young-Laplace equation, the relationship between the pore radius rp and
capillary pressure ψ is expressed as follows:

ψ = C/rp, (47)

in which C = 2Ts cos γ∗, Ts denotes the water surface tension, and γ denotes the contact angle.
According to the local equilibrium assumption [73], for a specific capillary pressure ψ∗, pores with
sizes greater than r∗p in the pore structure are filled with air, while pores with sizes less than r∗p are
filled with water. At this point, the relative saturation is the percentage of the volume of the pores with
sizes less than r∗p to the total volume of pores, which is the precise physical meaning of (44). Therefore,
based on (44), the relative saturation S∗e corresponding to the capillary pressure ψ∗ can be expressed as

S∗e = F(r∗p) = 1− e
−
(

r∗p
η

)λ

. (48)

Substituting (47) into (48), the new general equation for the soil-water characteristic curve can be
derived, which is

Se =
θ − θr

θs − θr
= 1− e−

(
C

ηψ

)λ

, (49)

where θ denotes the water content corresponding to the capillary pressure ψ, and θs and θr denote the
saturated and residual water contents, respectively.

There are many empirical equations of soil-water characteristic curves, such as van Genuchten
equation [17], lognormal-type equation [74] and Weibull-type equation [75,76]. The equation obtained
in this paper is similar to the Weibull-type equation proposed by Assouline et al. [75] which can be
expressed as follows:

Se = 1− e−η(ψ−1−ψ−1
min)

λ

. (50)

There are two basic assumptions in the derivation of Equation (50): the particle size conforms
to the Weibull distribution and the pore size is proportional to the particle size. This research does
not have these theoretical assumptions, and analysis the pore structure generated by particle packing
directly. Furthermore, the physical meaning of pore segmentation in this paper is consistent with
that of Young-Laplace equation. Therefore, the calculation in this paper is more accurate than that of
Assouline et al. [75]. It can be proved that among these empirical equations, the Weibull-type equation
is most reasonable, and the Equation (49) obtained in this paper is simpler than (50).

The experimental dataset for validating the new general Equation (49) of the soil-water
characteristic curve was obtained from the UNsaturated SOil hydraulic property DAtabase
(UNSODA) [77]. UNSODA is a database of unsaturated soil hydraulic properties (water retention,
hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution,
bulk density, organic matter content, etc.), and additional information regarding the soil and the
experimental procedures. There are 790 soil samples from different regions of the world in UNSODA.
Eight sets of cases with relatively complete experimental data were randomly selected from the
UNSODA. Curve fitting was applied to the drying branch of the θ − ψ data points of these cases
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by the function (49). It can be observed from Figure 26 that the fitting degrees were all above 0.97,
which indicates that (49) is a reasonable and general function for expressing the soil-water characteristic
curves. As (49) was derived on the basis of (44), it can be stated that the correctness and generality
of (44) were also verified.
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Figure 26. Curve fitting of experimental data from UNSODA by new general soil-water characteristic
function derived in this study (numbers such as 1092 represent the sample number in UNSODA).

4. Conclusions

Grain-size fractal granular materials are common in natural environments, such as general
soil, sedimentary rock, and concrete. It is inappropriate to treat these stacked materials as ideal
fractal structures. In this study, the general rules of the pore structures of grain-size fractal materials
were explored by means of theoretical analysis, DEM simulation, and digital image processing.
Several important conclusions were obtained, as follows:

1. Based on bi-dispersed packing and the geometric packing theory, the relationship between the
porosity and fractal dimension of grain-size fractal granular material was established, which can
be used to predict the porosity. The rationality of the relationship was verified by means of
simulation of the packing processes under the conditions of different fractal dimensions and
compactness values using DEM.

2. The fractal properties were studied based on the 3D binary image of the pore structure extracted
from the DEM packing simulation. The pore structure of grain-size fractal granular material
conforms to the fractal law, but the box-counting dimension differs from the ideal fractal structure,
such as the Menger sponge. The empirical relationship between the box-counting dimensions,
lacunarity, succolarity, and grain-size fractal dimension, and the porosity were provided in
this study.

3. Whether for hydraulics or filtration, the movement of fluid or particles in the channel is only
sensitive to the size of the cross-section through which they are passing, regardless of whether
the size belongs to a pore or throat. A new segmentation method for the pore structure without
distinguishing between the pore and throat was proposed based on the continuous morphological
open operation. According to the segmentation results, a general function of the pore size
distribution was established, of which the generality and correctness were verified by the
soil-water characteristic curves from the experimental database.
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These conclusions were obtained by continuously graded materials and they cannot be applied to
gap-graded materials. Any materials can use these conclusions as long as they satisfy the following
conditions: (1) The materials are formed by particle packing; (2) The size distribution of particles
satisfies the number-size fractals law.
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