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The AMP-activated protein kinase (AMPK) acts as a cellular energy sensor.

Once switched on by increases in cellular AMP : ATP ratios, it acts to restore

energy homeostasis by switching on catabolic pathways while switching off

cell growth and proliferation. The canonical AMP-dependent mechanism of

activation requires the upstream kinase LKB1, which was identified geneti-

cally to be a tumour suppressor. AMPK can also be switched on by

increases in intracellular Ca2þ, by glucose starvation and by DNA damage

via non-canonical, AMP-independent pathways. Genetic studies of the role

of AMPK in mouse cancer suggest that, before disease arises, AMPK acts as

a tumour suppressor that protects against cancer, with this protection being

further enhanced by AMPK activators such as the biguanide phenformin.

However, once cancer has occurred, AMPK switches to being a tumour

promoter instead, enhancing cancer cell survival by protecting against meta-

bolic, oxidative and genotoxic stresses. Studies of genetic changes in human

cancer also suggest diverging roles for genes encoding subunit isoforms,

with some being frequently amplified, while others are mutated.
1. Introduction
The AMP-activated protein kinase (AMPK) is best known as a sensor of both cel-

lular [1–3] and whole body [4,5] energy status. AMPK is activated when ATP

bound at a key site on its g regulatory subunit is displaced by AMP and/or

ADP, causing conformational changes that trigger allosteric activation, as well

as promoting net phosphorylation (and consequent activation) of the catalytic

subunit by upstream kinases. As ADP rises and ATP falls during situations of cel-

lular energy stress, the reaction catalysed by adenylate kinases (2ADP$ATP þ
AMP) is displaced rightwards, ensuring that AMP rises to an even larger extent

than ADP [6], thus activating AMPK in a very sensitive manner. AMPK is also

activated by increases in intracellular Ca2þ [7–9], by glucose starvation [10]

and by DNA damage [11–13] via non-canonical, AMP/ADP-independent mech-

anisms. By phosphorylating downstream targets that switch on catabolic

pathways, while switching off anabolic pathways and other ATP-consuming pro-

cesses such as progress through the cell cycle, AMPK not only promotes ATP

synthesis but also restricts cell growth and proliferation in an attempt to restore

energy homeostasis and maintain cell viability.

Given this propensity to switch off cell growth and proliferation, and the dis-

covery that the principal upstream kinase phosphorylating and activating AMPK

was the well-established tumour suppressor LKB1 [14–16], it seemed likely that

AMPK would play a beneficial role (Dr Jekyll!) in cancer and act as a tumour

suppressor. There is indeed evidence supporting this, at least in some cancer

types, as well as for the obvious corollary that AMPK activators should delay

tumorigenesis in those cancers. However, there is contrasting evidence that, in

other contexts, the presence of AMPK may play a malevolent role (Mr Hyde!)

to promote cancer, most likely by protecting transformed cells against stresses

caused either when their growth rate outstrips the ability of their blood supply
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to deliver nutrients and oxygen or during periods of oxidative

stress and/or DNA damage. In such scenarios, the presence of

AMPK would increase the viability of the tumour cells and

thereby potentially decrease survival of the patient, and in

such cases it would be AMPK inhibitors rather than activators

that might be therapeutically useful. The purpose of this

review is to attempt to reconcile these two apparently con-

flicting roles of AMPK, and to discuss the different types of

situation in which activators or inhibitors of the kinase might

be efficacious.
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Figure 1. Schematic diagram of the structure of AMPK heterotrimers, with
the different subunits colour coded (a, yellow; b, lilac; g blue). Based on
a structure of the human a1b2g1 complex [19], although the structures
of a2b1g1 [17] and a1b1g1 [18] complexes are very similar.
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2. AMPK—structure and regulation
AMPK appears to exist universally as heterotrimeric com-

plexes comprising catalytic a subunits and regulatory b and

g subunits. Genes encoding these three subunits are found in

the genomes of essentially all eukaryotes, suggesting that the

AMPK system evolved very early during eukaryotic evolution

[2]. In mammals, there are multiple genes encoding each sub-

unit, generating two a (a1, a2), two b (b1, b2) and three g

subunits (g1, g2, g3). These paralogues appear to have arisen

during the two rounds of whole genome duplication that are

thought to have occurred during the early development of

the vertebrates [3]. The seven gene products (not counting

splice and/or start-site variants) can form up to 12 abg combi-

nations that display subtle differences in regulation and in

tissue and subcellular distribution [3].

Crystal structures of three abg combinations from humans,

i.e. a2b1g1 [17], a1b1g1 [18] and a1b2g1 [19], as well as partial

structures from mammals [20,21], budding yeast [22] and fis-

sion yeast [23,24], are now available. The generalized

structure of a heterotrimeric AMPK complex is represented in

a highly schematic form in figure 1. A current limitation of

the existing structures of heterotrimeric complexes is that, in

every case, the constructs were crystallized in active confor-

mations, with the catalytic subunit phosphorylated at the

activation site and allosteric activators bound at the regulatory

sites. Due to the lack of structures in inactive conformations, we

still only have a partial understanding of the conformational

changes involved in the activation process.

2.1. Structure of the a subunits
Each AMPK-a subunit (coloured yellow in figure 1) has an

N-terminal kinase domain with the small N-terminal lobe

and larger C-terminal lobe typical of all members of the eukary-

otic protein kinase (ePK) family, with the ATP-binding catalytic

site in the cleft between the two lobes. Like many other ePKs,

AMPK is only significantly active after phosphorylation

within the so-called ‘activation loop’ of the C-lobe. In AMPK,

the target for phosphorylation is a highly conserved threonine

residue, which is conventionally referred to as Thr172 [25]

although the exact residue numbering varies with species and

isoform (in the view of figure 1, Thr172 is located on the far

side of the C-lobe). In other ePKs, phosphorylation within the

activation loop changes its conformation to reorient residues

involved in both catalysis and protein substrate binding, thus

greatly enhancing the reaction rate [26]. The principal upstream

kinase phosphorylating Thr172 on AMPK was identified in

2003 to be a complex containing LKB1 and two accessory sub-

units, STRAD-a or -b and MO25-a or -b [14]. Binding of

STRAD-a or -b (which are pseudokinases, structurally related
to protein kinases but not active) is required for the kinase

activity of LKB1, whereas MO25-a or -b appear to have a struc-

tural role to stabilize the complex [27]. The gene encoding LKB1

(called STK11 in humans) had been previously identified as

being involved in Peutz–Jeghers syndrome, a rare inherited

cancer susceptibility; humans with this syndrome are almost

always heterozygous for loss-of-function mutations in STK11
[28]. Their major clinical problem is the development of

frequent but benign intestinal polyps, which appear to be

caused by haploinsufficiency in STK11. However, they also

have a greatly increased risk of developing malignant cancers

at multiple locations due to loss of heterozygosity in STK11,

and often die at a relatively early age from such malignancies

[28]. Loss-of-function mutations in STK11 also frequently

occur in many sporadic (i.e. non-inherited) cancers, especially

in the commonest form of lung cancer, adenocarcinoma

[3,29,30] (see also §6). LKB1 is therefore a classical tumour sup-

pressor, and although its sequence showed that it was a

member of the ePK family, the downstream target(s) that it

phosphorylated were completely unknown until the finding

that it phosphorylated and activated AMPK [14–16].

Following the kinase domain on each AMPK-a subunit

(figure 1) is a compact bundle of three a-helices termed the

autoinhibitory domain (a-AID) [18–20,24]. When ATP rather

than AMP is bound at the regulatory site(s) on the g subunit

(see below), the a-AID is thought to interact with the kinase

domain to clamp it in an inactive conformation [24]. The

a-AID is linked to the globular C-terminal domain of the a

subunit (a-CTD) by the a-linker, shown schematically as a

yellow chain in figure 1. The a-linker is a region in an extended

conformation that contains two conserved segments termed

a-regulatory interaction motifs (a-RIM1 and a-RIM2) [31].

These interact with the surface of the g subunit containing

the key regulatory adenine nucleotide-binding site (see §2.3),

and movement of this linker is thought to transmit the effects

of AMP or ADP binding from the regulatory g subunit to the

catalytic a subunit (see §2.4).
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2.2. Structure of the b subunits
The b subunits (coloured lilac in figure 1) contain two con-

served regions, the central carbohydrate-binding module

(b-CBM) and the C-terminal domain (b-CTD), these being

the only regions of the b subunits that are resolved in the cur-

rent heterotrimer structures. The b-CBM causes a proportion

of AMPK in mammalian cells to bind to glycogen particles

[32,33]. One function of this may be to co-localize AMPK

with glycogen synthase, the key enzyme of glycogen synthesis

also found at the surface of the glycogen particle, both isoforms

of which are phosphorylated and inactivated by AMPK [34,35].

Theb-CBM, however, also has other functions (see §3.2 below).

The b-CTD, on the other hand, plays a key structural role as the

‘core’ of the heterotrimeric complex, in that it cross-links

the a-CTD and the g subunit, via interactions that are highly

conserved from fungi to mammals [21–23].

