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 Retinoblastoma is the most common intraocular child-
hood tumor with an estimated annual incidence of approxi-
mately four per one million children. Retinoblastoma occurs
in both germline (40%) and sporadic (60%) forms [1]. When
retinoblastoma is confined to the eye, more than 90% of pa-
tients will be cured of the primary tumor. One present chal-
lenge in the treatment of retinoblastoma is metastatic and sec-
ondary tumors that reduce life span and quality of life [2,3].
One potential hypothesis for the appearance of subsequent
tumors in RB is the persistence of cancer stem cells [4,5],
small subpopulations of cells believed to be primarily respon-
sible for tumor progression as well as resistance to chemo-
therapy [6] and radiation treatments [7]. The presence of such
cells, which have been identified in a number of cancers, have
yet to be proven in retinoblastoma.

Stem-like cells are reported to exist in a number of ma-
lignancies, including leukemias [8,9], brain tumors [10,11],
breast cancer [12-14] lung cancer [15], prostate cancer [16],
as well as in cancer cell lines [17]. As shown in our previous

study [18], retinoblastoma tumors and cell lines also contain
small subpopulations of cells that display stem cell character-
istics. In RB, these stem cell characteristics include the pres-
ence of a side population [19], (ie. cells that are able to ex-
clude Hoechst 33342 dye based on expression of the drug trans-
porter/stem cell marker ABCG2), and expression of other stem
cell markers such as ALDH1, MCM2, and SCA-1 [18]. In the
present study, we sought to expand upon our previous find-
ings and define the nature of the RB stem cells using a combi-
nation of gene expression and functional analyses. We chose
to examine unsorted, heterogeneous populations of RB cells
to identify potential subpopulations for further study. To this
end, we tested the hypothesis that RB tumors contain
subpopulation(s) of cells that retain characteristics consistent
with stem cells of human embryonic and neuronal origin.

METHODS
Human tissues:  Human tissues were obtained according to
the guidelines of the Declaration of Helsinki and our IRB-
approved protocol. Four cases of human retinoblastoma of
varying classification, that had been removed by enucleation,
were prepared and examined as either paraffin or frozen sec-
tions. Since most archival cases of human RB are preserved
in paraffin, we were limited in the number of human cases
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that we could examine due to the inability of Oct3/4 and Nanog
antibodies to recognize their targets in paraffin-embedded tis-
sues, despite attempts at antigen retrieval. Therefore, we made
no correlations between tumor staging/histological character-
istics and immunoreactivity of human embryonic stem cell
markers. Four additional microdissected human RB tumors
were used for RT-PCR analysis. Three additional human RB
tumors were used for microarray analysis and compared with
normal retinal tissue.

Cell lines:  Long-term human retinoblastoma cell lines
were also used for this study, specifically Y79 cells [20] and
WERI-RB27 cells [21]. WERI-Rb27 cells were grown in
DMEM with 10% calf serum, 1X MEM nonessential amino
acids (GIBCO, Grand Island, NY), 1X MEM vitamins
(GIBCO), 0.37% sodium bicarbonate, 0.058% l-glutamine and
100 µg/ml gentamicin. Y79 cells were grown in RPMI 1640
with 10% fetal calf serum, 0.37% sodium bicarbonate, 0.058%
l-glutamine, 10 mM HEPES, and 100 µg/ml gentamicin.

BrdU incorporation:  The WERI-27 and Y79 cells were
grown in standard medium, as described above and pulsed
with 10 µM BrdU for 7 days and washed out for 14 days. The
cells were the fixed with 4% paraformaldehyde, washed with
PBS, and incubated with 500 µl 1 mg/ml DNAse I (Sigma, St.
Louis, MO) in PBS for 30 min at 37 °C. After a second wash
in PBS the cells were resuspended in 100 µl PBS/0.1% BSA/
0.5% Nonidet-P40. The BrdU antibody (BD Pharmingen) was
added at 5 µg/ml and the samples were incubated for 45 min
at room temperature. The samples were washed twice and re-
suspended with PBS/0.1% BSA and TRITC-labeled anti-

mouse IgG (Sigma) was added at 27 µg/ml. Samples were
incubated in the dark for 30 min at room temperature and then
washed twice with PBS/0.1% BSA. Cells were loaded onto a
slide with a coverslip and analyzed using fluorescence imag-
ing. The brightest cells were counted.

Neurosphere assay:  WERI-RB27 and Y79 cells were
plated in a 96 well dish at densities from 1,000 cells per well
to 50 cells per well. To promote neurosphere formation rather
than reaggregation, the cells were plated at very low density
(50 cells per well) so that there would be a low probability of
the cells encountering one another in the well. After 5 days,
wells were examined for neurosphere formation and the
neurospheres were counted. For continuous passage, initial
plating density was 100 cells per well. Neurospheres were
counted and then dissociated into single cell suspensions, di-
luted 1:2, and replated.

Immunohistochemistry:  Primary antibodies, their origins
and working concentrations are presented in Table 1. Frozen
sections of human tumors were processed as follows:
Cryosections were rinsed in PBS. Goat serum (5%) was used
for blocking of nonspecific staining on slides. Slides were in-
cubated in 0.25% Triton X-100 for 5 min. After a rinse in PBS,
sections were incubated for 1 h with primary antibody as per
concentrations listed in Table 1. After rinsing three times for 5
min each in PBS, slides were incubated with 1 µg/ml of
biotinylated goat anti-rabbit or anti-mouse immunoglobulin
(Zymed/Invitrogen, Carlsbad, CA) for 60 min. Slides were
incubated for 20 min with horseradish peroxidase-conjugated
avidin (Elite kit, Vector Laboratories, Burlingame, CA). The
slides were rinsed in 0.05 M Tris (pH 7.4) and the final
immunoreaction proceeded with diaminobenzidine (Vector).
The dark brown reaction product was viewed by light micros-
copy. Negative control tissues were incubated in 5% isotype
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TABLE 1. PRIMARY ANTIBODIES USED FOR IMMUNOSTAINING

 Antibody
  target      Specificity    Company (catalog number)   Concentration
-----------   ------------   ------------------------   -------------
ABCG2         human, mouse   Signet Labs (BXP-21)       6.25 µg/ml
Alkaline      human, mouse   R&D Systems MAB1448        10 µg/ml
phosphatase
Oct3/4        human          R&D Systems AF1759         5 µg/ml
Nanog         human          R&D Systems AF1997         10 µg/ml

Musashi-1     human          Neuromics RA14128          15 µg/ml
BrdU          human          BD Pharmingen 555627       5 µg/ml

The following is a list of commercially-available primary antibodies
used for immunocytochemistry.

TABLE 2. PRIMERS USED FOR REVERSE TRANSCRIPTASE POLYMERASE

CHAIN REACTION

Gene           Primer (5'-3')
------   --------------------------
OCT3/4   F: AGTGAGAGGCAACCTGGAGA
         R: CAAAAACCCTGGCACAACT
Nanog    F: CAAAGGCAAACAACCCACTT
         R: ATTGTTCCAGGTCTGGTTGC
Msi1     F: GAGACTGACGCGCCCCAGCC
         R: CGCCTGGTCCATGAAAGTGACG
Prom-1   F: TGGATGCAGAACTTGACAACGT
(CD133)  R: ATACCTGCTACGACAGTCGTGGT

The following primers were used for reverse transcriptase polymerase
chain reaction. F represents forward; R represents reversed.

TABLE 3. HUMAN EMBRYONIC GENES UPREGULATED IN HUMAN

RETINOBLASTOMA TUMORS AND EXPRESSED IN Y79 CELLS

                                      Avg.
                                   fold-change   Avg. FDR
     Gene              Gene ID        Log2        value
------------------   -----------   -----------   --------
Oct 3/4              NM_002701.3          1.19       0.61
Nanog                NM_024865            1.24      0.518
Musashi-1            NM_002442            1.14      0.765
Musashi-2            NM_138962.2         1.028      0.513
MCM2                 NM_004526.2          3.56      0.777
Meis-1               NM_002398.2          1.37      0.606
Nestin               NM_006617.1          0.68      0.172
Reelin               NM_005045.2          1.12      0.766
Jagged-2             NM_145159.1          1.68      0.764
NCAM-1               NM_181351.1          1.37      0.636
Prominin-1 (CD133)   NM_006017.1           1.4      0.583
Thy-1                NM_006288.2           1.2      0.479
Patched              NM_000264            1.14      0.659
Notch-4              NM_004557.3          1.12      0.454

Microarray analysis was used to compare human retinoblastoma (RB)
tumors (n=3) with normal retinal tissue (n=3) Human embryonic
genes of interest that were upregulated as compared with normal retina
were cross-referenced with independently-derived microarray data
from Y79 retinoblastoma cells. The genes listed in this table repre-
sent human embryonic stem cell genes that are upregulated in RB (as
compared with normal retina) and are also present in Y79 cells.
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control serum instead of primary antibody and did not gener-
ate reaction product.

Immunocytochemistry:  Suspensions of Y79 and WERI-
RB27 cells were examined for co-localization of ABCG2,
embryonic stem cell markers Oct3/4 or Nanog, as well as
Hoechst dye exclusion. Live cells were incubated with 5 µg/
ml Hoechst 33342 dye for 15 min, rinsed in PBS, and gently
pelleted for antibody staining. Primary antibodies ABCG2 and
Oct 3/4 or Nanog were co-incubated at the working concen-
trations (listed in Table 1) for one hour. Cells were pelleted at
low speed, rinsed in PBS, and incubated in fluorescent sec-
ondary antibody (TRITC-secondary antibody for ABCG2;
FITC-secondary antibody for Oct3/4 or Nanog) for one hour.
Cells were post-fixed in 4% paraformaldehyde, washed twice
with PBS, resuspended, then pipetted onto a slide and
coverslipped for microscopic viewing. Fluorescent cells were
visualized with a Nikon ES600 microscope with epifluorescent

filters for Hoechst and TRITC. Digital images were captured
with a SONY ICX 285AL SPOT camera (Diagnostic Instru-
ments, Sterling Heights, MI).

Reverse transcriptase polymerase chain reaction:  One
microgram of total RNA from the four human RB tissues and
the cell lines was reversed transcribed into cDNA using
Thermoscript (Invitrogen) followed by incubation with RNase
H for 30 min at 37 °C, according to the manufacturer’s proce-
dures. The stem cell genes were amplified from undiluted
cDNA samples using PCR with 45 s denaturation at 94 °C, 45
s annealing at 58-62 °C and 60 s extension at 72 °C. A nega-
tive control that did not have reverse transcriptase was used to
identify amplification from contaminating genomic DNA, and
a no template control was included for each reaction. The PCR
primers were designed to span an intron. Primer sequences
are listed in Table 2.
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Figure 1. Detection of Oct 3/4, Nanog Musashi-1, and CD133 in human retinoblastoma tumors, retinoblastoma cell lines and normal human
retina by reverse transcriptase polymerase chain reaction.  Human retinoblastoma (RB) tumors and cell lines were examined by RT-PCR as
described in Methods. A: Nanog, Oct3/4, and Musashi gene expression in WERI-RB27 and Y79 cell lines. M represents marker; Y represents
Y79; W represents WERI-RB27. B: Nanog (N), Oct3/4 (O), and Musashi-1 (M) expression in four human RB tumors (RB1, 2, 3, 4). C:
CD133 expression seen in Y79 cells (Y) and RB tumors (1,2,3,4), but not WERI-RB27 cells (W). D: Nanog (N), Oct3/4 (O), Musashi-1 (M)
and CD133 (C) expression in normal human retina.
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Microarray analysis:  The analysis of human RB tumors
vs. normal retinal tissue (A.G.) was conducted independently
from the Y79 microarray analysis (A.S.H.). Results from the
two separate studies were correlated and compared for pre-
sentation in Table 3.
Human retinoblastoma tumors:  Samples of retina and the ad-
joining retinoblastoma were obtained from eyes enucleated at
the Will’s Eye Hospital (WEH) as part of a research collabo-
ration with Dr. Carol Shields. This work was done according
to IRB approved protocols at WEH and University of Penn-
sylvania. Total RNA was isolated from three pairs of fresh
frozen samples and hybridized to HG133 version 2.0 chips
from Affymetrix, CA. Differential expression of genes ex-
pressed in stem cell lineages was followed by PaGE analysis
[22]. The False Discovery Rate (FDR) is the expected percent
of false predictions in a set of microarray data. For example if
the algorithm returns 100 genes with a false discovery rate of
0.3 then we should expect 70 of them to be correct and 30 of
them to be incorrect. More information on false discovery rates
can be found at UPENN.

Y79 cells:  Total RNA was isolated from proliferating Y79
cells using Trizol phenol-based extraction (Invitrogen), as
described in [23]. The quality of the RNA was assessed by gel
electrophoresis and A

260
/A

280
 ratio. Microarray analyses were

performed by Ocean Ridge Biosciences (Jupiter, FL) using
six human HEEBO (human exonic-evidence based-oligonucle-
otide) 70-mer oligonucleotide microarrays, containing approxi-
mately 50,000 probes (representing exonic sequences, alter-

natively spliced exonic, ESTs and controls). Biotinylated UTP
complementary RNA (cRNA) probes were prepared, frag-
mented and hybridized to the microarrays for 16-18 h with
constant rotation. The microarray slides were washed under
stringent conditions, stained with Streptavidin-Alexa-647
(Invitrogen), and scanned using an Axon GenePix 4000B scan-
ner.

For data analyses, the local background was subtracted
and the spot intensities were log

2
-transformed. The values were

then normalized by subtraction of the array mean and the spots
were filtered by threshold. Based on the signal from the nega-
tive control probes, a threshold was calculated for intensity
level cut-offs for which 99% of the negative controls fall be-
low those cut-offs.

RESULTS
 In the present study, we examined unsorted, heteroge-

neous populations of RB cells in order to identify
subpopulation(s) with human embryonic and neuronal stem
cell properties.

Human embryonic genes upregulated in human retino-
blastoma tumors are also detected in the Y79 cell line:  To
identify stem cell genes that are differentially expressed in
RB, three human RB tumors of varying grade were compared
with surrounding normal retinal tissue by Affymetrix
microarray analysis. We identified stem cell genes that were
upregulated in human RB tumors as compared with surround-
ing retinal tissue with a FDR (false discovery rate) value of at
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Figure 2. Human retinoblastoma tumors exhibit immunoreactivity to human embryonic stem cell markers Oct 3/4 and Nanog.  A: Human
retinoblastoma (RB) tumors were prepared as frozen sections, and immunostained for human embryonic stem cell markers AlkPhos, Oct3/4,
and Nanog, Immunoreactivity to Oct3/4 and Nanog was evident (eg. arrows), while no reaction was seen AlkPhos. B: Human testicular
seminoma tissue (TS) was used as a positive control for Oct3/4 and Nanog. The scale bars represents 5 µm.

826



least 0.1. In turn, stem cell genes that were upregulated in
human RB tumors were cross-referenced against indepen-
dently-obtained microarray data of stem cell genes detected
as “present above threshold intensity levels” in Y79 retino-
blastoma cells. The stem cell genes that overlapped, based on
these criteria, are shown in Table 3. The fold changes are pre-
sented as Log2. The greatest fold-change between RB and
normal retina was for MCM2, a neural stem cell marker that
we first demonstrated as being immunoreactive in RB tumors
[18], and was reported to be more highly expressed in more
highly invasive RB tumors [24]. Many of the fold changes in
stem cell genes were rather small, most likely due to the small
contribution of the stem-like cell population (about 1%) to the
sum total of gene expression.

Microarray analysis of Y79 human retinoblastoma cells
was performed to confirm the expression stem cell marker
genes in retinoblastoma using a different microarray platform.
RNA was obtained from 6 independent plates of sub-confluent
cells. Comparisons of the Y79 microarray results revealed that
many of the stem cell markers upregulated in human RB were
also found in the RB cell line (extra upregulated in human RB
tumors). These include: Oct3/4, Nanog, Musashi-1 and
Musashi-2, prominin-1 (CD133), Jagged-2, Reelin, Thy-1,
nestin, Meis-1, NCAM, Patched, and Notch4. We selected the
genes from Table 3 that were the most closely associated with
embryonic development, namely Oct3/4, Nanog and Musashi-
1 for further confirmation and analysis.

Detection of Oct 3/4, Nanog, Musashi-1, and CD133 in
human retinoblastoma tumors, retinoblastoma cell lines, and
normal retina by reverse transcriptase polymerase chain re-
action:  Human embryonic stem cell markers Oct3/4 and
Nanog are genes of pluripotency and self-renewal. In Figure
1, Oct3/4, Nanog, and Musashi-1 were detected by PCR analy-
sis of human retinoblastoma cells, tumors, and normal retina.
Since the original cell populations and tumor samples repre-
sented mixed populations of stem-like cells and non-stem-like
cells, we did not attempt to quantitate differences in expres-
sion levels between RB tumors and cell lines. Instead, we
sought to determine the presence or absence of gene expres-
sion. As seen in Figure 1A, Nanog, Oct3/4 and Musashi-1 gene
expression was evident in both Y79 cells and WERI-RB27
cells. In Figure 1B, the same genes are present in four human
RB tumors. In Figure 1C, CD133 expression was present in
Y79 cells and RB tumors, but not WERI-RB27 cells. In Fig-
ure 1D, Nanog, Oct3/4 and Musashi expression is shown in
normal retinal tissues at low levels. These results confirm the
microarray findings.

Oct 3/4 and Nanog immunoreactivity in human retino-
blastoma tumors:  As further evidence of gene expression at
the protein level, human RB tumors were examined for im-
munoreactivity to Oct3/4 and Nanog. Non-necrotic areas of
the tumors were examined to avoid potential areas of high
background staining. As seen in Figure 2, small populations
of RB cells within the RB tumors were immunoreactive for
Oct3/4 and Nanog. As positive controls, we tested human tes-
ticular seminomas for Oct3/4 and Nanog expression. These
results are shown in Figure 2B.
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Figure 3. