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Abstract

Background: The ability to form adventitious roots (AR) is an economically important trait that is lost during
the juvenile-to-mature phase change in woody plants. Auxin treatment, which generally promotes rooting in
juvenile cuttings, is often ineffective when applied to mature cuttings. The molecular basis for this
phenomenon in Eucalyptus grandis was addressed here.

Results: A comprehensive microarray analysis was performed in order to compare gene-expression profiles in
juvenile and mature cuttings of E. grandis, with or without auxin treatment on days, 0, 1, 3, 6, 9 and 12 post AR
induction. Under these conditions AR primordia were formed only in auxin-treated juvenile cuttings. However,
clustering the expression profiles revealed that the time after induction contributed more significantly to the
differences in expression than the developmental phase of the cuttings or auxin treatment. Most detected
differences which were related to the developmental phase and auxin treatment occurred on day 6, which
correlated with the kinetics of AR-primordia formation. Among the functional groups of transcripts that
differed between juvenile and mature cuttings was that of microtubules (MT). The expression of 42 transcripts
annotated as coding for tubulin, MT-associated proteins and kinesin motor proteins was validated in the same
RNA samples. The results suggest a coordinated developmental and auxin dependent regulation of several
MT-related transcripts in these cuttings. To determine the relevance of MT remodeling to AR formation, MTs
were subjected to subtle perturbations by trifluralin, a MT disrupting drug, applied during auxin induction.
Juvenile cuttings were not affected by the treatment, but rooting of mature cuttings increased from 10 to
more than 40 percent.

Conclusions: The data suggest that juvenile-specific MT remodeling is involved in AR formation in £. grandis.
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Background

Rooting capability is one of the economically important
traits that are lost during the juvenile-to-mature phase
change in woody plants. The difficulties in propagation
of promising clones of woody plants, such as rootstocks
of fruit trees, ornamental woody plants, and forest trees,
hampers breeding programs that depend on the produc-
tion of rooted cuttings.

The process of maturation in plants is characterized by
progressive changes in various morphological and devel-
opmental traits, among which is ARs formation [1-5]. The
following four phases have been defined in plant develop-
ment: (i) embryonic phase, (ii) postembryonic juvenile
vegetative phase, (iii) mature vegetative phase, and (iv)
mature reproductive phase [5,6]. In woody plants, the
juvenile traits, including rooting capability, are expressed
at the base of the stem throughout the life of the plant
and are sharply or gradually replaced by maturity traits,
including rooting inability, toward the upper part of the
main stem and branches [5].

AR formation is a complex process, in which roots
differentiate and regenerate from non-root tissues [7,8],
and is often described to occur in four steps: (i) cell de-
differentiation, (ii) cell division, (iii) development of root
primordia, and (iv) root emergence. Auxin plays a major
role in each of these steps [9,10]. Histological analysis of
woody plants induced to form AR revealed that cell
division (step ii) is induced in both juvenile and mature
tissues, but differentiation of root primordia (step iii)
occurs efficiently in juvenile cuttings but is compro-
mised in mature cuttings [11-13]. Mature cuttings have
often been reported to produce callus tissue instead of
root primordia.

Data have been accumulated using DNA-chip analysis
regarding the molecular regulation of AR formation in
woody plants. In poplar (Populus tremula x P. alba), the
expression of genes related to ethylene-biosynthesis path-
way, auxin-response factors (ARF), IAA family members,
and cytokinin-regulated transcripts was reported to change
during the first 48 h following root induction [14]. The
expression of few genes was modified in transgenic poplar
plants overexpressing the cytokinin-response regulator
PtRR13, in which AR formation was inhibited [14].
These included the gene encoding PLEIOTROPIC
DRUG RESISTANCE TRANSPORTER 9 (PDRY), which
is involved in auxin efflux, the genes encoding FIMBRIN-
LIKE2 (FIM2), an actin-binding protein and CONTINU-
OUS VASCULAR RINGI1, and two genes encoding
APETALA2/ ETHYLENE RESPONSE FACTOR [14].
Chip analysis of RNA samples collected 3—4 and 5—6 days
after AR induction in cuttings of the poplar hybrids P.
tremula x P. tremuloides (T89) and P. tremula x P. alba
(717-1B4), revealed that AINTEGUMENTA LIKEI, a tran-
scription factor of the AP2 family, is also involved in AR
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formation [15]. Using activation tagging in the Populus
clone 717-1B4, another gene from the AP2/ERF family,
PtaERF003, was found to promote AR formation [16].
Recently, WUSCHEL (WUS)-related homeobox (WOX)
protein family members were shown to promote AR forma-
tion in transgenic hybrid poplar [17].