2.3. Structure of the g subunits
Theg subunits (coloured blue in figure 1) are of particular interest

because they contain the regulatory adenine nucleotide-binding

sites. In all species, the g subunits contain four tandem repeats

of a sequence motif of around 60 amino acids known as a CBS

repeat, so-named by Bateman [36] because they are also present

in the enzyme Cystathione b-Synthase and invariably occur as

tandem repeats. CBS repeats have been identified in around

75 proteins in the human genome [37], and are also found in

archaea and bacteria. Proteins containing them usually have

just two tandem repeats, but the AMPK-g subunits are unusual

in having four. A single pair of repeats (known as a Bateman

domain or module) forms a pseudodimer with a cleft between

the repeats that (due to the approximate twofold symmetry)

can provide two ligand-binding sites, although often only

one is used. Bateman modules usually bind regulatory ligands

containing adenosine (e.g. AMP, ATP, S-adenosyl methionine,

NAD, diadenosine polyphosphate) or, less often, guanosine

[37,38]. Consistent with this, the CBS repeats in the AMPK-g

subunits provide the critical binding sites for the regulatory

nucleotides AMP, ADP and ATP [38]. The four CBS repeats in

every AMPK-g subunit form two Bateman modules that assem-

ble ‘head to head’ to form a flattened disc with the adenine

nucleotide-binding sites located close together in the centre,

lining a narrow aqueous channel (figure 1) [17–19,21]. Given

the presence of four repeats, it might have been expected that

AMPK-g subunits would bind four molecules of nucleotide,

but all existing crystal structures suggest that they bind only

three. These sites are now numbered according to which repeat

in the linear sequence (CBS1 through CBS4) provides residues

that bind the adenosine moiety of the nucleotide [39] (the phos-

phate groups may interact with residues from more than one

repeat). Using this nomenclature, adenine nucleotides bind at

CBS1, CBS3 and CBS4, while the CBS2 site appears to be

always unoccupied. The CBS3 site is primarily accessible to sol-

vent from one side of the disc of the g subunit (facing the

viewer in figure 1), and the CBS1 and CBS4 sites from the other.

2.4. Canonical regulation of AMPK by adenine
nucleotides

AMP-activated protein kinase received its name [40] because it

is allosterically activated by 50-AMP [41]. When the assays are
performed at physiologically relevant ATP concentrations

(5 mM) allosteric activation can be as much as 10-fold [42].

However, even before LKB1 was identified as the upstream

kinase and Thr172 as the phosphorylation site, it was realized

that increases in the AMP : ATP ratio also promoted net phos-

phorylation of AMPK in intact cells [43]. This is now known to

occur because AMP both enhances phosphorylation by LKB1

[44,45] and inhibits dephosphorylation by protein phospha-

tases [46]. Both effects are due to the binding of AMP to the

substrate, AMPK, and not to the upstream kinase or phospha-

tase; indeed the LKB1 complex appears to have a constant

activity in both energy-stressed and unstressed conditions

[47]. To summarize, AMP binding has three effects on

AMPK: (i) promoting Thr172 phosphorylation; (ii) inhibiting

Thr172 dephosphorylation; (iii) triggering allosteric activation

of kinase already phosphorylated on Thr172. These three

mechanisms act synergistically and make the system respond

to small increases in AMP in a very sensitive manner. It was

subsequently reported that the effects of AMP binding on

Thr172 phosphorylation [48] and dephosphorylation [20],

although not on allosteric activation, could be mimicked by

ADP, at least in cell-free assays. Our group has confirmed

this, but found that the effect required concentrations of ADP

up to 10-fold higher than those of AMP, at least for complexes

containing g1 and g3 (g2-containing complexes are more

sensitive to ADP) [42,45]. Overall, we believe that increases in

the AMP : ATP ratio remain the most important activating

signal in vivo, although increases in the ADP : ATP ratio

might make a secondary contribution.

How are these three effects of adenine nucleotide binding

mediated by the three binding sites on the AMPK-g subunits?

Although it might seem tempting to propose that each effect is

due to binding of nucleotides at one of the three sites, that

simple model now seems to be untenable. Instead, all three

effects appear to be due to binding of nucleotide at a single

critical site, CBS3. The evidence supporting this may be briefly

summarized as follows.

(1) CBS4 normally appears to contain a tightly bound ‘non-

exchangeable’ molecule of AMP [21]. Similarly, although

CBS1 can bind AMP in cell-free assays, it is estimated to

have a 10-fold higher affinity for ATP than AMP. Since

ATP is usually present in cells at up to 100-fold higher

concentrations than AMP, this suggests that, in intact

cells, CBS1 would always be occupied by ATP [49].

This leaves CBS3 as the site where ATP and AMP (or

ADP) could exchange with each other.

(2) The R531G mutation in the AMPK-g2 subunit, one of up

to 14 mutations that cause an inherited heart disease [50],

completely blocks both allosteric activation and increased

net Thr172 phosphorylation by AMP [38,51]. Although it

is actually located in CBS4, the positively charged side

chain of Arg531 interacts with the a-phosphate of AMP

bound in CBS3 [21,49] (note that in [21] the CBS3 site

was referred to as site 1; see [39] for revised nomenclature

of binding sites).

If CBS3 is the critical site for all three effects of AMP, what are

the functions of nucleotide binding at CBS1 and CBS4? All

three sites are located very close together in the centre of

the g subunit, where they are likely to interact with each

other. Gu et al. [49] have provided evidence that binding of

ATP at CBS1 alters the conformation of the neighbouring
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CBS4 site such that the latter binds only AMP in a non-

exchangeable manner. They further propose that binding of

AMP at CBS4 then enhances the affinity of AMP relative to

ATP at CBS3. In particular, binding of AMP at CBS4 reposi-

tions the side chain of Arg531 such that it provides an

additional positive charge to bind the two negatively charged

oxygen atoms on the a-phosphate of AMP in CBS3 (note that

the a-phosphates of ADP and ATP, unlike that of AMP, carry

only single negative charges) [49]. If this is correct, constitu-

tive binding of ATP to CBS1 and AMP to CBS4 effectively

‘tunes’ the affinity of the CBS3 site for the different nucleo-

tides that can bind there. This model explains how AMPK

achieves the difficult task of sensing changes in AMP in the

presence of much higher concentrations of ATP and ADP.

An additional explanation for the preference of the CBS3

site for AMP over ATP is that all three sites on the AMPK-g

subunits appear to preferentially bind free ATP42 rather

than the Mg.ATP22 complex [21,23,38,49], although only

around 10% of ATP in cells is thought to be present in the

Mg2þ-free form.

How is the effect of displacement of ATP by AMP at CBS3

transmitted to the catalytic (a) subunit? Consistent with the

idea that CBS3 is the critical site for activation, the heterotrimer

structures show that, when AMP is bound at CBS3, thea-linker

binds to that face of the g subunit, with a-RIM1 binding across

the unoccupied CBS2 site and a-RIM2 physically contacting

AMP bound at CBS3 (figure 1). Although there are no crystal

structures to confirm this, other biophysical approaches

suggest that, when ATP displaces AMP at CBS3, the a-linker

dissociates from the surface of the g subunit containing the

CBS3 site [19,52]. This is thought to release the a-AID to

rotate back into its inhibitory position behind the kinase

domain, with this being prevented when AMP is bound at

CBS3 by the interaction of the a-linker with the CBS3 site.

Consistent with this model, mutations that would affect the

interactions between a-RIM1/a-RIM2 and the g subunit

abolish allosteric activation by AMP [31].

While this model nicely accounts for allosteric activation

by AMP, the accompanying conformational changes may

also alter the exposure of Thr172 for phosphorylation and

dephosphorylation, although that aspect is currently less

well understood. It also remains unclear why ADP binding

has effects on Thr172 phosphorylation despite the fact that,

unlike AMP, it does not cause allosteric activation. Finally,

as well as the ‘canonical’ activation by changes in adenine

nucleotide ratios discussed above, AMPK can also be acti-

vated by several non-canonical mechanisms that will now

be briefly described.

2.5. Non-canonical activation by increases in
intracellular Ca2þ, by glucose deprivation
and by DNA damage

As well as LKB1, Thr172 can also be phosphorylated by the

Ca2þ/calmodulin-dependent protein kinase CaMKK2 [7–9],

which means that AMPK can be activated by increases in intra-

cellular Ca2þ ions even in the absence of any changes in

adenine nucleotide ratios. This occurs, for example, in response

to hormones and agonists sensed by G protein-coupled recep-

tors that are coupled via Gq/G11 to release inositol-1,4,5-

trisphosphate (IP3) from the plasma membrane, which in

turn triggers release of Ca2þ from the endoplasmic reticulum.
Such agonists include, in endothelial cells, thrombin acting

at protease-activated receptors and vascular endothelial cell

growth factor acting at VEGF receptors [53,54] as well as, in

specific neurons of the hypothalamus, ghrelin acting at

GHSR1 receptors [55]. The latter effect is important in pro-

motion of appetite during fasting [5], and the role of

CaMKK2 in this pathway can explain previous findings that

CaMKK2 inhibitors depress appetite in wild-type mice,

although not in CaMKK2 knockouts [56].

It has been known for many years that glucose deprivation

of mammalian cells activates AMPK [57], and this treatment is

often used to switch on AMPK in cultured cells. In fact, genes

encoding the budding yeast orthologue of AMPK (the SNF1

complex) were originally identified via mutations that pre-

vented the normal changes in gene expression in response to

glucose deprivation [58]. For many years, it was assumed

that glucose deprivation activated AMPK by interfering with

catabolic ATP production, and thus activated AMPK via the

canonical, AMP-dependent mechanism (§2.4). This does

indeed seem to be the case in some established tumour cell

lines, perhaps because they are highly glycolytic and have a

high dependency on glucose for ATP production. However,

in other cells such as immortalized mouse embryo fibroblasts

(MEFs) it has been found that glucose deprivation activates

AMPK without changing AMP : ATP or ADP : ATP ratios, as

long as an alternative carbon source such as glutamine is avail-

able; similar AMP/ADP-independent activation is also

observed in rat liver during starvation in vivo [10]. In such

cases, activation is thought to occur via a complex mechanism

involving the direct sensing of the glycolytic intermediate

fructose-1,6-bisphosphate (FBP) by FBP aldolase, and the

recruitment of AMPK to a ‘super-complex’ on the lysosomal

membrane involving the vacuolar-ATPase, the Ragulator com-

plex, Axin, LKB1 and AMPK. Although this mechanism may

operate in tumour cells that are dependent on rapid glucose

uptake, a full discussion of it is beyond the scope of this article

and interested readers are referred to the original papers

[10,59,60] or a recent review [2].

