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Motor imagery (MI)-based brain-computer interface (BCI) systems have shown

promising advances for lower limb motor rehabilitation. The purpose of this

study was to develop an MI-based BCI for the actions of standing and

sitting. Thirty-two healthy subjects participated in the study using 17 active

EEG electrodes. We used a combination of the filter bank common spatial

pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA)

technique for decoding EEG rhythms o	ine and online during motor imagery

for standing and sitting. The o	ine analysis indicated the classification ofmotor

imagery and idle state provided amean accuracy of 88.51± 1.43% and 85.29±

1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean

accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69

± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that

the MI-based BCI may be useful to future brain-controlled standing systems.

KEYWORDS

brain-computer interface (BCI), electroencephalogram (EEG), motor imagery (MI), sit-

stand, filter bank common spatial pattern (FBCSP), regularized linear discriminant
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1. Introduction

A brain-computer interface (BCI) system provides a communication channel

between the brain and an external device. These systems have been developed for

decades and the choice of the BCI paradigm depends on the application (Lotte

et al., 2018b). Among the possible strategies reported in the literature, the most

successful noninvasive BCI paradigms are based on three main approaches: evoked

response (P300), steady-state visually evoked potential (SSVEP), and motor imagery

(MI) (Lee et al., 2019). However, research on electroencephalogram (EEG) based MI

of lower limb movements toward BCI-controlled applications remains relatively scarce
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(Bobrova et al., 2020; Asanza et al., 2022). Many of these studies

have only been tested in offline scenarios due to the complexity

of the movements and experimental setups that produce

unrealistic EEG signals when compared to experimental setups

in online scenarios (Rodríguez-Ugarte et al., 2017). Only a small

number of studies have been conducted on standing and sitting

behaviors in offline scenarios (Zhou et al., 2007; Bulea et al.,

2014; Singh et al., 2017; Chaisaen et al., 2020). Therefore, we

examined the use of an EEG-based BCI to decode offline and

online MI information for these types of movements.

In recent decades, a wide variety of methods have been

developed to decode motor imagery tasks from EEG signals

in order to improve the performance of BCI systems (George

et al., 2021; Singh et al., 2021). These methods include feature

extraction techniques that use temporal (Rodríguez-Bermúdez

and García-Laencina, 2012; Hamedi et al., 2014; Kee et al., 2017;

Samuel et al., 2017), spectral (Al-Fahoum and Al-Fraihat, 2014;

Oikonomou et al., 2017), and time-frequency representations

(Kevric and Subasi, 2017; Gao et al., 2018; Aggarwal and Chugh,

2019; Padfield et al., 2019; Ortiz et al., 2020). Nevertheless, the

usefulness of spatial filtering techniques in BCI applications

has been explored for many years now, as a way to select

the most discriminative features in EEG recordings for motor

imagery tasks, as well as to reduce the huge dimensionality

that can be present in feature spaces (Ang et al., 2012;

Congedo et al., 2017; Lotte et al., 2018a; Rejer and Górski,

2018). In this sense, the common spatial pattern (CSP) method

has been shown to extract discriminative information more

effectively than other spatial filters such as bipolar, Laplacian,

or common average reference, as well as unsupervised data-

driven techniques such as independent component analysis

(ICA) (Naeem et al., 2009; Ortner et al., 2015; He and Wu,

2018). While research already exists concerning the CSPmethod

and was successfully applied (Chaisaen et al., 2020), important

knowledge is still missing regarding the challenge of decoding

EEG rhythms online during motor imagery tasks for standing

and sitting.

Some researchers use the term “BCI illiteracy” for people

unable to control a BCI (Allison and Neuper, 2010; Ahn et al.,

2013). Nevertheless, the effective control threshold depends

on many factors, including the BCI application and paradigm

(Edlinger et al., 2015; Lee et al., 2019). For example, an accuracy

level of less than 80% might be insufficient in a BCI system

designed for communication. Conversely, for BCI systems

intended for motor rehabilitation purposes, an accuracy above

the confidence level might become sufficient (Thompson, 2018).

Previous studies have focused on decoding EEG signals of left-

hand and right-hand motor imagery tasks (which represented

sitting down and standing up) (Noda et al., 2012; Wang

et al., 2018), or SSVEP signals (in which flickering lights

corresponded to the command for standing and sitting) (Kwak

et al., 2017), instead of investigating the decoding of continuous

EEG rhythms during motor imagery concerning standing and

sitting. For these reasons, considering the applications of lower

limb motor imagery and the necessity of using an online BCI

for these little-researched movements, this study establishes an

offline and online performance analysis of an EEG-based BCI

during motor imagery tasks for standing and sitting.

In the present study, we investigated whether people could

control an EEG-based BCI using motor imagery for standing

and sitting movements. For this purpose, we explored two

different classification scenarios: offline and online. The goal of

the offline scenario was to obtain individual training sets for

each participant in offline experiments to adjust and evaluate

the machine learning models of the BCI (one model for sit-to-

stand, one model for stand-to-sit). After training the interface,

the online scenario aimed to measure the speed and accuracy

of the BCI to decode EEG rhythms in real time during motor

imagery tasks for standing and sitting. To our knowledge, the

proposed EEG-based BCI is the first one to recognize motor

imagery tasks online for standing and sitting, which is crucial

for implementing brain-controlled standing technology. The

filter bank common spatial pattern (FBCSP) method was used

for feature extraction based on the modulation of theta wave

(4–8 Hz) and sensorimotor rhythm (SMR), which includes

two bands in the spectrum: alpha (8–12 Hz) and beta (12–

30 Hz), which are associated with movement-related tasks

in physical activity execution, motor planning, intention to

move, and motor imagery (Yuan and He, 2014). To make the

classification as fast and simple as possible, the regularized

version of the linear discriminant analysis (RLDA) approach

was used.

2. Materials and methods

2.1. Participants

The study involved 32 healthy subjects aged 19–29 years (16

women and 16 men). The mean (± standard deviation) age of

the participants was 22.4 (± 2.3) years. None of the participants

reported a history of neurological, musculoskeletal, or other

disorders, and all had normal or corrected-to-normal vision.