In Pinus contorta, gene-expression profiles were deter-
mined at several time points from day O till 33 days after
root induction. Genes involved in cell division cell-wall
weakening, and those related to water stress were upregu-
lated during the initial stages. During later stages, genes
involved in cell replication and stress were downregulated,
suggesting maturation and functioning of the new roots.
During the phase of root-meristem formation, the expres-
sion levels of genes involved in auxin transport and auxin-
responsive transcription increased [18]. Gene-expression
analysis performed in juvenile rooting-competent pine
(Pinus radiata) and chestnut (Castanea sativa) cuttings
revealed the induction of SCARECROW-LIKE (SCL) genes
24 h after auxin application [19], and the specific expression
of CsSCLI in the cambium and adjacent cells [20]. In P.
radiata, a (short root) SHR-like gene was expressed in the
cambial region of rooting-competent cells of hypocotyl
cuttings within the first 24 h after the initiation of rooting
and before the activation of cell division [21].

AR formation has been studied in Eucalyptus species
[22-24], and analysis of the transcriptomes of juvenile and
mature E. grandis cuttings prior to root induction revealed
numerous differences in gene expression patterns [25].
One of the transcripts that was upregulated in juvenile
rooting-competent cuttings was EgNIA (nitrate reductase),
which is known to regulate nitric oxide (NO) production,
which in turn promoted AR formation [25]. In addition,
by profiling micro RNAs in E. grandis we have found that
there was no mutual correlation between the expression
of miR156 or miR172 and rooting potential or loss of
rooting potential respectively [26]. In the present study we
determined the kinetics of AR formation and performed a
comprehensive analysis of transcriptional profiles in order
to compare auxin responsiveness in juvenile and mature
cutting of E. grandis during 12 days of AR induction.

Results

The kinetics of root primordia formation in E. grandis
cuttings

The present study was undertaken to elucidate the tran-
scriptional differences between juvenile and mature cut-
tings following excision, exogenous application of auxin
and during incubation of cuttings in rooting tables until AR
are formed. To determine the kinetics of root-primordia
formation, cuttings were processed for histological analysis
immediately after excision and 1, 3, 6, 9 and 12 days after
induction with auxin (Figure 1). Auxin-treated juvenile
cuttings exhibited cell division near the cambium cells,
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Figure 1 Histological analysis of the kinetics of AR formation in juvenile and mature cuttings of E. grandis. Cuttings were treated with
IBA before placing in rooting tables. The bottom 1 cm of each cutting was fixed, embedded in paraffin and sectioned. A-E Juvenile cuttings. F-H
Mature cuttings. Numbers refer to days after excision. Yellow arrows show meristematic cells. Phloem-p, Xylem-x, Cambium-c, Root promordia-rp.

J

located between the phloem and xylem layers, 1-3 days
after induction (Figure 1B). At 3—-6 days, dome-like prim-
ordia started to appear (Figure 1C), and continued to
develop during 6-9 days (Figure 1D). At 9-12 days, elon-
gated and well-developed AR primordia were observed
(Figure 1E), and at the end of this period, roots started to
emerge. In contrast, in mature cuttings, although meri-
stematic cells were detectable adjacent to the cambium
(Figure 1F) on the day of excision, and small clusters of
them were detected after 3 to 6 days (Figure 1G), almost
no differentiated primordia were detected after 9 to
12 days (Figure 1H and [25,26]). These observations are in
agreement with previous reports which showed cell
division but no root differentiation in auxin treated
mature tissues of various tree species [11-13].

Transcriptome analysis during AR formation

To shed light on the transcriptional differences between ju-
venile and mature cuttings, we designed an experiment in
which these cuttings were either treated or not treated with
auxin and incubated on rooting tables. This enabled distin-
guishing between transcripts affected by auxin and those
affected solely by the wounding and incubation. It should
be noted that after 12 days, root primordia appeared only
in auxin treated juvenile cuttings, but not in untreated ones
or in treated or untreated mature cuttings. RNA was
extracted from three biological replications on the day of
excision (0) and 1, 3, 6, 9, and 12 days after induction (total
of 66 samples) and was subjected to comprehensive DNA-
microarray analysis. Clustering the expression profiles
showed that the time after excision was the major
contributor to the differences in expression (Figure 2).
Thus, most transcripts of juvenile and mature cuttings,
which were incubated on the rooting table for the same
period of time clustered together regardless of auxin
treatment. This suggests that the expression of root
specific transcripts in the auxin treated juvenile cut-
tings after 12 days is not high enough to distinguish
them from the non rooting cuttings when determined

by clustering analysis. The distribution of upregula-
ted and downregulated transcripts (twofold; adjusted
P-value < 0.05) over time after excision revealed the
following trends (Figure 3). Auxin treatment began to
have a detectable effect only after 3 days, which
remained relatively low for 6 and 9 days and disap-
peared after 12 days. Age (developmental phase) had a
stronger effect, as reflected by the large number of
transcripts that were down- or upregulated in juvenile
cuttings compared to mature ones. On day 6, the number
of differentially expressed transcripts between juvenile and
mature cuttings and between auxin-treated and -untreated
was the largest. In addition, there was a clear increase in
the effect of the interaction between auxin treatment and
age on day 6 (Figure 3). This is an indication that a criti-
cal transcription difference between juvenile and mature
E. grandis tissues occur at this time window during AR
induction. Out of the 15,744 probes printed on the
chip, a total of 1,790 transcripts showed significant
changes (twofold; adjusted P-value < 0.05) in expression
between juvenile and mature cuttings (Figure 3). These
transcripts included a group of 40 transcription factors
(2.2%), among them putative family members of MYB-,
WRKY- and NAC-domain-containing proteins, SCL,
and the auxin-related transcription factors, IAA and
AUX. In addition, 63 protein kinases (3.5%), among
them transcripts encoding putative leucine-rich-repeat
transmembrane protein kinases, calmodulin-dependent
protein kinase, shikimate kinase family protein, casein
kinase-like, phosphatidylinositol-4-phosphate 5-kinase
family protein, and SOMATIC EMBRYOGENESIS
RECEPTOR-LIKE KINASE 1; a smaller group of redox
enzymes, among them oxidases, peroxidases, and reduc-
tase; cell wall enzymes, among them cellulose synthase
subunits, pectinesterases, polygalacturonase, expansin-
like, and arabinogalactans; auxin- and gibberellin-related
transcripts, among them PIN3- and PIN4-related proteins,
ARF6- and ARF8-related proteins, auxin-responsive pro-
teins, gibberellin-responsive proteins, and transcripts
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Figure 2 Clustering of the different expression profiles. RNA from control juvenile (J-C), auxin-treated juvenile (J-A), control mature (M-C) or
auxin-treated mature (M-A) cuttings, was extracted immediatly (0) and 1, 3, 6, 9 and 12 days after excision and hybridized to a DNA chip containing
15,744 transcripts. The results were clustered as described in methods.
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involved in gibberellin metabolism, GA200X, and GA20X;  actin-binding proteins (for all the data please see GEO
microtubule (MT)-associated proteins, among them several — accession number GSE57375). The data suggest that
kinesins and MAP70; actin- and membrane-trafficking-  multiple transcripts related to different regulatory processes
related proteins, among them exocyst complex subunits, differ in their expression between juvenile and mature
clathrin heavy chain, Rab proteins, myosins and other cuttings during AR induction, including those that are
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Figure 3 Distribution of differentially expressed transcripts. The contribution of developmental phase (Age), auxin (Treatment), and their
interaction (Int) is presented here as the number of statistically significant (p-value < 0.05) up-regulated (fold change > 2; blue) and down-regulated
(fold change < 0.5; red) genes. Differential expression was calculated by applying LIMMA R-package statistical approach (see methods section for
details) in each time point (day 1, 3, 6, 9, and 12) after excision. An exception is the day of excision (d0) in which only the effect of developmental
phase (age) was detected.
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involved in post-translational modifications, such as
phosphorylation, remodeling of the cell wall and the
cytoskeleton, and changes in membrane trafficking.
Although the contribution of auxin to the total differen-
tial expression was low (Figures 2 and 3), some transcripts
from each functional group showed a differential auxin
responsiveness between juvenile and mature cuttings. The
expression of some of these transcripts was validated by
the Nanostring method [27]. Figure 4 shows that the
expression of E. grandis homologs of clathrin heavy
chain, kinesin-like protein, a kinase like, peroxidase 72,
NIA (nitrate reductase), a transcription factor contain-
ing a NAC domain, PIN3, IAA19, and an FH2 contain-
ing protein was higher at a certain time point, in auxin
treated juvenile cuttings compared to mature ones.

The MT system is differentially regulated in juvenile and
mature cuttings

One of the functional groups whose members showed ex-
pression differences between juvenile and mature cuttings
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was that encoding MT-associated proteins (MAPs). We
therefore hypothesized that unlike the clusters shown in
Figure 2, clustering expression profiles based on MAP
expression might lead to segregation between juvenile and
mature samples. In addition, MTs play essential regulatory
roles in cell division [28,29] and cell elongation [30-32], and
a recently presented evidence suggests that they have
additional functions in programs related to organogenesis
[33]. Therefore, we searched a unified EST database [26],
and the recently released genome sequence [34] for tran-
scripts related to MTs. The list (Additional file 1: Table S1)
includes: homologs of 9 TUBULIN B, 5 TUBULIN a, 6
MAP65, 2 MAP70, 2 CLASP, KINESIN 134, armadillo-
repeat-containing kinesins ARK2 and ARK3, KINESIN-
LIKE CALMODULIN-BINDING PROTEIN (KCBP),
KRPI125¢, PAK kinesin-like, 2 EB1, GCP3/SPC98, GCP4/6,
y TUBULIN, MORI, outer DYNEIN-like light chain,
KATANIN p60, KATANIN p80, TORI, SPR1, TONI,
AURORA1/2, and CSII. Although this might not be the full
list of MT-associated proteins in the Eucalyptus genome,