A third type of non-canonical activation of AMPK occurs

in response to DNA damage. This was originally reported to

occur in response to the topoisomerase II inhibitor etoposide

[12], and was later observed following treatment of cells with

ionizing radiation [13]. Both treatments cause double-strand

breaks in DNA, and are often used in cancer treatment.

Double-strand DNA breaks are known to be detected by

ATM, a member of the phosphatidylinositol 3-kinase-like

kinase (PIKK) family, and the effects of etoposide to activate

AMPK were originally claimed to be dependent on ATM,

because the effects appeared to be reduced in ATM-deficient

cells [12]. In addition, ATM is known to phosphorylate LKB1

at Thr366 [61], and it was reported that AMPK activation by

etoposide in cells was reduced by siRNA-mediated knock-

down of either ATM or LKB1 [12,62], suggesting the

existence of a kinase cascade from ATM to LKB1 to AMPK.

However, this cannot be the primary mechanism, because

both etoposide [12] and ionizing radiation [13] still activate

AMPK in LKB1-null tumour cells. Moreover, our laboratory

showed that AMPK activation by etoposide was not blocked

by the ATM inhibitor KU-55993, despite the fact that the

inhibitor did block phosphorylation of known ATM sub-

strates [11]. We went on to show that AMPK activation by

etoposide in LKB1-null cells was mediated by Thr172 phos-

phorylation catalysed by CaMKK2, and that this was
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associated with increases in Ca2þ within the nucleus. Interest-

ingly, only AMPK complexes within the nucleus containing the

a1 isoform were activated, even though a2 was also expressed

in the cells under study. Perhaps most interesting of all, activat-

ing AMPK in LKB1-null cells (using the Ca2þ ionophore

A23187 to activate CaMKK2) provided significant protection

against cell death induced by etoposide. The most likely mech-

anism to explain this was that A23187 caused a G1 cell cycle

arrest, thus restricting entry of cells into S phase where they

are particularly susceptible to DNA damage. This hypothesis

was supported by the fact that the G1 cyclin-dependent

kinase inhibitor palbociclib caused a very similar degree of pro-

tection against cell death in those cells where it caused G1

arrest, but not in those where it did not [11]. These results are

significant, because they suggest that genotoxic treatments

such as etoposide and ionizing radiation might be more effec-

tive for cancer treatment if they were combined with inhibitors

that prevent AMPK activation, and the consequent protection
that AMPK can provide against genotoxic stress. This point is

addressed further in §6 below.
3. Pharmacological activation and
inhibition of AMPK

The realization that AMPK acts as a metabolic master switch,

which transforms cellular metabolism from an anabolic to a

catabolic state, originally suggested that activators of AMPK

might be useful in treating disorders of energy balance such

as obesity and type 2 diabetes [63]. Similarly, the discoveries

that AMPK inhibited both cell growth and cell proliferation

suggested that activators might also be useful in the treatment

of cancer [64]. Over the past 20 years, scores of compounds that

pharmacologically activate AMPK have been described, a few

of which are shown in figure 2. These are discussed in §§3.1–

3.3 according to their likely modes of action. There has been
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much less emphasis on the development of inhibitors, but

these are briefly discussed in §3.4.

3.1. Pro-drugs that are converted inside cells to AMP
analogues

The first compound shown to activate AMPK in intact cells was

the adenosine analogue 5-aminoimidazole-4-carboxamide

riboside (AICAR), which is taken up into cells via adenosine

transporters [65] and converted by adenosine kinase into the

equivalent monophosphorylated nucleotide, ZMP [66–68]

(figure 2a). ZMP mimics all three of the effects of AMP

described in §2.4 [66], and AICAR has been much used as an

experimental tool to activate AMPK in intact cells and in vivo.

It should be noted, however, that ZMP is much less potent as

an AMPK activator than AMP, and AICAR only activates

AMPK in intact cells because intracellular ZMP accumulates

to millimolar concentrations, even higher than the external con-

centrations of AICAR [66]. The use of AICAR is no longer

recommended by the present authors, because ZMP has

known off-target effects (e.g. it also mimics the effects of

AMP to activate skeletal muscle glycogen phosphorylase [69]

and inhibit hepatic fructose-1,6-bisphosphatase [67,70]), and

because much more specific activators are now available.

One such is C13, a derivative of another adenosine analogue

termed C2 that has been esterified on two oxygen atoms of

its phosphonate group to make it more cell permeable [71].

C13 is indeed readily taken up by cells, but is then converted

into C2 by cellular esterases (figure 2a). Remarkably, C2 is an

even more potent activator of AMPK than AMP itself, although

it should be noted that it is specific for AMPK complexes con-

taining the a1 isoform, and is inactive on a2 complexes [72].

The high affinity of C2 may arise because it binds, unexpect-

edly, to the AMPK-g subunits in a somewhat different

orientation than AMP [73].

3.2. Compounds that bind in the allosteric drug and
metabolite (ADaM) site

In the structures of AMPK heterotrimers containing either b1

[17,18] or b2 [19], the b-CBM interacts with the N-lobe of the

kinase domain of thea subunit via the surface opposite to its gly-

cogen-binding site (figure 1). The cleft between these domains

forms the binding site for novel ligands acting on AMPK,

which in most cases came out of high-throughput screens that

searched libraries of synthetic chemicals for allosteric activators

of AMPK. The first to be discovered was the thienopyridone

A-769662 [74] but at least 10 have now been reported, including

PF-739 [75] and MK-8722 [76] (figure 2b). All activate b1 com-

plexes with higher potency than b2 complexes, and this makes

some of them (including A-769662 [77]) highly selective for the

former. As well as causing allosteric activation, binding of

these compounds also inhibits Thr172 dephosphorylation in

cell-free assays [78,79], although in intact cells the predominant

effect appears to be allosteric, since large changes in phosphoryl-

ation of the AMPK target acetyl-CoA carboxylase in response to

these agonists are usually only accompanied by modest changes

in Thr172 phosphorylation [78].

One of the curious features of the ligands currently known

to bind at this site is that almost all of them are synthetic chemi-

cals rather than natural products. However, many in the field

believe that these compounds may be mimicking the effect of
some natural metabolite that binds to this site, which is why

it has been termed the ‘allosteric drug and metabolite’

(ADaM) site [80]. The only natural product currently known

to bind to this site is salicylate, a compound made by plants

that acts as a hormone signalling infection by pathogens [81].

In the form of extracts of willow bark, salicylates have been

used by humans as medicines since ancient times, and they

are still in very wide use as the synthetic derivative acetyl sal-

icylic acid (ASA or aspirin), which is rapidly broken down to

salicylate once it enters the circulation. Although aspirin itself

is a potent irreversible inhibitor of the cyclo-oxygenases

involved in biosynthesis of prostanoids such as thromboxanes

[82], salicylate activates AMPK by direct binding at the ADaM

site, which occurs at concentrations reached in plasma of

patients taking high doses of aspirin and other salicylate-

based drugs [81]. Interestingly, regular use of aspirin, usually

taken to reduce the formation of blood clots via inhibition of

thromboxane synthesis, is associated with a reduced incidence

of cancer [83]. Whether this can be explained entirely by inhi-

bition of cyclo-oxygenases, or whether it involves some other

target such as AMPK, currently remains unclear.

3.3. Compounds, including biguanides, that activate
AMPK indirectly by inhibiting mitochondrial ATP
synthesis

Metformin and phenformin (figure 2c) are synthetic bigua-

nides derived from galegine (isoprenyl guanidine) [84], a

natural product from the plant goat’s rue or Galega officinalis,

which was well known as a herbal remedy in seventeenth

century England [85]. Both biguanides were introduced for

treatment of type 2 diabetes in the 1950s, although phenfor-

min was withdrawn in most countries in the 1970s because

its use was associated with the rare but life-threatening side

effect of lactic acidosis. The risk of lactic acidosis is much

lower with metformin, which has subsequently become the

drug of first choice in the treatment of type 2 diabetes world-

wide. Although biguanides have been used since the 1950s,

the first clues to their mechanism of action did not emerge

until 2000, when they were reported to inhibit complex I

of the mitochondrial respiratory chain, thus explaining the

risk of lactic acid accumulation [86,87]; they have sub-

sequently also been shown to inhibit the mitochondrial ATP

synthase [88]. Clearly, inhibition of mitochondrial ATP syn-

thesis would be expected to increase cellular ADP : ATP and

AMP : ATP ratios and thus activate AMPK by the canonical

mechanism. Indeed, activation of AMPK by biguanides in

intact cells and in vivo was reported in 2001 [89], and it was

subsequently confirmed that this was caused by increases in

AMP and/or ADP [51], although metformin may also activate

AMPK via the non-canonical lysosomal pathway [90]. Metfor-

min has two major clinical effects: (i) inhibiting glucose

production by the liver and (ii) enhancing insulin sensitivity

of tissues such as liver and skeletal muscle. Surprisingly,

studies with liver-specific double AMPK (a12/2 a22/2)

knockout mice showed that the rapid effects of metformin on

liver glucose production were AMPK independent, despite

the fact that they were accompanied by increases in cellular

AMP : ATP ratios [91]. These acute effects of metformin now

appear to be due to direct allosteric inhibition of the gluconeo-

genic enzyme fructose-1,6-bisphosphatase by AMP [70].

Despite this, studies of mice with double knock-in mutations
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of the single serine residues that are targeted by AMPK in

ACC1 (S79A) and ACC2 (S212A) suggested that the longer

term insulin-sensitizing effects of metformin are indeed

mediated by AMPK [92]. These mice, in which AMPK no

longer acutely inhibits fatty acid synthesis or activates fatty

acid oxidation, accumulate excess di- and tri-glycerides in

liver and muscle, which is accompanied by insulin resistance.