All participants were undergraduate students, with no academic

relationship to the experimenters, and none had previous

experience with EEG or BCI experiments. Before starting their

experimental session, participants were duly informed of the

nature of the study and instructed on the correct execution of

the experiments. In addition, participants voluntarily signed an

informed consent form in accordance with the experimental

protocol approved by the ethics committee of the Universidad

Antonio Nariño. This experimental protocol followed the

standards of the Declaration of Helsinki (Association, 2013).

Each subject was paid for their participation at the end of

their session.
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2.2. Electroencephalographic data
recording

EEG data were obtained from 17 active wet electrodes

(g.LADYbird) mounted on a g.Nautilus PRO biopotential

amplification system (g.tecmedical engineering GmbH, Austria)

with wireless data transmission technology (see Figure 1).

Electrodes were moistened with conductive gel and placed

according to the international 10–20 system at the following

positions around the primary motor cortex (Xu et al., 2017): F3,

Fz, F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6,

P3, Pz and P4, with the ground (GND) electrode placed at AFz

and the reference (REF) electrode placed in the right earlobe.

EEG signals were acquired at a sampling rate of 250 Hz and

digitally band-pass filtered with cutoff frequencies from 0.01 Hz

to 60 Hz, using 6th order Butterworth filter at each electrode

(Podder et al., 2014). Before starting the EEG recording, the

impedance of the electrodes was verified to be below 30 k� using

the impedance measurement tool provided by the manufacturer

of the g.Nautilus PRO. Additionally, an in-house software

platform developed in C++ was used to manage and control the

execution of the experiment, collect EEG signals, store the data,

and process them both offline and online (Copyright @ 2018

Instituto Tecnologico y de Estudios Superiores de Monterrey).

2.3. Experimental design

The experiments were conducted in an acoustically isolated

room where only the participant and the experimenter were

present. The participant was seated in a chair in a posture that

was comfortable for him/her but did not affect data collection.

In front of the participant, a 40-inch TV screen was placed at

about 3 m, as shown in Figure 1. On this screen, a graphical user

interface (GUI) displayed images that guided the participant

through the experiment. Each experimental session was divided

into two phases: an offline phase and an online phase.

2.3.1. O	ine phase

The offline experiments consisted of recording participants’

EEG signals during motor imagery trials for standing and sitting

that were guided by the GUI presented on the TV screen (see

Figure 2). Just before starting the recording of the EEG signals,

the participants practiced the sequences of mental tasks that

were indicated by the GUI on the TV screen. Once the recording

of the EEG signals started, six offline runs were conducted in

which the participants were standing in three runs and sitting

in the other three runs. The participant could choose the order

of the runs, and between each run, there was a break of a

few minutes for the participant to avoid fatigue and boredom,

FIGURE 1

Experimental setup with a participant in front of the TV screen

with the graphical user interface (GUI) to present visual cues

regarding each step in the sequence of a trial. The participant is

equipped with a g.Nautilus PRO system with 17 gel-based active

electrodes (g.LADYbird technology) to acquire the

electroencephalogram (EEG) and transmit it wirelessly from the

headset (transmitter) to the receiver (base station) connected to

the computer with the BCI software. REF, reference electrode;

GND, ground electrode at AFz.

recover, and prepare to continue with the recording of the

next run.

In each run, the participant had to repeat a block of 30 trials

of mental tasks indicated by visual cues continuously presented

on the screen in a pseudo-random sequence. The temporal

sequence of mental tasks performed by each participant is

shown in Figure 2. Each sequence of a trial consisted of

four steps:

1. Fixation: As a first step, a cross symbol appeared on the TV

screen for 4 s during which the participant was asked to

avoid any body movement or effort and to stay focused while

looking at the symbol.

2. Action observation: In the second step, a figure appeared

on the TV screen for 3 s, which the participant had to

observe and perform one experimental task subsequently in

the third step.

3. Imagining: In the third step, the participant had to

visualize the action indicated by the figure shown in
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FIGURE 2

Illustration of the temporal sequence of a trial performed by the participant in the sit-to-stand experiment (Top) and in the stand-to-sit

experiment (Bottom). Each sequence consisted of four steps: fixation, action observation, imagining, and resting.

the second step and perform one experimental task

for 4 s in response to the figure. For instance, the task

could be sitting motionless while actively imagining the

sit-to-stand movement (labeled as MotorImageryA),

sitting motionless without imagining the sit-to-stand

movement (labeled as IdleStateA), standing motionless

while actively imagining the stand-to-sit movement

(labeled as MotorImageryB), or standing motionless

without imagining the stand-to-sit movement (labeled

as IdleStateB).

4. Resting: Finally, in the fourth step of the sequence, the text

“Descanso” (the Spanish word for “Rest”) appeared on the

TV screen for 4 s, instructing the participant to rest from

the experimental task, blink, or move the head and body

if necessary.

Participants were asked to avoid or minimize muscle effort

and blinking from the first step to the third step of each

sequence. For each participant, an offline experimental session

was conducted for the construction of two datasets: (A) Sit-

to-stand and (B) Stand-to-sit. The participant’s EEG data

were collected from 90 sequences of dataset A (45 trials of

MotorImageryA tasks and 45 trials of IdleStateA tasks) and 90

sequences of dataset B (45 trials of MotorImageryB tasks and 45

trials of IdleStateB tasks). In total, the time duration of the offline

experimental session was at least 1 h for the collection of the two

EEG datasets.
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2.3.1.1. EEG data preprocessing

The two EEG datasets recorded from the offline experiments

were independently subjected to the following automatic pre-

processing pipeline (Mendoza-Montoya, 2017). First, the EEG

data were split into epochs (2-s data segments of contiguous

sample points of each trial) from 1 s before to 1 s after beginning

the experimental task of step 3 in the sequence of a trial.

Second, each epoch was separated and labeled according to

one of the four experimental tasks: MotorImageryA, IdleStateA,

MotorImageryB, or IdleStateB, and Ek ⊆ {1, 2, . . . , 45} was

the subset of indices of the epochs that belong to the task

k ∈ {MotorImageryA, IdleStateA,MotorImageryB, IdleStateB}.

For each participant, the total number of epochs for each pair

of experimental tasks was nepochs = 90. Third, each EEG

epoch X = [xe(t)]ne×nt of ne electrodes (or 17 EEG channels)

and nt sample points (500 sample points per EEG epoch) was

filtered using digital finite impulse response (FIR) filters with

cut-off frequencies between 20–40 and 4–40 Hz. The result of

this filtering step was the signal X20−40(t) = [x20−40
e (t)] ∈

R
ne×nt to detect muscle artifacts and the signal X4−40(t) =

[x4−40
e (t)] ∈ R

ne×nt to encompass the motor-related frequency

bands of the oscillatory EEG activity. Then, the peak-to-peak

voltage V
pp
e , the standard deviation σe, and the normalized

power Pnorme of each channel were calculated as below:

V
pp
e = maxt(x

4−40
e (t))−mint(x

4−40
e (t)), (1)

σe =

√

√

√

√

1

nt − 1

nt
∑

t=1

(x4−40
e (t)− µe)2, (2)

Pnorme =

∑nt
t=1(x

20−40
e (t))2

∑nt
t=1(x

4−40
e (t))2

, (3)

where

µe =
1

nt

nt
∑

t=1

x4−40
e (t). (4)

The processed data for each experimental task from each

participant contained a collection of epochs × time points ×

channels (45× 500× 17). The following exclusion criteria were

applied to identify and discard noisy epochs: (i) Maximum peak-

to-peak value V
pp
e greater than 200 µV; (ii) Standard deviation

amplitude σe greater than 50 µV; and (iii) Noise to signal ratio

Pnorme greater than 0.7. These criteria may indicate if the subject

is blinking, the amplifier is saturated, the electrodes are not

making good contact with the scalp, or there are some muscle

artifacts, as suggested in Mendoza-Montoya (2017), Delijorge

et al. (2020), and Hernandez-Rojas et al. (2022). Finally, any

epoch where at least one electrode met these criteria was

visually inspected to rule out noise-contaminated trials (as a

double check) and labeled as an “artifact” manually. The trials

with epochs labeled as “artifacts” were discarded and were

not used in the subsequent analysis. Conversely, the epochs

below the threshold levels passed validation and were used to

investigate spatially discriminative EEG features with the filter

bank common spatial pattern (FBCSP) method.

2.3.1.2. EEG signals analysis

Time-frequency analysis (TFA) of EEG time series is a

suitable technique to study cognitive events, such as motor

imagery tasks, that induce transient power modulations of

the EEG spectrum (Graimann and Pfurtscheller, 2006; Zhang,

2019). Modulations of this kind appear as a decrease (event-

related desynchronization or ERD) or an increase (event-related

synchronization or ERS) of spectral power at specific frequency

bands (Pfurtscheller and Lopes da Silva, 1999). ERD/ERS is

also known as an event-related spectral perturbation (ERSP),

which measures the event-related spectral changes relative to

a reference interval used as the spontaneous EEG baseline in

a wide range of frequencies (Makeig, 1993). Therefore, TFA

was performed on the aforementioned preprocessed trials to

visualize the ERD/ERS patterns using the EEGLAB toolbox

(version 2021.1) (Delorme and Makeig, 2004).

The resting stage of every trial was discarded and not

considered in the present study, as it does not contain relevant

EEG activity for the analysis. ERSP was computed at the

frequency ranges from 4 to 30 Hz for all channels to calculate

the power spectrum by applying the Morlet wavelets transform

with incremental cycles (7 cycles at the lowest frequency to

14 at the highest), resulting in 200-time points (−6.03, 3.02)

s. The baseline reference was then taken from −3.5 to −3

s (which corresponds to the non-movement interval) at the

beginning of step 3 in the sequence of each trial. Spectral

power changes were averaged at each time point and normalized

by baseline spectra. The significance of ERSP deviations from

the baseline was analyzed using the bootstrap method (α =

0.05) (Graimann and Pfurtscheller, 2006). Accordingly, ERSP

could identify significant ERD and ERS as negative and positive

spectral changes, respectively (Zhang, 2019).

2.3.1.3. Feature extraction

One of the most successful algorithms in BCI research for

feature extraction is the common spatial pattern (CSP) (Padfield

et al., 2019). This method finds spatial filters that project EEG

data into a new space in which the variances corresponding to

one class are maximized while the variances of a second class are

minimized (Lotte and Guan, 2011). In this study, an enhanced

version of the original CSP algorithm, known as the filter bank

common spatial pattern (FBCSP) algorithm (Ang et al., 2012),

was implemented using a FIR filter bank of five digital band-

pass filters centered on five EEG frequency bands (theta: 4–8 Hz,

alpha: 8–12 Hz, low-beta: 12–16 Hz, mid-beta: 16–20 Hz, high-

beta: 20–30 Hz) (Chen et al., 2018). All the filters in the filter

bank were designed in the frequency domain using a Gaussian

kernel with unitary gain.
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The FBCSP algorithm is useful when the frequency

components of the modulated signals may vary among subjects.

For instance, in the motor imagery paradigm, a particular

frequency of the sensorimotor rhythm is not the same for

all users (Saha and Baumert, 2020). For this reason, each

preprocessed epoch of a training set was filtered using the FIR

filter bank in order to obtain spectrally filtered epochs Y =

[ye,f (t)]ne×nt×nf , where nf is the EEG frequency subband (4–8

Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–30 Hz).

We studied the bi-class classification of two pairs of

experimental tasks: MotorImageryA vs. IdleStateA for the sit-

to-stand transition and MotorImageryB vs. IdleStateB for the

stand-to-sit transition. The CSP algorithm was then applied

to each subband and each pair of the experimental tasks. The

CSP algorithm provided an ne × ne projection matrix W =

[w1,w2, . . . ,wne ]
′
for each pair of experimental tasks. This

matrix was a set of subject-dependent spatial patterns, reflecting

the specific activation of cortical areas during the experimental

task. With the projection matrix W, the decomposition of an

epoch Y was described by Z = WY , where this transformation

projected the variance of the filtered EEG signals of Y onto the

rows of Z and gave rise to ne new time series. The columns of

W−1 were a set of CSPs that can be thought of as time-invariant

EEG source distributions (Ortner et al., 2015).

The number of spatial filters retained was chosen as six

for all subjects and training sets, as recommended in Blankertz

et al. (2008b). The three first spatial filters contribute most to

the variance of class one data, and the last three spatial filters

contribute most to the variance of class two data. If nm = 6

represents the number of spatial filters retained per frequency

subband, the spectrally filtered epochs Y are transformed into

spatially filtered epochs YCSP = [yCSP
e,f

(t)]nm×nw×nt×nf , where

nw is the number of timewindows of nt time points for each EEG

epoch. During the offline feature extraction, each EEG epochwas

split into two-time windows of intervals [−1, 0) s and [0, 1) s,

respectively, where 0 s is the onset time of step 3 in the sequence

of a trial. Finally, for each frequency subband and projected

channel, the BCI calculated the log-variance. This resulted in

30 features (nm × nf ) by 180 observations (nepochs × nw)

for each pair of experimental tasks from each participant that

would be used in the regularized linear discriminant analysis

(RLDA) classifier. The Fisher’s criterion was applied to evaluate

the extracted features.

2.3.1.4. Classifier

Linear classifiers have proven to be an efficient option for

the detection of EEG rhythms in motor imagery paradigms

for BCI applications (Oikonomou et al., 2017). In this

category, linear discriminant analysis (LDA) can provide

optimal results and outperform more complex classification

techniques. Additionally, LDA is relatively easy to train and

evaluate and requires a low computational cost to classify

new observations. Therefore, two binary classification models

based on LDA with regularized covariances were used to

discriminate with a first model, MotorImageryA vs. IdleStateA

for the sit-to-stand classification scenario, and with a second

model, MotorImageryB vs. IdleStateB for the stand-to-sit

classification scenario.

These types of binary-class models are highly employed in

MI-based BCI applications (Lotte et al., 2018a). The proposed

BCI employed the regularized linear discriminant analysis

(RLDA) as a classification machine learning model to decide

what class to assign to the processed data according to a linear

combination of the feature vector (Fu et al., 2019). If x represents

a real vector of nc = 30 features for an EEG epoch, the

classification model evaluates the function

f (x) = g(

nc
∑

i=1

bixi + d), (5)

where b = [b1, b2, . . . , bnc ]
′
and d are the coefficients of

the linear model, and g(a) is a scalar function. Then, the

classification model returns a label or category l ∈ {1,−1} to

the given observation based on the evaluation of f (x). A typical

approach is to use a threshold value such that values above it

have the class label l = 1. Conversely, values below this threshold

correspond to the other class label l = −1.

LDA finds the class label l that maximizes the conditional

probability p(L = l|X = x) (Ng and Jordan, 2001). It assumes

that the probability density functions p(X = x|L = −1) and

p(X = x|L = 1) are both normally distributed with mean

vectors m−1, m1 and covariance matrices C−1, C1. Under these

assumptions, the decision rule p(L = 1|X = x) > p(L =

−1|X = x) is expressed as a dot product b′x+ d > 0, where

b = 2C−1(m1 −m−1), (6)

d = ln

(

P(L = −1)

P(L = 1)

)

+m′
−1C

−1
−1m−1 −m′

1C
−1
1 m1, (7)

and P(L = l) is the probability of class label l. Additionally, for

the automatic regularization of the LDA algorithm, the BCI uses

the method proposed by Ledoit and Wolf (2004) to compute

C−1 and C1 (Lotte and Guan, 2011).

The goal of the two classification models was the

discrimination of the different pairs of experimental tasks to

return a motor imagery state or class label l that represented

when the participant was imagining (l = 1) or not imagining

(l = −1) a movement based on the observations or

corresponding resulting features for each EEG epoch. For this

purpose, the BCI incorporated two RLDA classifiers to complete

the two machine learning models for the sit-to-stand and stand-

to-sit transitions, respectively. These classifiers are simple and

have a low computational requirement, which makes them

suitable for the online BCI (Mao et al., 2017).
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2.3.1.5. Classification model performance

In the final steps of the offline phase, the two complete

machine learning models of the study subject were evaluated

for the transitioning actions: (i) Sit-to-stand and (ii) Stand-to-

sit. The evaluation of these models depends on the collection

of labeled data obtained from datasets A and B in the offline

experiments. For this assessment, the machine learning models

i and ii for each participant were independently assessed

by applying a five-fold cross-validation procedure to avoid

overfitting and measure generalization on each model (Berrar,

2019). In this procedure, the set of trials of A and B were

randomly split into five equal-sized subsets each, respectively.

For each fold, the BCI uses four subsets to train the models

m ∈ {i, ii}. Then, the remaining subset is used to test

the corresponding model m. This process was repeated with

mutually exclusive training and test subsets until the five cross-

validations were completed. The classification accuracy accm,c

of each class c ∈ {MotorImagery, IdleState} was calculated as

described below:

accm,c =
ncorrect

ntotal
× 100%, (8)

where accm,c is the offline accuracy, ntotal is the total number

of instances of class c, and ncorrect is the number of instances

classified correctly in class c by model m. The overall model

accuracy accm,overall = 0.5×(accm,MotorImagery+accm,IdleState)

and the confusion matrices were also computed.

Additionally, permutation testing was applied to assess the

significance level of the overall model accuracies (Good, 2006).

This test repeats the five-fold cross-validation procedure by

shuffling the class labels during the training of the classifiers

to compute the empirical random classification accuracy. In

this methodology, the null hypothesis (H0) indicates that

observations of both classes are exchangeable so that any

random permutation of the class labels produces similar

accuracies to the obtained with the non-permuted data. The

alternative hypothesis (H1) is accepted when the overall model

accuracy is an extreme value in the empirical distribution built

with several random permutations of the labels. When the

alternative hypothesis is accepted, we can say that the overall

model accuracy is above the chance level.

2.3.2. Online phase

For each participant, the two machine learning models

obtained in the offline phase were used to carry out two

online experiments: (I) Sit-to-stand and (II) Stand-to-sit. Each

participant was instructed to select, in no particular order, 30

sequences for experiment I (15 trials of MotorImageryA tasks

and 15 trials of IdleStateA tasks) and 30 other sequences for

experiment II (15 trials of MotorImageryB tasks and 15 trials

of IdleStateB tasks). Each trial was unique and was generated

pseudo-randomly before the experiment.

The timeline of the online sequences was indicated by the

user interface in the same way as shown in Figure 2. However,

the difference between the offline and online timelines was in

step 3. In the third step of the online timeline, the participant

performed one experimental task in response to the figure shown

in step 2, and the BCI attempted to detect this task in real time

for 3–15 s at the same time that provided feedback.

Technically, the online classification of single-trial EEG data

could be done as in the offline phase since the trained classifiers

can be applied to feature vectors calculated from an arbitrary

window. However, this is likely to lead to unreliable results since

those classifiers are adjusted to detect signals with a specific

time related to the response (Blankertz et al., 2001). There is

no guarantee that the classifier will behave similarly elsewhere.

As suggested in Blankertz et al. (2001, 2008a), Syan and

Harnarinesingh (2010), and Mendoza-Montoya (2017), sliding

windows are usually used to increase online classification’s

robustness to time-shifted signals. Thus, during the online

feature extraction, the data length of each epoch was 1 s,

that was 250 sample points, and the BCI split them into five

sliding windows (50 sample points each), resulting in five feature

vectors from each trial.

The BCI processed and provided continuous visual feedback

on the results obtained after classifying five consecutive

time windows (50 sample points each) from one epoch

(250 sample points). If one experimental task produces high

MI-related activity, the BCI makes the white background

of the corresponding figure look bigger (see Figure 3A). If

the idle state-related activity is higher, that figure’s white

background looks bigger (see Figure 3B). Otherwise, both

figures’ backgrounds are the same size (see Figure 3C). This

visual feedback notifies the participant when the BCI is detecting

MI-related activity and helps to increase the MI modulations of

the intended movement (Yu et al., 2015).

As shown in Figure 4, the RLDA classifier labeled each of

the time windows from 50 sample points with the name of one

of the experimental tasks. The label might be used directly to

determine the action or control command to produce with the

BCI. However, because the accuracy of the MI-based BCI is

typically below 90%, the risk of executing the wrong action is

high (Irimia et al., 2018). For this reason, the BCI only generates

command or action signals when an experimental task has been

detected several times for a few seconds. The minimum time

required is about 3 s: 1 s to acquire a whole epoch of EEG signals,

another second to classify the EEG data five times, and a third

second to select a command or action to execute.

When the same experimental task label has been detected

five consecutive times in one epoch, the BCI synchronizes the

state of the GUI to produce visual feedback on the selected

task, and the corresponding figure background is colored blue

(see Figure 3D). On the other hand, if the BCI does not detect

the same label five consecutive times, it waits for new labels

and dismisses the oldest ones. If the BCI detects the requested
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FIGURE 3

Continuous visual feedback during the online stand-to-sit experiment when: (A) the BCI has detected a high MI-related activity, (B) the BCI has

detected a high idle state-related activity, (C) the BCI has not detected a dominant experimental task, and (D) the BCI has detected a dominant

experimental task.

experimental task in less than 15 s, the sequence is interrupted to

provide visual feedback (see Figure 3D) and continues with step

4 (see Figure 4). On the contrary, if the BCI does not recognize

the experimental task and reaches the time limit of 15 s, the BCI

simply continues with step 4.

2.3.2.1. Online BCI evaluation

The online assessment aims to investigate the feasibility

of decoding in real time the two classes (MotorImagery vs.

IdleState) of the two binary machine learning models in the

sit-to-stand and stand-to-sit experiments. Consequently, the

online evaluation procedure was carried out for each participant

independently. Two machine learning models were used for

each participant to assess the feasibility of continuous detection

of motor information along the online trials. To this end, the

performance of the BCI was evaluated in terms of the following

detection metrics that were calculated using Equations (9)–(13).

TPR =
TP

TP + FN
, (9)

TNR =
TN

TN + FP
, (10)

acconline =
TP + TN

TP + TN + FP + FN
, (11)

PPV =
TP

TP + FP
, (12)

NPV =
TN

TN + FN
, (13)

where:

• Sensitivity or true positive rate (TPR) indicates the

percentage of times that the motor imagery class was

detected correctly (TP are the true positives and FN are the

false negatives).

• Specificity or true negative rate (TNR) denotes the

percentage of times that the idle state class was detected

correctly (TN are the true negatives and FP are the

false positives).
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FIGURE 4

Flowchart of the online classification. In online conditions, the BCI processes each time window of the epoch and assigns it one class between

motor imagery and idle state. The BCI also provides continuous visual feedback on the classifications by making the white background of the

icon corresponding to the class look bigger or turn blue. The time limit to detect five consecutive times the same class and pass step 3 is 15 s.

• Accuracy (acconline) represents the probability of correctly

detecting the motor imagery and idle state classes given the

total number of attempts to detect them.

• The positive predictive value (PPV), also called precision,

is the probability that the detection of the motor imagery

class is correct given the total number of times that class

is detected.

• The negative predictive value (NPV) is the probability that

the detection of the idle state class is correct given the total

number of times that class is detected.