Clathrin heavy chain Kinesin like protein Kinase (contig01593)
. (KIRST.10537.C1) (KIRST.37875.C1) . 1400
£ 4000 S $ 1200 *
£ 93000 *1 £ 500 = anoo 1
£E £ 5400 £ £ s00 —] —  =—]C
Ed p—— = —
- £ 2000 N 1 &E30 BN © £ 600 - —a
s g I s 2200 \/I/__) - £ § 400 | —MC
) 1000 v T + —MC S £100 N = = —MC gL 200 MA
£ 0 —Ma | 28 oL Nt Y 3 0
- 0 1 3 6 9 12 'ch 0 1 3 6 9 12 0 1 3 6 9 12
Days Days Days
Peroxidase 72 (KIRST.7389.C1) EgNIA ANACO71 (KIRST.44307.C1)
g 800 g 800 *5 g 600
] z 'z 500
E QGOO ' E ':"..4:600 . § =400
] & — 2 — —
Z %400 5 Z400 € 5Es00 s -
g g : —Ia | § E500 ‘—-;%{ _ —a
3 E200 E gzoo —MC 3 EIOO —MC
£ £ —mMma | E — v —MA
z 0 z 0 z 0
0 1 3 6 9 12 0 1 3 6 9 12 0 1 3 6 9 12
Days Days Days
FH2 containing PIN3 (KIRST.12343.C1) I4419 (KIRST.8722.C1)
(KIRST.42026.C1) 100 = 500
£ H *7 =2
£ 1000 £ - % 5
R —Jc g ) e *8
EE AT CH] /I\L —ic | £ 300 T 1 /N —ic
ZE 600 3 —JA | TE200 ™A =S /I\/ \
= g * sz —IJA | & £ 200 —JA
3£ 400 —McC | S % = 5 /
s 2 F 2100 - —MC | EZ g0 ¥ 3> —MC
- —Mal E™ —Ma | E i —Ma
= 0 3 0 L z 0
z 01 3 6 9 12 01 3 6 9 12 0 1 3 6 9 12
Days Days Days
Figure 4 Validation of expression of several transcripts by the Nanostring method confirms differential response of some transcripts
to auxin in juvenile and mature cuttings. The same RNA samples which were used for the chip analysis were used for the validation. Probes
were designed for some selected transcripts and a nanostring detection was performed. Asteriks show statistical significant difference determined
by Scheffe analysis as follows: *': JA vs JC p < 0.05, **: JA vs JC p < 0.05, JA vs MC and MA p <001, **: JA vs MA p <005, JA vs MC p <001, ** JA
vs MC and MA p < 001, **: JA vs MC and MA p < 0.05, *°: JA vs JC and MA p < 0.05, JA vs MC p < 0.01, *”: JA vs MC and MA p <0.01, JA vs JC P <
0.05, *% JA vs JC and MC P < 0.05.
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their expression profiles during root induction in
juvenile and mature cuttings should indicate whether
there are major differences in MT remodeling between
these two types of cuttings. Probes were designed
(Additional file 1: Table S1) and expression levels were
determined by the Nanostring method in RNA
samples similar to those used for the microarray
analysis (Figure 5). The probes designed for the fol-
lowing homologs: FRA1, DYNEIN-like light chain,
SPRI1, TUBILIN o2 and a6, TUBULIN 3 and 6, and
for one of the CLASP predicted transcripts, gave sig-
nals that were very close to the background signal,
and therefore these transcripts might be expressed at
very low levels or represent pseudo genes. The E.
grandis homologs of AURORA1/2, TUBULIN p2,
MAP65-3, and EBIc/a, clustered together (Figure 5)
and their expression was significantly higher in the
juvenile samples compared to the mature samples on
days 6 and 9 (Additional file 2: Figure S1). In addition,
in contrast to the cluster shown in Figure 2, which
was based on the expression of more than 15,000
transcripts, here the profile of juvenile cuttings, 6 and
9 days after excision, with or without auxin treatment,
clustered in close proximity. These results indicate
that differential remodeling of MT occurs in juvenile
cuttings compared to mature cuttings and might be
relevant to the shift from cell division to cell differen-
tiation during formation of AR primordia. Of note,
MT remodeling might as well be the result and not
the cause of cell differentiation.
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Subtle perturbations of MTs improve rooting of mature
cuttings

As mentioned above, during rooting of woody plants
mature cuttings, callus is often formed instead of roots.
This phenomenon occurs because cell division is activated
whereas cell differentiation is inhibited. We hypothesized
that if MTs play a role in differentiation, and their dynam-
ics in mature cuttings does not favor differentiation, then
subtle perturbations might make a difference. Juvenile and
mature cuttings were treated with auxin and increasing
concentrations of the MT-disrupting drug trifluralin
(Figure 6). While juvenile cuttings were not affected by
trifluralin, rooting rate of mature cuttings gradually
increased from 10 to 40 percent, concomitant with the
increase in trifluralin concentration.