Although wild-type mice developed a similar degree of insulin

resistance when placed on a high-fat diet, insulin sensitivity in

the knock-in mice did not deteriorate further, possibly because

they were already synthesizing so much fat. However, when

the high-fat-fed mice were treated with metformin for six

weeks, this reversed the insulin resistance of the wild-type

mice but had no effect in the knock-in mice. Thus, the longer

term effects of metformin on insulin sensitivity, although not

its short-term effects on hepatic glucose production, are due

to modulation of lipid metabolism by AMPK, most likely by

reducing the excessive storage of lipids in tissues such as

liver and skeletal muscle [92].

Following the initial findings that AMPK was activated by

biguanides [89], and that the tumour suppressor LKB1 acted

upstream of AMPK [14], the question of whether biguanide

use had any influence on cancer was addressed. Retrospective

studies suggested that the use of metformin in patients with

type 2 diabetes in the Tayside region of Scotland was associated

with a significant (around 30%) reduction in the incidence of

cancer [93]. This association has since been confirmed in

studies of many other diabetic cohorts [94–96], although its

validity has been challenged due to the possibility of time-

related biases [97] and it remains just a correlation, with no

proof of direct causation. In addition, even if the association

is valid, it does not necessarily imply that metformin acts

directly on AMPK within the tumours themselves, rather

than indirectly via AMPK-dependent or -independent effects

on other tissues or organs. For example, since metformin is cur-

rently only used to treat type 2 diabetes, we do not know

whether its use would be associated with reduced cancer inci-

dence in subjects without diabetes (although there have been

small trials in patients with breast or endometrial cancer,

these were only ‘window-of-opportunity’ trials to assess var-

ious markers in the short period prior to surgery [98–101]).

Note also that the different cancer incidence in patients with

type 2 diabetes taking metformin is observed when comparing

with those on other medications [93–96]. Metformin enhances

insulin sensitivity and thus reduces insulin release, but many of

the other commonly used medications, such as sulfonylureas

and glucagon-like peptide-1 agonists, work in part by enhan-

cing insulin secretion, while some subjects are even treated

directly with insulin. Insulin is, of course, a growth factor

that promotes proliferation of cells by activating the Akt path-

way. One explanation of the apparent protective effect of

metformin against cancer in patients with diabetes is therefore

that, unlike most other treatments, it reduces rather than

increases the levels of insulin, with high insulin levels being

responsible for increased cancer incidence in patients on other

medications [102]. Indeed, a related phenomenon is seen

in patients with cancer who are treated with phosphatidyl-

inositol 3-kinase (PI3 K) inhibitors, who often secrete extra

insulin to compensate for the insulin resistance induced by

the drugs, thus reducing their anti-cancer efficacy. Experiments

with mouse models suggest that this effect can be overcome by

additional dietary or pharmacological treatments that reverse

the insulin resistance induced by these drugs [103].
There are many other compounds that activate AMPK by

inhibiting mitochondrial ATP synthesis, one example being

resveratrol [51], which inhibits the mitochondrial ATP

synthase [104]. Another is sorafenib, originally developed

as an inhibitor of receptor-linked tyrosine kinases such as

the VEGF and platelet-derived growth factor (PDGF) recep-

tors and used to treat some liver, kidney and thyroid

cancers [105]. However, it also activates AMPK at therapeuti-

cally relevant concentrations by inhibiting the respiratory

chain [106]. Remarkably, more than 100 natural products

derived from traditional Asian medicines have within the

last few years also been shown to activate AMPK in intact

cells [107], and the effects of at least two of them, i.e. berber-

ine [51] and arctigenin [108], appear to be due to inhibition of

complex I of the mitochondrial respiratory chain. We suspect

that many of the others may also work through inhibition of

either complex I or the ATP synthase, which are both large,

membrane-bound complexes containing no less than 44 and

14 protein subunits, respectively. It is perhaps not surprising

that many hydrophobic compounds might find inhibitory

binding sites within these complexes. This class of AMPK

activator is particularly diverse in structure (e.g. those in

figure 2c), indicating that they may interact with distinct

sites. Many of the natural products that activate AMPK

may be produced by plants to provide a chemical defence

to deter grazing by insects or other animals, or infection by

pathogens, and poisoning of complex I or the ATP synthase

would seem to represent good ways to achieve those aims.

Interestingly, many of these toxic plant products are stored

within the plants that synthesize them either in the vacuole

or in the cell wall [109], where they would not come into

contact with the plant’s own mitochondria.

3.4. AMPK inhibitors
At present, no specific AMPK inhibitors are available. The only

AMPK inhibitor that has been widely used in the literature is

compound C (also known as dorsomorphin). Although developed

as an AMPK inhibitor, the claim that it was specific for AMPK

came from the original report that it did not inhibit a panel of

just five other protein kinases [89]. However, in a screen

of 70 protein kinases, nine were inhibited to a greater extent

than AMPK [110], while in a more recent screen of 120 kinases

documented in the MRC Kinase Inhibitor Database (www.

kinase-screen.mrc.ac.uk/kinase-inhibitors) no less than 30

were inhibited to a greater extent than AMPK. The use of

compound C cannot therefore be recommended, even as an

experimental tool. Other AMPK inhibitors have been reported

[111,112], but have not yet been widely used.
4. Downstream targets of AMPK
Once activated, AMPK phosphorylates numerous downstream

proteins, with at least 60 being identified as well-established

targets in a recent review [113]. The core recognition motif

for AMPK is well defined: it requires a basic residue (R, K or

H) either three or four residues N-terminal to the phosphory-

lated serine/threonine (referred to as the P-3 and P-4

positions) as well as hydrophobic residues (L, M, I, F or V) at

P-5 and Pþ4 [113–115]. The ACC1 isoform of acetyl-CoA car-

boxylase, which is a particularly good substrate for AMPK,

has additional specificity determinants N-terminal to this

http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors
http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors
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core motif, which are not present in all downstream targets.

These are another basic residue at P-6, and an amphipathic

a-helix running from P-5 to P-16 that binds in a hydrophobic

groove on the surface of the C-lobe of the AMPK kinase

domain [116]. We discuss some of these targets below, focusing

on those that may be particularly relevant to the role of AMPK

in cancer.

4.1. Proteins and genes involved in catabolic pathways
Catabolic processes switched on by AMPK are summarized

in figure 3. In many cell types, depending on the expression

of specific glucose transporters (GLUTs), AMPK activation

enhances glucose uptake. In skeletal muscle, AMPK acutely

promotes translocation of vesicles containing GLUT4 from

intracellular vesicles to the plasma membrane, in part by a

mechanism involving phosphorylation of the Rab-GAP

protein TBC1D1 [117]. In the longer term, AMPK also

increases expression of GLUT4 protein via a mechanism

that may involve direct phosphorylation of class IIa histone

deacetylases (e.g. HDAC5) [118], which appears to cause

their exclusion from the nucleus [119] and therefore promotes

net acetylation and transcriptional activation at the GLUT4

promoter. AMPK activation also acutely activates glucose

transport by the more widely expressed glucose transporter

GLUT1 [120], in part via phosphorylation and consequent

degradation of TXNIP, an a-arrestin family member that

appears to promote internalization of GLUT1 as well as

reduced levels of its mRNA [121]. In some but not all cells,

AMPK acutely stimulates glycolytic flux via a mechanism

involving direct phosphorylation of 6-phosphofructo-2-

kinase/fructose-2,6- bisphosphatase, the enzyme that makes

and breaks down fructose-2,6-bisphosphate via distinct
domains of a bienzyme polypeptide [122]. Phosphorylation

by AMPK increases the kinase activity, thus increasing the

cellular concentration of fructose-2,6-bisphosphate, a potent

allosteric activator of the glycolytic enzyme 6-phospho-

fructo-1-kinase [122]. However, this mechanism is limited

to specific cell types, because only the PFKFB2 [123] and

PFKFB3 [124] isoforms are targets for AMPK. PFKFB2 is

expressed in cardiac myocytes and some other tissues,

while alternative splicing or differential promoter usage

yields two main isoforms of PFKFB3 that differ by a short

C-terminal sequence; these are the so-called ubiquitous (or

constitutive) isoform and the inducible isoform [122]. The

expression of the inducible form is very low in most adult tis-

sues, but is increased by pro-inflammatory stimuli in

monocytes and macrophages [124] and it is constitutively

expressed in many tumour cells [125].

Although AMPK can therefore acutely activate ATP pro-

duction by glycolysis in some cell types, in the longer term

it tends to promote mitochondrial oxidative metabolism

instead, which is much more efficient in terms of ATP pro-

duction per glucose consumed (�36 ATP per glucose by

oxidative metabolism, as opposed to only two by glycolysis).

Oxidative metabolism is, however, less compatible with pro-

viding precursors for cell growth, so it tends to be used to a

greater extent in quiescent rather than proliferating cells [126].

In the short term, AMPK activates the uptake of fatty acids

into mitochondria via phosphorylation of the acetyl-CoA car-

boxylase isoform ACC2 [127]. While ACC1, the first AMPK

target to be identified, is thought to produce the cytoplasmic

malonyl-CoA used in fatty acid synthesis, ACC2 localizes to

mitochondria [128] and is thought to produce the mitochon-

drial malonyl-CoA that inhibits uptake of fatty acids into

mitochondria via the carnitine:palmitoyl transferase system.
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Phosphorylation of ACC2 lowers malonyl-CoA and therefore

relieves inhibition of carnitine:palmitoyl-CoA transferase-1

(CPT1), thus causing acute promotion of mitochondrial

fatty acid oxidation [127].

In the longer term, AMPK activation has several effects on

mitochondria that enhance their capacity to produce ATP at a

rapid rate. Firstly, AMPK activation promotes mitochondrial

biogenesis itself, involving increased replication of mitochon-

drial DNA as well as expression of many nuclear-encoded

mitochondrial proteins, by activating the transcriptional co-

activator PGC-1a [129]. This is effected either by direct

phosphorylation of PGC-1a [130] or by increasing the cellular

concentration of NADþ, a cofactor required for deacetylation

and activation of PGC-1a by SIRT1 [131]. Secondly, being the

major site of cellular production of reactive oxygen species,

mitochondrial components are particularly prone to oxida-

tive damage, and if this affects their function mitochondria

need to be removed and their contents recycled by the tar-

geted form of autophagy known as mitophagy. Relevant to

this, AMPK has been shown to promote both autophagy

and mitophagy either by phosphorylation of the protein

kinase that triggers autophagy, ULK1 [132,133], or by phos-

phorylation of the Ca2þ/calmodulin-dependent kinase

DAPK, generating a Ca2þ/calmodulin-independent form

that phosphorylates the key autophagy protein Beclin-1

[134]. Thirdly, mitochondria are now known to exist,

especially in quiescent cells, not as small separate organelles,

but as branching networks of tubules that can be almost as

long as the cell containing them [135]. If any regions of

such a network become damaged, they need to be segregated

off from healthy regions via the process of mitochondrial
fission, so that they become small enough to be recycled by

mitophagy. Intriguingly, AMPK activation has been shown

to promote mitochondrial fission by direct phosphorylation

of mitochondrial fission factor (MFF) [136]. These findings are

consistent with one aspect of the phenotype of skeletal

muscle-specific double AMPK knockouts (either a1 and a2
[137] or b1 and b2 [138]), in which muscle accumulates

abnormally shaped and apparently malfunctioning mito-

chondria. Overall, AMPK appears to play several crucial

roles in mitochondrial homeostasis. Since mitochondria are

the main source of cellular ATP in most cells, this makes per-

fect sense for a signalling pathway that is activated by energy

stress and/or glucose deprivation.

4.2. Proteins and genes involved in anabolic pathways
As well as switching on catabolic pathways that generate ATP,

AMPK also switches off almost all major anabolic pathways

(figure 4). AMPK was originally defined via its ability to phos-

phorylate and inactivate both acetyl-CoA carboxylase (ACC1)

and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the

key regulatory enzymes of fatty acid and sterol synthesis,

respectively [139,140]. Fatty acid synthesis is a significant

energy-consuming pathway in rapidly dividing tumour cells,

being a major consumer of both ATP (consumed in the ACC1

reaction) and NADPH (consumed in the two reductive steps

catalysed by the fatty acid synthase complex). Indeed, ACC1

remains one of most rapidly phosphorylated substrates for

AMPK, and the phosphorylation of Ser80 (human numbering)

on ACC1, monitored using a phosphospecific antibody,

remains the most reliable and widely used cellular marker of

AMPK function.

As well as acutely inhibiting fatty acid synthesis by direct

phosphorylation of ACC1 (which catalyses the first two steps

of fatty acid synthesis from acetyl-CoA), AMPK activation

also downregulates expression of the genes encoding ACC1

(ACACA) as well as the gene (FASN) encoding the fatty acid

synthase complex, a dimeric multienzyme polypeptide that

catalyses the remaining seven reactions leading to a saturated

C16 fatty acid (palmitate). The AMPK targets responsible for

these effects may be the transcription factors sterol response

element binding protein-1c (SREBP1c) [141] and/or the carbo-

hydrate response element binding protein (ChREBP) [142],
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which have both been reported to be directly phosphorylated

by AMPK.

As well as inhibiting de novo synthesis of fatty acids, AMPK

inhibits synthesis of triglyceride and phospholipid synthe-

sis by inactivating the first enzyme (glycerol phosphate acyl
transferase, GPAT) involved in the synthesis of the common

intermediate diacylglycerol [143], although whether this is

due to direct phosphorylation of the enzyme remains unclear.

Two direct targets for AMPK are the muscle (GYS1) [34] and

liver (GYS2) [35] isoforms of glycogen synthase, which catalyse

the transfer of glucose from UDP-glucose to the growing non-

reducing ends of the glycogen particle. Both are inactivated by

phosphorylation at equivalent N-terminal sites by AMPK,

although this inactivation is over-ridden by high

concentrations of the feed-forward allosteric activator of

glycogen synthase, glucose-6-phosphate [144]. The need

to co-localize AMPK with glycogen synthase may be one

reason why AMPK-b subunit isoforms in all species carry a

carbohydrate-binding module (b-CBM; see figure 1).

Another key pathway in growing cells is biosynthesis

of nucleotides. The ribose or deoxyribose components of

nucleotides are derived from ribose-5-phosphate generated

in the pentose phosphate pathway. It has recently been

reported that PRPS1 and PRPS2, the two major isoforms of

phosphoribosyl pyrophosphate synthetase that metabolize

ribose-5-phosphate in the first step of nucleotide biosynthesis,

are phosphorylated and inactivated by direct phosphoryla-

tion by AMPK [145]. The pentose phosphate pathway also

generates NADPH that is used for fatty acid biosynthesis, as

well as for regenerating reduced glutathione used to combat

oxidative stress. The large requirement for NADPH and

nucleotide biosynthesis in rapidly proliferating cells may be

one reason why they exhibit rapid glucose uptake to provide

input of glucose into the pentose phosphate pathway.

Nucleotides are, of course, the building blocks for RNA

and DNA. In rapidly proliferating thymocytes, the addition

of actinomycin D (a general inhibitor of RNA synthesis)

reduces oxygen uptake by as much as 15% [146], suggesting

that RNA synthesis accounts for at least that percentage of

total ATP turnover. Since up to 80% of the total RNA in a

typical cell is ribosomal RNA (rRNA), synthesis of the

latter is a major anabolic pathway and consumer of energy

in proliferating cells. Consistent with this, AMPK activation

has been found to inhibit rRNA synthesis by direct phos-

phorylation of the transcription factor for RNA polymerase

I, TIF-1A (encoded by the RRN3 gene) [147].

Arguably the most important biosynthetic pathway in

proliferating cells is translation (protein synthesis). Over

50% of the dry weight of most cells is protein while, in the

proliferating thymocyte system mentioned above, inhibition

of protein synthesis reduced oxygen uptake by more than

20% [146]. AMPK switches off translation by at least two

mechanisms. Firstly, it inactivates the target of rapamycin

complex-1 (TORC1), which is known to promote the

initiation step of ribosomal protein synthesis by triggering

the phosphorylation of multiple proteins, including eukary-

otic initiation factor-4E binding protein-1 (EIF4EBP1) and

ribosomal protein S6 kinase-1 (RPS6KB1) [148]. Phosphoryl-

ation of EIF4EBP1 leads to selective translation of mRNAs

containing 50-terminal oligopyrimidine (50-TOP) sequences,

which often encode mRNAs encoding proteins required for

rapid cell growth, including most ribosomal proteins as

well as other proteins involved in translation [149]. AMPK
inactivates mTORC1 by at least two mechanisms, i.e. inhibi-

tory phosphorylation of the Raptor subunit that targets the

complex to downstream targets and to the lysosome where

it is activated, and activatory phosphorylation of TSC2,

which forms a key part of the TSC1:TSC2:TBC1D7 complex.

The latter has a Rheb:GTPase activator protein (Rheb:GAP)

domain on TSC2 that converts the mTORC1-activating G

protein Rheb to its inactive GDP-bound form [150]. Secondly,

AMPK inhibits the elongation step of ribosomal protein syn-

thesis by promoting phosphorylation of elongation factor-2 at

Thr56. This residue is phosphorylated not by AMPK itself but

by elongation factor-2 kinase (EF2 K), a member of the atypi-

cal protein kinase (aPK) family that is activated by Ca2þ/

calmodulin. AMPK appears to activate EF2 K in part by

direct phosphorylation [151] and in part by inactivating

mTORC1, with EF2 K being phosphorylated and inactivated

by p70S6K1 downstream of mTORC1 [152,153].

4.3. Progress through the cell cycle
As well as inhibiting most major biosynthetic pathways,

AMPK activation can also cause cell cycle arrest (figure 4).

As long ago as 2001, it was reported that the AMPK activator

5-aminoimidazole-4-carboxamide riboside (AICAR) caused

arrest in the G1 phase of the cell cycle in HepG2 cells, which

was attributed to phosphorylation of the transcription factor

p53 at Ser15, and consequent increased expression of the G1

cyclin-dependent kinase inhibitor p21CIP1 (CDKN1A) [154].

This was followed by a demonstration that both AICAR and

low glucose caused cell cycle arrest in MEFs [155]. These effects

were at least partially dependent upon p53, because they were

reduced in p532/2 MEFs. Although both AICAR and glucose

deprivation can have off-target, AMPK-independent effects,

the effects of low glucose also appeared to be AMPK depen-

dent because they were reduced by expression of a dominant

negative AMPK mutant (a kinase-inactive AMPK-a mutant

that inhibits endogenous AMPK-a subunits by competing for

available b and g subunits). This group also reported that an

activated kinase domain construct of AMPK could directly

phosphorylate p53 at Ser15 [155]. However, the sequence

around Ser15 is not a good fit to the AMPK recognition

motif, lacking a basic residue at P-4 or P-3 (in fact, with an

acidic residue at P-4 instead). It seems more likely that the

phosphorylation of p53 observed in response to AMPK

activation is indirect.

Another potential mechanism by which AMPK causes G1

arrest involves phosphorylation of another cyclin-dependent

kinase inhibitor, p27WAF1 (CDKN1B). In breast cancer cells

(MCF-7), p27 was found to be phosphorylated at its C-terminal

residue (Thr198), and this appeared to stabilize the protein,

thus increasing its expression and causing cell cycle arrest as

well as appearing to promote autophagy. Phosphorylation of

Thr198 increased in response to AICAR treatment or glucose

starvation of cells. Although some evidence was presented

that Thr198 is directly phosphorylated by AMPK, the site is

not a perfect fit to the AMPK recognition motif (for example,

being the C-terminal residue, there is no hydrophobic residue

at Pþ4), and mutation of Thr198 only had a modest effect on

phosphorylation by AMPK in cell-free assays [156]. Further

studies are therefore required to confirm that this is a direct

effect of AMPK.