The information transfer rate (ITR) was also used as a

performance metric for the online evaluation of the BCI. The

calculation of this metric is based on the amount of information

transferred per unit of time. The ITR was calculated for each

participant in bits/min using the following formula (He et al.,

2018):

ITR =
60

T
× [1+ (acconline) log2(acconline)

+ (1− acconline) log2(1− acconline)], (14)

where T is the average time from task performing to

task detection (detection time in seconds). Under these

conditions, the maximum possible information transfer rate

is 20 bits/min for each online experiment (Wolpaw et al.,

2002).

3. Results

ERD/ERS has been studied widely as one of the brain activity

markers for motor imagery tasks. Figure 5 demonstrates the

grouped ERSP across 32 participants in the time-frequency

(TF) plots on all electrodes and in the group-level 2-D scalp

topographies during each stage of the sit-to-stand and stand-to-

sit experiments (excluding the rest period). The ERSP estimates

ERD/ERS from the entire duration of the trials relative to the

baseline spectra from 4 to 30 Hz. All present ERSP values

were significant (see Figure 5, ERD in blue, ERS in red)

compared to the baseline (α = 0.05). There was a tendency

to decrease the alpha-band power for the action observation

stage in all sit-to-stand and stand-to-sit trials, indicating ERD

mainly in the parietal and parieto-occipital regions. Only for

the motor imagery stage, the ERD sustained toward the centro-

parietal and central electrode sites was found. However, this

ERD was not present for the idle state in all trials of both

experiments. Furthermore, we observed a significant increase
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FIGURE 5

Group-level event-related spectral perturbation (ERSP) for frequencies between 4 and 30 Hz across all trials pooled for sit-to-stand (top panels)

and stand-to-sit (bottom panels) experiments compared to the baseline from −3.5 to −3 s. Time-frequency (TF) plots combined the TF

decompositions across all channels. Note that these plots with the 2-D scalp topographies also combined ERSP from di�erent subjects and all

present ERSP values were statistically significant compared to the baseline (α = 0.05). The time interval (−6,−3] s corresponds to the fixation

stage, (−3, 0) s corresponds to the action observation stage, and [0, 3) s corresponds to the stage of one of the four experimental tasks: (A)

MotorImageryA, (B) IdleStateA, (C) MotorImageryB, or (D) IdleStateB.

in the beta-band power, indicating ERS, in the motor imagery

stage of sit-to-stand and stand-to-sit trials compared to the idle

state.

The Fisher’s criterion was applied to evaluate the extracted

features from each participant and show the highest rank

features, as reported in Table 1. The features most common

to all participants for the sit-to-stand and stand-to-sit

classification scenarios were the low-beta frequency band

with the fifth spatial filter and the alpha frequency band

with the sixth spatial filter, respectively. In both classification

scenarios, the highest Fisher score values were 5.08 and

9.65 in the low-beta frequency band of participant ID

P25. The lowest Fisher score values were 0.32 for the

sit-to-stand classification scenario in the theta frequency

band of participant ID P03 and 0.34 for the stand-to-sit

classification scenario in the alpha frequency band of participant

ID P13.

Box plots were used to present the distribution of

the offline classification accuracy estimated with the five-

fold cross-validation procedure across all participants (see

Figure 6). In particular, the mean accuracies (denoted by

×) of the MotorImageryA, IdleStateA, and overall A classes

were, respectively, 89.21, 87.81, and 88.51% in the sit-

to-stand classification scenario. Likewise, the medians of

the MotorImageryA, IdleStateA, and overall A classes were

90.58, 89.60, and 89.36%, respectively. The worst classifier

performances were below 80% (2 women and 1 man), whereas

15 participants obtained classifier performances above 90% (7

women and 8 men). The best model performance was 98.49%

and the worst was 58.02%.
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TABLE 1 Comparison of the highest-ranking features.

Participant ID Sit-to-stand Stand-to-sit

Feature Fisher score value Feature Fisher score value

Rhythm Spatial filter Rhythm Spatial filter

P01 Alpha 1 3.64 High Beta 2 2.03

P02 Low Beta 4 1.23 Mid Beta 1 0.52

P03 Theta 5 0.32 Alpha 4 0.40

P04 Low Beta 6 2.61 Alpha 6 2.01

P05 High Beta 6 1.65 High Beta 2 1.13

P06 Alpha 5 2.71 Alpha 4 1.98

P07 Mid Beta 2 1.31 High Beta 2 1.68

P08 Mid Beta 6 0.58 Low Beta 6 0.54

P09 Low Beta 5 2.32 Low Beta 5 1.93

P10 Alpha 5 3.97 Alpha 6 1.75

P11 High Beta 5 1.13 Alpha 6 1.70

P12 Mid Beta 2 0.57 Theta 1 0.88

P13 Alpha 6 0.67 Alpha 5 0.34

P14 Alpha 5 0.87 Alpha 1 1.00

P15 Alpha 1 0.79 Alpha 5 0.54

P16 Theta 1 3.04 Alpha 2 3.33

P17 Mid Beta 1 2.14 Mid Beta 1 1.61

P18 High Beta 6 0.71 Alpha 5 0.57

P19 Low Beta 6 0.84 Alpha 6 0.72

P20 Low Beta 1 1.04 Low Beta 2 2.45

P21 Theta 6 0.62 Mid Beta 6 0.55

P22 Low Beta 4 1.00 Theta 1 0.95

P23 Low Beta 5 4.82 High Beta 2 0.63

P24 Low Beta 1 0.90 High Beta 1 1.15

P25 Low Beta 5 5.08 Low Beta 6 9.65

P26 High Beta 2 1.30 Theta 2 0.99

P27 Low Beta 6 2.39 Alpha 5 1.63

P28 Alpha 6 0.72 Alpha 1 1.51

P29 Low Beta 5 3.10 Low Beta 5 2.16

P30 Low Beta 5 0.98 Alpha 6 0.80

P31 Low Beta 6 2.19 Alpha 6 1.24

P32 Theta 6 1.61 Alpha 3 1.05

Features were ranked using Fisher’s separability criterion.