Discussion

The loss of rooting ability in mature woody plants has mys-
tified plant scientists and growers for years. E. grandis
exemplifies this problem. Pruning of 6- to 7-month-old
E. grandis seedlings at either 10-15 cm or 150-200 cm
above the ground induces shoot sprouting near the cut
trunk. Cuttings taken from low-pruned seedlings root eas-
ily, whereas cuttings taken from high-pruned seedlings
barely root at all [24-26]. This phenomenon demonstrates
the gradual decrease of rooting ability in physiological ma-
ture tissues. However, the specific maturity traits that in-
hibit rooting are unknown. Completion of sequencing of
the E. grandis genome [34] has made it a suitable expe-
rimental system for addressing these questions. In the
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Figure 5 Analysis of expression of microtubule-related transcripts during induction of AR formation. MC, mature, control; MA, mature,
auxin-treated; JC, juvenile, control; JA, juvenile, auxin-treated. Samples from days 0, 1, 3, 6 and 9 after excision. The same RNA samples used for
the microarray analysis were used for the validation using the nanostring method. Clustering was done as described in methods.
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present study we analyzed the gradual changes in expres-
sion profiles of the expression of 15,000 transcripts during
the root-induction process in juvenile and mature cuttings
in the presence or absence of auxin. This enabled us to
distinguish between expression changes mediated by the
developmental stage of the cuttings, and those mediated by
the auxin treatment. Selection of the time intervals at
which RNA was extracted during root induction was based
on the kinetics of root primordia formation. In juvenile
cuttings, clusters of dividing cells were already detectable
after 1-3 days, root primodia were formed after 6-9 days,
and root emergence was detectable after 12 days in auxin-
treated juvenile cuttings. In contrast, in mature cuttings,
although some cell divisions were observed, no primordia
were formed during the time period of the experiment.
This is in agreement with observations made in other tree
species [11-13], and suggests that the transition from cell
division to cell differentiation is somehow hampered in
mature cuttings.

It was found here that the most significant expression
differences were driven by the time after excision, less by
the developmental phase of the cuttings, and the least by
auxin treatment. This is in agreement with previous obser-
vations in pine, in which no differences in auxin uptake,
metabolism and transport were found between easy-to-
root hypocotyls and difficult-to-root epicotyls [35]. It
should be emphasized that rooting was not synchronized
in all cuttings, and that the frequency of root primordia in
the samples taken for RNA preparation was low. There-
fore, the results may be masked by a high background of
irrelevant transcripts expressed by stem tissues surround-
ing the primordia. This is an intrinsic problem of the
biological system, and we cannot rule out the possibility
that important transcripts went undected. Despite this
problem some statistically significant expression differ-
ences were revealed by the system. These offer some novel

research directions for AR-formation research. For ex-
ample, the finding that 3.5% of the transcripts that were dif-
ferentially expressed between juvenile and mature cuttings
are protein kinases, suggests that major differences are
mediated by post-translational modifications, such as phos-
phorylation, protein—protein interactions, and protein
stability. Indeed, receptor-like kinases play an important
role in root development [36].

The finding of a transient increase in NIA after 1 day of
auxin treatment only in juvenile cuttings is in agreement
with our previous data, which showed that E. grandis NIA
is involved in a transient increase in NO concentration
after excision [25]. We also showed that higher levels of
NO accumulates in juvenile cuttings than in mature ones
after pruning [25], which is likely due to the observed
specific auxin-mediated NIA upregulation in these
cuttings. The difference in expression of clathrin and the
formin-like FH2 domain containing transcript between
juvenile and mature cuttings, suggest differences in
remodeling of the actin and membrane trafficking systems
during AR induction. This is in agreement with previous
observations which showed differential expression of
actin in response to IBA between pine hypocotyls and
epicotyls [37], of actin7 between juvenile and mature
cuttings of Eucalyptus grandis [25], and a change in a
FIMBRIN-LIKE2 (FIM2) in transgenic poplar with
inhibited AR formation potential[14]. The relevance of
the actin system to AR formation was also suggested
when paradoxically, a RGD containing peptide im-
proved rooting of mature Arabidopsis cuttings [38].

The changes in expression of MT-related transcripts
suggest that they are also involved in AR organogenesis.
The notion of MT involvement in plant organogenesis has
recently been addressed and a cross talk between MT and
auxin signaling has been found [33]. We presume that
MTs participate in the regulation of four factors that are
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important for AR formation: (1) the number of dividing
cells, which should reach a threshold level for coordinated
differentiation to occur; (2) the orientation and symmetry
of cell division; (3) the cross talk and coordination between
dividing cells which allows organogenesis; and (4) polar cell
elongation. The largest difference in gene expression after
6 days might reflect a peak in the extent of cell division in
juvenile cuttings at this time. This assumption is based on
three different observations: (1) the histological analysis that
shows much more dividing cells in juvenile cuttings than in
mature ones. (2) the specific increase in Aurora, and
MAP65-3 in juvenile cuttings compared to mature ones.
Both proteins participate in the regulation of the MT appar-
atus during cell division [39,40]; (3) toward day 12 the
differences in expression profiles between juvenile and
mature cuttings decline despite root primordia formation,
suggesting that root-specific genes do not underlie the
major expression differences detected in this system. It
might be concluded that the shift to differentiation depends
among other things on a critical mass of dividing cells,
below of which differentiation is hampered. In addition,
asymmetric cell division which is also regulated by MTs
[41] is critical for differentiation [42]. Based on our finding
we propose that differential permissive conditions which
exist in the context of juvenile tissues in contrast to mature
tissues and are influenced by MT remodeling allow the shift
from cell division to cell differentiation after the initial
onset of cell division.

The increase in rooting rate after subtle perturbation of
the MTs with trifluralin might result from changes in MT
dynamics, organization, or mass which affect cell division
[28,29], cell-wall properties [43], coherent auxin transport
[44], or other unknown parameters. Of note, the half life
of trifluralin was documented to be 25-201 days under
various agronomic conditions [45] which suggests that its
effect may last throughout AR induction.

Conclusions

Taken together, our data indicate that the difference in
expression profiles between juvenile and mature E. grandis
cuttings is mostly affected by time after excision, to a lesser
extent by the developmental stage of the cuttings, and least
by auxin treatment. Among the functional groups of genes
that were differentially expressed during AR induction in
these cuttings, was that of the MAPs. Therefore, juvenile-
specific, fine-tuned MT remodeling seems to be involved in
AR formation. Induction of juvenile specific expression that
is observed 6-9 days after excision and auxin application is
thought to be a second or a third wave of transcription
activation that is induced by early genes that are induced
shortly after the treatment. Such immediate induction was
previously described for SHORT-ROOT like gene from
Pinus radiata [21] and SCARECROW-like genes from
Pinus radiata and European chestnut Castanea sativa
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Mill in cambium cells of competent cuttings [19,20]. We
propose that both early and late changes in gene expression
are giving the tissue its rooting competence. Nevertheless,
some expression patterns observed several days after root
induction might also be the result of root differentiation
and not the cause for it.

Methods

Plant material

Seeds of E. grandis were grown for 1 month after germin-
ation in pots and then transplanted into 15-1 pots contain-
ing peat and tuff (70:30) and 2 g/l Osmokot. Six-month-old
seedlings grown in a net-house were pruned at 10-15 cm
and 150-200 cm above the ground to enhance cutting
production along the pruned stems (juvenile and mature,
respectively). Cuttings consisting of 4—6 leaves with 60% of
the leaf blade removed were used. After excision, the base
of the cuttings was dipped for 20 s in a solution containing
6 g/l K-IBA (Sigma). Cuttings which were not treated with
auxin were used as control. Both treated and untreated
cuttings were incubated on a rooting table heated to 24°C
under 90% relative humidity for a period of 14-42 days
[25,26]. For trifluralin (32061 FLUKA) treatment, cuttings
were treated with 100, 300, or 1000 nM trifluralin with or
without 6 g/l K-IBA for 20 sec.

Histological analysis

Juvenile and mature cuttings were induced to root with
6 g/l K-IBA as described above. Samples were taken at 0, 3,
6, 9 and 12 days after excision. Tissues were fixed in FAA
(50% ethanol, 5% glacial acetic and 4% formaldehyde) over-
night at room temperature. Tissues were gradually dehy-
drated in ethanol series (75%, 90% and 100%) for 1 h each,
and then the ethanol was gradually replaced with histoclear
(Gadot) in five steps of 1:3, 1:1, 3:1 and two steps of pure
histoclear (1 h each). The histoclear was then gradually
replaced with paraffin  (PARAPLAST X-TRA, Leica).
Sections (15 pm) were made with rotary microtome (Leica
RM2255) and stained with Safranin and fast-green.

RNA isolation

RNA extraction was carried out as previously described
[46], with some modifications. Tissue (3 g) was ground in
liquid nitrogen to a fine powder using a mortar and pestle,
and then 10 ml of extraction buffer preheated to 65°C was
added, and the tubes were shaken thoroughly and
incubated for 5 min at 65°C. The extraction buffer con-
tained 2% cetyltrimethylammonium bromide (CTAB), 2%
polyvinylpyrrolidone (PVP) 40, 100 mM Tris—HCI pH 8.0,
25 mM EDTA, 2 M NaCl, 0.5 g/l spermidine, and 2%
B-mercaptoethanol. All reagents were freshly prepared.
Two steps of chloroform extraction were performed, with
centrifugation at 10,000 ¢ for 15 min after each step. The
upper phase was mixed with 0.25 volume of 10 M LiCl,
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and the RNA was precipitated overnight at 4°C. Following
centrifugation at 10,000 g for 20 min, the RNA pellet was
dissolved in 500 ul SSTE buffer containing 0.5% SDS, 1 M
NaCl, 10 mM Tris—HCI, pH 8.0, and 1 mM EDTA, and
then extracted with an equal volume of chloroform. The
RNA was then precipitated by the addition of 2 volumes
of ethanol held at -70°C for 1 h, and then pelleted by
centrifugation at 10,000 g in a microcentrifuge at 4°C. The
pellet was dried and then dissolved in RNAse-free water.
The RNA sample was further purified with the Qiagen
RNeasy mini kit and treated with RNase free DNase I

(Qiagen).

Chip design and analysis

An Agilent array of 18 K probes was designed based on
the eucalyptus version 1 array of 44 K probes. A detailed
description of probes selection is provided in our previous
study [25]. In version 2, a subset of 18 K probes was taken,
with first priority given to the probes that were found
statistically significant in version 1 [25]. Version 2 accession
at GEO NCBI is GSE57375.

Statistical analysis

Three replicas of RNA samples from each juvenile or
mature cuttings, either treated with auxin or not, 0, 1,
3, 6, 9, or 12 days after excision (total of 66) were
hybridized to our custom-made Agilent array. Initially,
loess and Aquantile normalization was performed,
followed by calculating a moderated Student’s t-test
using the Linear models for microarray (Limma)
package [47]. This t-statistic allows for better variance
estimation by using an empirical Bayesian approach.
The probes' log signal ratios were ranked by their
adjusted P-values (g-values), and were then selected for
genes with significantly different expression (g<0.05).
The correction for multiple comparisons was performed
using Benjamini and Hochberg’s false discovery rate
(FDR) [48]. The analysis was performed for each time
point separately in a loop factorial design for control,
juvenile, mature, and IBA-treatment.

Hierarchical clustering was run by first converting the
dual-channel results into single channel as described in
the separate channel analysis section in the Limma user's
guide. The next agglomerative hierarchical algorithm
was applied with “ward” method parameter.

Transcript-expression analysis

Expression analysis of selected transcripts was performed
by Nanostring (www.Nanostring.com). The probes used are
listed in Additional file 1: Table S1. Two-way clustering of
Nanostring expression signals was performed after nor-
malization of the gene signals to positive controls and to a
housekeeping gene (ubiquitin, Contig11492) embedded in
the Nanostring platform. Scaling of the gene expression
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signals was performed by subtracting the mean of the
log, signals. An agglomerative hierarchical algorithm
was applied with the “ward” method on both the genes and
the samples, and a heatmap was generated by “Heatplus”
R-package.

Additional files

Additional file 1: Table S1. Primers used for the Nanostring analysis.

Additional file 2: Figure S1. Scheffe analysis of the expression of four
microtubule related transcripts. Chart represent averages and standard
errors, and asteriks show statisticaly significant differences. Expression was
determined by the nanostring method.
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