Although AMPK activation by both AICAR [14] and low

glucose [60] requires the presence of LKB1, AMPK could still
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cause G1 arrest in three different LKB1-deficient tumour cell

lines if it was activated by the addition of a Ca2þ ionophore to

activate the alternative upstream kinase, CaMKK2. This effect

was abolished either by expression of a dominant negative

AMPK-a2 mutant or by a double knockout of AMPK-a1

and -a2 [157]. Thus, AMPK can cause G1 arrest even in the

absence of its tumour suppressor upstream kinase, LKB1.

Interestingly, treatment of cells with the Ca2þ ionophore

A23187 caused G1 arrest without affecting the expression of

CDKN1A or CDKN1B, despite the fact that the overall

expression of both was reduced by expression of the domi-

nant negative mutant or the double knockout [157]. Thus,

in this case changes in CDKN1A or CDKN1B expression

cannot be the sole explanation for cell cycle arrest.
pen
Biol.9:190099
5. AMPK and cancer—evidence from
mouse models

We will now discuss the evidence that, depending upon the

context, AMPK can act either as a tumour suppressor or as

a tumour promoter in mouse models.

5.1. AMPK—a tumour suppressor?
With the discovery that AMPK activation requires the tumour

suppressor LKB1, the realization that AMPK inhibits cell

growth and proliferation, and the epidemiological evidence

that the AMPK activator, metformin, provides protection

against cancer, it seemed increasingly likely that AMPK

would also be a tumour suppressor. One caveat was that,

soon after the discovery that LKB1 acted upstream of AMPK,

LKB1 was found to be required for the phosphorylation and

activation of at least 12 other kinases closely related to

AMPK (now referred to as the AMPK-related kinase or ARK
family), which share very similar sequences within their acti-

vation loops [158,159]. Although none of the ARKs (unlike

AMPK) are known to inhibit cell growth and proliferation,

knockdown of LKB1 using RNAi was reported to enhance

expression of SNAIL, a protein that promotes the epithelial-

to-mesenchymal transition, and hence metastasis of tumour

cells, by reducing the phosphorylation of DIXDC1 by two of

the ARKs, MARK1 and MARK4 [160]. It therefore remains

possible that at least some of the tumour suppressor effects

of LKB1 might be mediated by one or more of the ARKs,

rather than AMPK.

Confirmation of a tumour suppressor role for AMPK in vivo
required the study of tumorigenesis in AMPK knockout mice.

However, there are two isoforms of the catalytic subunit

(a1 and a2) and a global double knockout is embryonic

lethal [161], thus necessitating the use of tissue-specific

double knockouts. While this approach is now possible, it is

also very time-consuming. However, a shortcut arose with

the realization that cells of the haematopoietic lineage, includ-

ing lymphocytes, exclusively express AMPK-a1 [162]. Thus, to

study the role of AMPK in lymphomas and/or leukaemias, it

was only necessary to knock out a single gene, i.e. the Prkaa1
gene encoding AMPK-a1.

The first study to suggest that AMPK was a tumour suppres-

sor used a Em-Myc model [163], in which B-cell lymphoma is

induced by transgenic over-expression of the Myc oncogene

from a B-cell-specific promoter. Consistent with the idea that

AMPK-a1 is a tumour suppressor, loss of both alleles of
Prkaa1 in this model markedly accelerated development of

B-cell lymphomas, whereas loss of a single allele had an inter-

mediate effect. Em-Myc lymphoma cells and other tumour

cells expressing shRNAs targeted at AMPK-a1 were also

studied in vitro. In general, the AMPK knockdown cells exhib-

ited mTORC1 hyper-activation and increased glucose uptake

and lactate production compared with controls, and this

appeared to be due to increased expression of hypoxia-inducible
transcription factor-1a (HIF-1a) [163]. The 50-UTR of mRNA

encoding HIF-1a contains 50-TOP sequences [164] and their

translation is thus enhanced by mTORC1 activation ([165]; see

§4.2). Thus, loss of AMPK in the tumour progenitor cells

enhances glucose uptake and glycolysis even under normoxic

conditions. This is an example of the well-known ‘Warburg

effect’, in which tumour cells display high levels of glucose con-

sumption in order to generate precursors for biosynthesis

derived from the pentose phosphate pathway and glycolysis.

For example, ribose-5-phosphate for nucleotide biosynthesis

and NADPH for lipid synthesis are generated via the pentose

phosphate pathway, while serine (required for one-carbon

metabolism used in purine nucleotide biosynthesis) is generated

by a pathway that branches off from the glycolytic intermediate

3-phosphoglycerate [126].

A drawback with this B-cell lymphoma model was that

Prkaa1 was knocked out globally [163], so it was not possible

to conclude that the effect was due to a cell-autonomous loss

of AMPK-a1 in the B-cell progenitors themselves, rather than

an indirect effect of loss of AMPK-a1 in some other cell type.

In an attempt to address this, wild-type mice were irradiated

to inactivate their endogenous immune system, and were

then reconstituted with haematopoietic stem cells from either

Em-Myc/Prkaa12/2 or Em-Myc/Prkaa1þ/þ mice. Interestingly,

all of the mice receiving AMPK knockout cells developed lym-

phomas, but only 20% of those receiving the AMPK wild-type

cells [163], thus supporting the idea that the effect of AMPK

loss was at least partly cell autonomous.

Another study involved crossing mice with global knock-

outs of the genes encoding p53 (Trp53) and AMPK-b1

(Prkab1), the latter being the principal b subunit isoform

expressed in T-cell precursors in the thymus [166]. Knockout

of Prkab1 caused earlier onset of T-cell lymphomas in both

homozygous and heterozygous p53 knockouts, suggesting

that b1 had a tumour suppressor role in T-cell lymphoma.

However, once again the knockout of Prkab1 in this model

was global rather than T-cell specific, so it was not possible

to conclude whether this was a cell-intrinsic effect on AMPK

in the tumour progenitor cells themselves.

A specific loss of AMPK in the tumour progenitor cells has

recently been achieved using a model of T-cell acute lympho-

blastic leukaemia/lymphoma (T-ALL) [167]. As reported

previously [168], mice with a T-cell-specific knockout of

PTEN (using Cre recombinase expressed from the Lck promo-

ter) started to develop lymphomas at about 50 days of age,

and essentially all of the mice had developed T-ALL by 150

days. While knocking out the Prkaa1 gene using the same

Lck-Cre system had no effect on its own, when combined

with PTEN knockout the lymphomas arose earlier and overall

tumour-free survival was greatly reduced (figure 5) [167].

These results suggested that basal AMPK activity in develop-

ing T cells is sufficient to provide protection against T-ALL.

However, this model also provided an excellent opportunity

to test whether treatment with biguanides would protect

against this type of cancer (see §3.3). Since the expression of
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AMPK-a1 would be absent in lymphoma cells and their

progenitors but normal everywhere else, it would also be

possible to determine whether any effect of biguanides was a

cell-intrinsic effect to activate AMPK in the tumour progenitor

cells themselves. Rather disappointingly, metformin had no

effect, which correlated with a lack of AMPK activation and a

failure to detect metformin by liquid chromatography–mass

spectrometry (LC:MS) in the thymus of mice with lymphomas.

By contrast, phenformin significantly enhanced tumour-free

survival, and this correlated with AMPK activation, and detec-

tion of phenformin by LC:MS, in the thymus of mice with

lymphoma. Intriguingly, protection against T-ALL by phenfor-

min was only observed when the tumours expressed AMPK,

with no effect in the AMPK knockouts (figure 5). Thus, protec-

tion against T-ALL by phenformin was dependent upon the

expression of AMPK in the tumour progenitor cells, and was

cell autonomous, while the failure of metformin to provide pro-

tection was due to lack of uptake of the drug by thymocytes.

Phenformin has also been shown recently to slow growth of

murine breast cancer cells in vivo in a mouse allograft model,

although the role of AMPK was not examined [169].

Another mouse model suggesting a tumour suppressor

role for AMPK used prostate epithelial-specific knockouts of

the Pten and Prkab1 genes [170]. Although the knockout

of Prkab1 as well as Pten did not affect prostate size, it did

result in a higher proliferative index and pathological grade.

A drawback with this model was that the prostate gland also

expresses AMPK-b2, which might have partially compensated

for lack of b1 and might be why the effects on tumorigenesis

were relatively modest.

Other evidence supporting the idea that AMPK is a tumour

suppressor comes from studies of ubiquitin ligases involved in

cellular degradation of AMPK subunits. MAGE-A3/-A6 are

closely related members of the melanoma antigen family of pro-

teins, which are normally only expressed in testis but become

re-expressed in many tumours, hence their designation as

tumour antigens [171]. MAGE-A3/-A6 bind to the ubiquitin E3

ligase TRIM28, and a screen revealed AMPK-a1 to be a target

for polyubiquitylation by this complex, with consequent

proteasomal degradation. Consistent with this, knockdown

of MAGE-A3/A6 or TRIM28 in tumour cells increased

the expression of AMPK-a1 and triggered the expected

changes in metabolism and signalling, including inhibition of
mTORC1. Finally, various human tumour cells that express

MAGE-A3/-A6 have reduced levels of AMPK-a1 protein [171].

Another cancer-associated ubiquitin ligase, UBE2O, tar-

gets degradation of a2, the other catalytic subunit isoform

of AMPK [172]. Knockout of Ube2o attenuated tumour devel-

opment in mouse models of both breast and prostate cancer,

supporting the idea that the protein has tumour-promoting

functions. A search identified AMPK-a2 as an UBE2O-inter-

acting protein that is targeted for polyubiquitylation and

proteasomal degradation, and the levels of a2 but not a1

were upregulated in tissues from Ube2o2/2 mice. A human

colon carcinoma cell line also grew less rapidly in mouse

xenografts when UBE2O was knocked down using shRNA,

and this was reversed by concurrent knockdown of AMPK-a2

but not -a1. The UBE2O gene is located in humans at 17q25, a

region amplified in up to 20% of breast, bladder, liver and

lung carcinomas. Using immunohistochemistry of human

breast tumours, there was a negative correlation between

expression of UBE2O and AMPK-a2, but a positive correlation

between UBE2O expression and S6 phosphorylation, a marker

for the mTORC1 pathway [172].

5.2. AMPK—a tumour promoter?
Despite the evidence discussed in the previous section that

AMPK-a1 and -b1 are tumour suppressors that protect against

the development of B- and T-cell lymphomas as well as pros-

tate cancer, other studies suggest that AMPK may protect the

tumour cells (rather than the patient), and thus promote
tumour formation, at least when disease is already established.

Rathmell’s group used a different model of T-ALL in which

oncogenic NOTCH1 was expressed in vitro in murine haemato-

poietic stem cells that carried a floxed AMPK-a1 gene and

Cre recombinase driven by a tamoxifen-inducible promoter.

These were multiplied in irradiated mice, and then injected

into irradiated secondary recipient mice. After a period of

10 days to allow disease to become established, the mice

were then treated with tamoxifen to acutely delete AMPK-a1

in the T-ALL cells. In this model, knocking out AMPK-a1

reduced the recovery of T-ALL cells in spleen, lymph nodes

and bone marrow, and enhanced survival of the mice [173].

Thus, once T-ALL tumour cells have developed the presence

of AMPK-a1 appears to enhance T-ALL cell viability and

reduce mouse survival. While AMPK therefore acts as a

tumour suppressor during the development of T-ALL [167],

once the tumours have occurred it appears to paradoxically

switch to being a tumour promoter instead.

Another study using a mouse model of acute myeloid leu-

kaemia (AML) also concluded that AMPK acted as a tumour

promoter [174]. Here, mice carrying floxed alleles of Prkaa1
and Prkaa2, as well as Cre recombinase expressed from the

Mx1 promoter, were injected with poly(I:C) to delete AMPK-

a1 and -a2 from haematopoietic cells, with mice lacking

Mx1-Cre as controls. Haematopoietic progenitor cells from

these mice were then transduced with retroviruses expressing

three different cancer-promoting gene fusions (MLL-AFP,

MOZ-TIF2 or BCR-ABL) and were then transplanted into

irradiated recipient mice. The absence of AMPK from the

leukaemia-initiating cells either delayed the onset of disease

(BCR-ABL) or enhanced mouse survival (MLL-AFP or MOZ-

TIF1). Thus, the presence of AMPK was required to maintain

full leukaemogenic potential of the cells in these models. Evi-

dence was provided that this was because the lack of AMPK
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increased the recovery of reactive oxygen species (ROS) in leu-

kaemia-initiating cells from bone marrow, correlating with

decreased ratios of reduced : oxidized NADP and glutathione,

and increased DNA damage. This was ascribed to a reduced

glucose uptake via GLUT1, which is regulated by AMPK via

phosphorylation of TXNIP (see §4.1). The authors also pro-

posed that the leukaemia-initiating cells lacking AMPK were

particularly vulnerable to stress in the bone marrow, because

the glucose concentrations were lower than in peripheral

blood, especially under conditions of dietary restriction of the

mice [174].

Consistent with these findings, reduced survival of AMPK-

deficient human tumour cells undergoing stress has been

observed in several in vitro studies. For example, LKB1-null

tumour cells, or LKB1-expressing tumour cells with AMPK-

a1 knocked down using shRNA, were more susceptible to

cell death induced by glucose starvation or extracellular

matrix detachment, suggesting that AMPK activation pro-

tected against these insults [175]. In another example, a

synthetic lethal siRNA screen was carried out to detect protein

kinases required for survival of U2OS cells that over-expressed

the Myc oncogene from a tamoxifen-inducible promoter. One

of the top hits was AMPK-a1, which was also shown to be

activated during Myc over-expression [176].

Evidence that AMPK can promote tumours was also

obtained recently using a mouse model of lung cancer in

which the tumours develop in situ at their site of origin, and

in which the authors had ‘bitten the bullet’ by knocking out

both AMPK-a1 and -a2. Here, mice expressing Lox-STOP-

Lox alleles of the KRASG12D oncogene and firefly luciferase

were crossed with mice expressing floxed alleles of Tp53
(encoding p53) and/or Stk11 and/or Prkaa1 plus Prkaa2. To

model non-small cell lung carcinoma, Cre-recombinase was

delivered to the lungs by nasal inhalation of lentiviral vectors.

This procedure triggers recombination at twin loxP sites in a

small subset of lung epithelial cells, in which expression of

KRASG12D and luciferase would be switched on, and p53

and/or LKB1 and/or AMPK-a1/-a2 would be knocked out;

expression of luciferase also allowed tumours to be imaged

by bioluminescence, and thus their growth to be monitored

in vivo. Knockout of LKB1 enhanced growth in tumours expres-

sing mutant K-Ras as reported previously [177] but, by

contrast, knockout of both AMPK-a1 and -a2 was found to

cause reductions in the size and number of lung tumours,

especially in tumours expressing mutant K-Ras and lacking

p53. Overall, these results confirmed that LKB1 is a tumour

suppressor in non-small cell lung cancer as expected, while

the presence of either AMPK-a1 or -a2 promoted tumour

growth [178].
6. Evidence from analysis of human cancer
genomes

Although most of the evidence discussed in §5 was obtained

in mouse models of cancer, comparison of genetic alterations

in genes encoding the LKB1-AMPK pathway in biopsies of

human cancers, compared with normal tissue, can also pro-

vide useful clues about roles of the pathway in human

cancer. The cBioPortal database (http://www.cbioportal.

org/ [179,180]) provides a particularly user-friendly way to

analyse the many studies of human cancer of this type that

have been performed to date. Figure 6 summarizes genetic
changes in the STK11 gene encoding LKB1, and all seven

genes encoding subunit isoforms of AMPK, extracted from

cBioPortal in April 2019. Each vertical bar represents an indi-

vidual cancer genome project, with the height of the bar

representing the percentage of cases where genetic alterations

were seen (only studies with changes in greater than or equal

to 3% of cases are shown). Since LKB1 is a known tumour

suppressor, one would expect to observe mainly mutations

(green bars) or deletions (blue bars) when analysing STK11.

This is indeed generally the case (figure 6a), although there

are some anomalous cancer studies where gene amplification

was observed instead (red bars), particularly in pancreatic

and prostate cancers. By contrast, changes in the PRKAA1
gene, encoding AMPK-a1, were mostly amplifications (note

preponderance of red bars in figure 6b), which is more con-

sistent with the idea that AMPK-a1 can act as a tumour

promoter. An important caveat is that gene amplifications

in cancer usually involve whole segments of chromosomes

rather than individual genes. It was therefore possible that

the PRKAA1 gene is located close to an oncogene for which

amplification was being selected, with PRKAA1 simply

accompanying it as an innocent bystander. However, an

argument against that possibility comes from analysis of

concurrent genetic changes in STK11 and PRKAA1 in single

cancer studies, such as the 230 cases of lung adenocarcinoma

in The Cancer Genome Atlas (figure 7) [181]. In that

study, the STK11 gene was either deleted or mutated (mostly

truncations or missense mutations predicted to cause loss of

function) in 43 cases (19%) and PRKAA1 was amplified in 22

(10%). However, these changes never coincided ( p ¼ 0.005),

which would be expected to occur by random chance if they

were occurring independently. The most frequent mutations

in this study of lung adenocarcinoma were in the KRAS
(36%) and TP53 genes (47%), encoding K-Ras and p53. Interest-

ingly, amplification of PRKAA1 was almost mutually exclusive

with mutations in KRAS ( p ¼ 0.005), but co-occurred with

mutations in TP53 ( p , 0.001).

Why should amplification of the AMPK-a1 gene be

mutually exclusive with mutations in the LKB1 gene? The

answer to this seems obvious, because there would be little

point in over-expressing AMPK-a1 if LKB1 was not present

to phosphorylate and activate it. These considerations suggest

that PRKAA1 amplification is being selected for, rather than

just being an innocent bystander. However, why amplification

of the AMPK-a1 gene should co-occur with mutations in p53 is

less obvious. The classical role of p53 [182] is to become stabil-

ized or activated in response to DNA damage, and to cause a

G1 cell cycle arrest in order to allow time for the damage to

be repaired, which it achieves by inducing transcription of

genes such as the G1 cyclin-dependent kinase inhibitor

p21CIP1 (CDKN1A). Intriguingly, as already discussed in

§2.5, AMPK complexes containinga1 are also activated by gen-

otoxic agents such as etoposide, and can trigger a similar G1

cell cycle arrest [11]. It therefore seems possible that PRKAA1
amplification may be selected for in p53-null tumours because

over-expression of AMPK-a1 can compensate to some extent

for p53 loss, and could thus enhance survival of p53-null

tumour cells undergoing genotoxic stress.

In marked contrast to the frequent amplification of the

PRKAA1 gene in cancer, the PRKAA2 gene encoding AMPK-

a2 is much more often mutated (note preponderance of green

bars in figure 6c). Interestingly, all six of the cancer studies

where the gene was most frequently mutated (10–23% of

http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/


pancreatic

lung adeno

lung adeno

lung adeno

mixed

NE prostate

non-small cell lung

prostate

metastatic prostate

adenoid cystic

small cell lung

metastatic breast

sarcoma

cervical

skin
angiosarcoma

invasive breast

cholangiosarcoma

adrenocortical

cholangiosarcoma

uterine

bladder

oesophagus

skin
ovarian

mixed

uterine

pan cancer

stomach

5

10

15

20

al
te

ra
tio

n 
fr

eq
ue

nc
y 

(%
) STK11

NE prostate

bladder

lung adeno

melanoma

lung squamous

sarcoma

oesophagus

lung adeno

stomach

uterine

skin
bladder

prostate

uterine

adrenocortical

melanoma

metastatic prostate

cervical

ovarian

head and neck

sarcoma

4

2

14

12

10

8

6

al
te

ra
tio

n 
fr

eq
ue

nc
y 

(%
) PRKAA1

skin
melanoma

NE prostate

melanoma

melanoma

melanoma

pancreatic

melanoma

sarcoma

uterine

uterine

angiosarcoma

colorectal

ovarian

sarcoma

invasive breast

mixed

bladder

melanoma

colorectal

melanoma

5

10

15

20

PRKAA2

adenoid cystic

NE prostate

invasive breast

pancreatic

invasive breast

liver
invasive breast

invasive breast

lung adeno

bladder

bladder

cholangiosarcoma

uterine

ovarian

invasive breast

pancreatic

lung squamous

sarcoma

melanoma

neuroendocrine

oesophagus

prostate

pancreatic

sarcoma

uterine

angiosarcoma

stomach

uterine

head and neck

5

10

15

20

25 PRKAB2

5

10

15

al
te

ra
tio

n 
fr

eq
ue

nc
y 

(%
)

NE prostate

uterine

prostate

skin
peripheral nerve

glioma

PRKAB1

10

30

20

40

al
te

ra
tio

n 
fr

eq
ue

nc
y 

(%
)

adenoid cystic breast

uterine

skin
uterine clear cell

B-cell lymphoma

peripheral nerve

prostate

NE prostate

adenoid cystic

melanoma

colorectal

PRKAG1 PRKAG2

5

15

10

20

NE prostate

prostate

glioma

stomach

uterine

uterine

prostate

prostate

uterine

melanoma

melanoma

melanoma

bladder

melanoma

adrenocortical

skin
ovarian

angiosarcoma

lung adeno

5

15

10

PRKAG3

skin
sarcoma

melanoma

melanoma

angiosarcoma

uterine

pancreas

NE prostate

prostate

prostate

mutation

amplification

deletion

(a)

(b) (c)

(d) (e)

( f ) (g) (h)

Figure 6. Summary of genetic alterations in human cancer in genes encoding (a) LKB1 (STK11), and (b – h) the seven genes encoding AMPK subunit isoforms.
Based on analysis of the ‘curated set of non-redundant studies’ in the cBioPortal database in early April 2019, using the gene names shown.

royalsocietypublishing.org/journal/rsob
Open

Biol.9:190099

14
cases) were of skin cancer or melanoma. The reasons for this are

not clear, but separate analysis showed that in all of the skin

cancer/melanoma studies listed in cBioPortal there were
80 mutations affecting AMPK-a2 and just 10 affecting a1.

Although it is not yet clear how many of the former cause

loss of function in a2 complexes, these results suggest that
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AMPK-a2 may play a tumour suppressor role in skin cancer

and melanoma.

When it comes to the AMPK-b subunits, there was a strik-

ing difference between the behaviour in human cancers of the

PRKAB1 and PRKAB2 genes, encoding b1 and b2 (figure 6d,e).

While genetic changes in PRKAB1 were detected in just a very

small number of cancer studies and were quite variable in gen-

etic type, the PRKAB2 gene was frequently amplified in

numerous different cancers (note preponderance of red bars

in figure 6e), suggesting, if anything, a tumour promoter role.

Since the C-terminal domain of the b subunit (b-CTD) forms

the ‘core’ of the heterotrimeric AMPK complex (see §2.2),

over-expression of b2 may perhaps help to stabilize and

increase expression of the a and g subunits, even when the

genes encoding those subunits lack genetic alterations. How-

ever, why it should only be the gene encoding b2, and not

b1, that is amplified remains unclear.

Alterations in the genes encoding the three g subunits tend

to occur at a lower frequency than those encoding the a and b

subunits, and are more mixed in genetic type (figure 6f–h).

However, there were some interesting findings, such as the

41% of cases (albeit only five out of 12) in which the PRKAG1
gene was deleted in adenoid cystic breast cancer [183].

Looking at the genetic alterations occurring in the genes

encoding LKB1 and AMPK subunits in human cancer, one

striking observation is that all eight genes are frequently ampli-

fied in neuroendocrine prostate cancer (labelled NE prostate in

figure 6). This is a subset of prostate cancer that has become

resistant to anti-androgen treatment [184]. The significance of

this intriguing observation remains unclear at present.
7. Conclusion—is AMPK a tumour
suppressor or a tumour promoter,
or both?

In this final section we will attempt to reconcile the apparently

conflicting reports that AMPK can variously act to promote or

suppress tumorigenesis. Our view is that AMPK can act either

as a tumour suppressor or a tumour promoter, depending on

the context. It can be argued that in all of the mouse studies

where a tumour suppressor role was supported (e.g. in the

Em-Myc model of B-cell lymphoma [163], the p53-null [166]

and PTEN-null [167] models of T-cell lymphoma and the

PTEN-null model of prostate cancer [170]), AMPK function

had been knocked out prior to tumorigenesis. For example,

in the Em-Myc model [185], loss of AMPK-a1 would

have occurred during embryogenesis whereas, although
over-expression of Myc in pre-B cells has certainly occurred

by 35–50 days of age [186], lymphomas do not start to arise

until 50 days and their median onset is �80 days [187]. Thus,

events additional to Myc over-expression must occur before

lymphomas are generated. The same applies to the PTEN

knockout model of T-ALL, where the Lck promoter-driven

knockout of PTEN and/or AMPK-a1 would have occurred

by 30 days of age but lymphomas did not start to arise until

later (figure 5).

On the other hand, in those mouse models of cancer

where AMPK appeared to be acting as a tumour promoter,

it can be argued that the knockout of AMPK usually occurred

either simultaneous with, or even after, tumorigenesis had

been initiated. For example, in the study of T-ALL by Kishton

et al. [173] (§5.2), transformation was generated in vitro by

forced expression of an oncogenic mutant of Notch1, and

the T-ALL cells were then transferred to irradiated recipient

mice and disease allowed to become established prior to

AMPK being knocked out by treatment with tamoxifen. It

is particularly instructive to compare this model with our

own more recently published model of T-ALL [167], where

AMPK-a1 had been specifically knocked out in T-cell pro-

genitors prior to lymphomas starting to occur, in which

basal AMPK was clearly protecting against development

of lymphomas, and in which activation of AMPK using

phenformin provided further protection.

Coming to other mouse studies that support a tumour

promoter role for AMPK, in the autochthonous model of

non-small cell lung cancer [178], knockout of AMPK would

have occurred simultaneously with expression of mutant

K-Ras and loss of p53, which may have been sufficient to trig-

ger tumorigenesis on their own. The only study that

supported a tumour promoter role but where AMPK had

been knocked out prior to disease onset was the model of

AML by Saito et al. [174]. However in that case (as in the

study of T-ALL by Kishton et al. [173]) transformation had

been achieved by enforced expression of oncogenes in vitro
in haematopoietic progenitor cells, and the real test of the

role of AMPK was in the survival and/or proliferation of

the leukaemia cells in vivo in irradiated recipient mice.

It can be argued that these two studies, by carrying out

transformation in vitro, may have been less likely to detect

a tumour suppressor role of AMPK.

Overall we propose that, when loss of AMPK occurs prior

to initiation of tumorigenesis in vivo, this would remove the

restraints on the mTORC1 pathway and unleash other biosyn-

thesis processes and the cell cycle, thus transforming the cells

into a metabolic and proliferative state that is primed for

tumour formation. Under these circumstances, AMPK acts as
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a tumour suppressor, and AMPK activators may provide

additional protection against tumorigenesis, such as the

effect of phenformin in T-ALL [167]. These results suggest

that AMPK activators might one day find a place in providing

protection against cancer, perhaps in individuals who are at

high risk of developing the disease. If biguanides are used, it

might also make sense to use phenformin which, being more

membrane permeable than metformin even in the absence of

a transporter, is much more likely to activate AMPK in the

tumour progenitor cells. Although phenformin was with-

drawn for treatment of type 2 diabetes because of the risk of

life-threatening lactic acidosis, the risk of this complication

was actually quite low (�64 cases per 100 000 patient-years

[188]), and might be more acceptable in the context of cancer

rather than diabetes. Alternatively, some of the other AMPK

activators discussed in §3 might perhaps be developed for

this purpose.

We also propose that, once the cancer cells have started to

grow in vivo, AMPK switches from being a tumour suppressor

to a tumour promoter (like the transformation of the benevo-

lent Dr Jekyll into the malevolent Dr Hyde in Stevenson’s

novel!). Under these circumstances, the role of AMPK is to pro-

tect the cell in which it is expressed, irrespective of whether that

cell is a cancer cell or a normal cell. By protecting cancer cells
against stresses such as shortage of oxygen or nutrients, or oxi-

dative or genotoxic stress, AMPK would enhance their survival

and thus, in the long term, promote growth of tumours. Under

these circumstances, AMPK is acting as a tumour promoter,

which suggests that AMPK inhibitors might be efficacious in

treatment of cancer. They may be particularly effective: (i) in

cases where the PRKAA1 or PRKAB2 genes are amplified, caus-

ing AMPK over-expression; (ii) when given in combination

with genotoxic treatments such as etoposide or radiotherapy,

thus reducing the viability of tumour cells during such thera-

pies. At present we do not have any well-characterized and

specific inhibitors of AMPK (see §3.4), but future work can

be directed at correcting that deficiency.
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