In the stand-to-sit offline classification scenario, the mean

accuracies of the MotorImageryB, IdleStateB, and overall B

classes were, respectively, 84.99, 85.60, and 85.29%. Similarly,

the medians of the MotorImageryB, IdleStateB, and overall B

classes were 86.12, 87.43, and 86.83%, respectively. Additionally,

7 participants obtained classifier performances below 80% (4

women and 3 men) and 10 participants above 90% (6 women

and 4men). In this case, the best model performance was 99.44%

and the worst was 56.51%.

In the permutation tests, the overall classification accuracies

in 30 of 32 participants were statistically significant (p < 0.05,

1,000 random permutations) for the sit-to-stand and stand-to-

sit classification scenarios. Only participant ID P03 presented

p-values higher than 0.05 for both classification scenarios, which

means not statistically significant. Likewise, for the stand-to-

sit classification scenario, the p-values of participant ID P13

were higher than 0.05, not statistically significant, and indicate

strong evidence for the null hypothesis. Altogether, the offline

classification results showed the feasibility of recognizing the

studiedmotor imagery tasks vs. idle state above empirical chance

levels. The Supplementary material section provides the results

for each participant.
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FIGURE 6

Classification accuracies (%) estimated with five-fold cross-validation across all participants for the motor imagery vs. idle state classes in the

sit-to-stand and stand-to-sit o	ine experiments. × represents the mean. The Supplementary material section provides the result for each

participant.

Figure 7 shows the results of the confusionmatrices obtained

in the sit-to-stand and stand-to-sit classification scenarios

for the MotorImagery vs. IdleState classes. Regarding the

confusionmatrix in Figure 7A, corresponding to the sit-to-stand

scenario, the true positive rate (TPR), false negative rate (FNR),

false positive rate (FPR), and true negative rate (TNR) were,

respectively, 89.2, 10.8, 12.2, and 87.8%. As for the confusion

matrix in Figure 7B, for the stand-to-sit scenario, the TPR, FNR,

FPR, and TNR were 85.0, 15.0, 14.4, and 85.6%, respectively.

Overall, the sit-to-stand and stand-to-sit offline classification

scenarios showed comparable results and a relatively balanced

performance among the different classes.

The box plots in Figure 8 were used to show the

characteristics of the sensitivity, precision, specificity, and

negative predictive value calculated across all participants in the

sit-to-stand and stand-to-sit online classification scenarios. In

the sit-to-stand scenario, most of the characteristics had a mean

(indicated by×) of between 90 and 100% and a median of 100%

for both the women and men groups. With respect to the stand-

to-sit scenario, these characteristics had also a mean of between

90 and 100% and a median of 100%. These results indicate that

models for the sit-to-stand scenario can discriminate between

EEG epochs of MotorImagery vs. IdleState classes just as well as

models for the stand-to-sit scenario.

Finally, the distribution of the online accuracy, detection

time and ITR in the sit-to-stand and stand-to-sit online

experiments are represented in Figure 9. The mean accuracies

± standard error of the sit-to-stand and stand-to-sit online

experiments were 94.69 ± 1.29% and 96.56 ± 0.83%,

respectively. The average detection times were 4.70± 0.11 s and

4.77± 0.16 s, and the mean ITRs were 10.12± 0.73 bit/min and

11.13 ± 0.72 bit/min for the sit-to-stand and stand-to-sit online

experiments, respectively. The shortest detection times were 3.75

s in the sit-to-stand experiments and 3.60 s in the stand-to-sit

experiments. The longest detection times were 6.15 s in the sit-

to-stand experiments and 6.90 s in the stand-to-sit experiments.

Likewise, theminimum ITRs were 2.57 bits per minute in the sit-

to-stand experiments and 4.10 bits per minute in the stand-to-sit

experiments. The maximum ITRs were 16.02 bits per minute in

the sit-to-stand experiments and 16.68 bits per minute in the

stand-to-sit experiments.

4. Discussion

In this study, we found that sitting and standing motor

imagery tasks can be recognized online using an EEG-based

BCI. From our findings, a high percentage of participants

(above 80%) can control the motor imagery (MI)-based BCI for

standing and sitting. In addition to expanding the participant

sample size, using more EEG active electrodes, and improving

signal processing, this study enhanced previous research by

proposing a solution to the problem of online decoding of motor

imagery electroencephalography (MI-EEG) signals for standing

and sitting.

For the first time, decoding EEG rhythms offline and online

during motor imagery tasks for standing and sitting had a

satisfactory performance using a feasible BCI paradigm. Current
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FIGURE 7

Confusion matrices obtained in the sit-to-stand (A) and stand-to-sit (B) o	ine classification scenarios for all participants.

FIGURE 8

Across-all-participants distributions (%) of sensitivity, precision, specificity, and negative predictive value obtained in the sit-to-stand and

stand-to-sit online experiments. × represents the mean. The Supplementary material section provides the result for each participant.

BCI paradigms that consider the complexity of shifting from

sitting to standing and vice versa are usually either based on

left-hand and right-handmotor imagery tasks (Noda et al., 2012;

Wang et al., 2018) or SSVEP signals (Kwak et al., 2017). These

BCI paradigms have proven effective in transferring information

from the brain to a computer. However, they are unnatural for

the brain to interact with and thus require much more cognitive

resources to act as traditional human-computer interfaces for

the sit-to-stand and stand-to-sit transitions. For this reason,

one of the main contributions of the proposed BCI paradigm

is to provide a more natural interaction between the user and

the interface, which is a current challenge in the design of BCI

systems (Xu et al., 2021).

Previous studies have shown the effects of task complexity

on ERD/ERS rhythms and the complexity of the sit-to-stand and

stand-to-sit movements (Bulea et al., 2014; Singh et al., 2017;

Mashat et al., 2019; Chaisaen et al., 2020). To overcome these

limitations, we used information from the idle state, a neutral

condition, to facilitate the classifier’s recognition of distinctive

characteristics of the related motor imagery task. ERD BCIs

have pursued this approach with considerable success generating

brain signals that are easier to categorize (see Figure 5). This

BCI paradigm with a low cognitive load could explain why our

study did not show the typical BCI inefficiency (Allison and

Neuper, 2010; Edlinger et al., 2015; Liu et al., 2020; Xu et al.,

2021). Additionally, the frequency bands and spatial filters of

the extracted features reported in Table 1 could provide the most

discriminated information.

The overall classification accuracies (see Figure 6), estimated

with cross-validation in the offline classification scenarios,

are similar to those reported in other related BCI literature

(Wang et al., 2018; Chaisaen et al., 2020). For instance, in the
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FIGURE 9

Box plots of the online accuracy (A), task detection time (B), and ITR values (C) of the BCI online experiments. The Supplementary material

section provides the result for each participant.

offline analysis by Chaisaen et al. (2020), the classification of

action observation (AO) and motor imagery (MI) provided

the grand average accuracy ± standard error (SE) of 82.73

± 2.54% in the stand-to-sit transition, which is lower

compared to 85.29 ± 1.83% between the classification of

motor imagery and idle state in this study. In the current

study, the highest grand average accuracy ± SE was 88.51 ±

1.43% between the classification task of motor imagery and

idle state in the sit-to-stand transition, compared to 76.14

± 3.14% in the classification of AO and MI by Chaisaen

et al. (2020). Furthermore, within the 60 min of training,

30 of 32 participants achieved an overall accuracy above

chance level.

The confusion matrices (see Figure 7) showed that the

trained classification models generated balanced results for

the different classes. The overall accuracy results obtained

in the classification models trained with the permutation

testing method also confirm this situation empirically (see

Supplementary material section). These results show that the

classifiers were not highly biased toward any experimental

task. Furthermore, sensitivity, precision, specificity, negative

predictive value, and accuracy in the online phase are

not measured by cross-validation as in offline experiments.

Therefore, due to the heuristics described to detect one

experimental task and compute the performance metrics in the

online experiments, these metrics are not directly comparable

between the online and offline phases.

The online classification results (see Figure 8) demonstrated

the feasibility of the BCI to decode real-time EEG rhythms

during the studied motor imagery tasks, whereas previous

studies usually only presented classification accuracy. We

also calculated sensitivity, precision, specificity, and negative

predictive value to illustrate the online detection ability of

the BCI to motor imagery-related potentials vs. idle state

potentials. When considering all participants as a single group,

the mean accuracies ± SE of the sit-to-stand and stand-

to-sit online experiments were 94.69 ± 1.29% and 96.56 ±

0.83%, respectively, which are above the range of previous

studies (Noda et al., 2012; Wang et al., 2018; Choi et al.,

2020).

In both online classification scenarios (see Figure 9), the

number of processed epochs and thresholds for motor imagery

and idle state classes are customizable for each participant to

improve online accuracy, detection time, and ITR of the MI-

based BCI system. However, we used the same parameters

for all participants, and it is essential to improve the system

performance for participants who cannot achieve high detection

rates. One potential strategy for improving system performance

would be to modify the detection criteria in the third step of

the online timeline. For instance, the classification of multiple

sliding windows per trial provides a simple way to find a balance

between the detection speed and the average accuracy of the

system (Lee et al., 2019).

Both the offline (five-fold cross-validated data) and online

(not cross-validated data) classification results demonstrated

that the MI-based BCI could identify new observations of each

class with high accuracy. Nevertheless, the results are similar

to those reported in other MI-based BCI studies (Irimia et al.,

2018; Choi et al., 2020; Gurve et al., 2020). These may be due

to the high motivation of the research subjects. Additionally, the

instructions provided during the subjects’ training emphasized

the differences between the studied motor imagery tasks with

a high cognitive load vs. the no imaginary movement state

(idle or rest state) with a low cognitive load to achieve a good

performance. At the same time, the strategy applied to increase

the online accuracy by single-trial classification using sliding

windows allowed to reduce the classification errors but slowed

down the detection time and ITR. Therefore, the choice of the

parameters is crucial to keep a balance between the detection

speed and the classification accuracy of the interface.
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If we consider the response times of the present BCI system,

it is not possible to implement an active fine control for a

robotic device. However, by improving the response times of this

new BCI, users could send commands to standing devices (like

standing wheelchairs) to execute complete sit-to-stand or stand-

to-sit transitions using the interface. For this reason, it is our

view that theMI-based BCI system is suitable for themovements

studied in this research.

One of the difficulties encountered in this study is the

lack of an objective comparison between offline vs. online

results. Ideally, the online classification performance should

be calculated similarly to the values calculated using the

cross-validation procedure of the offline phase. However, the

crucial problem is to perform cross-validation with only a

few observations in the online phase because it may lead

to overfitting and poor generalization. Hence, cross-validation

was necessary to evaluate the classification performance of the

machine learning models in the offline phase. By contrast, in

the online phase, the classification of multiple sliding windows

per trial addressed the problem of single-trial misclassification

and false positives in order to evaluate the online classification

performance of the models (Mendoza-Montoya, 2017; Delijorge

et al., 2020; Hernandez-Rojas et al., 2022).

The results suggest that a large population can control

the EEG-based BCI and that high accuracy of above 90%

can be achieved. Further research is required to establish

whether people suffering from mobility impairments (who had

previously been able to stand up and sit down before the

impairments developed) could perform motor imagery tasks

and operate the EEG-based BCI system for standing and sitting.

Furthermore, more techniques for feature extraction and more

machine learning models also are considered to extend the

analyses. Classification techniques such as deep learning can

be another alternative to analyze the problem studied here.

Another interesting aspect would be to include more motor

imagery tasks (e.g., three-class classification: imagining standing

vs. imagining sitting vs. resting) that the system can interpret

and test in more realistic environments. This system could

represent the basis for modern interfaces’ integration into future

technologies (e.g., exoskeleton-based rehabilitation systems or

brain-controlled standing wheelchairs) where the interface can

be adapted to the user’s specific disability.
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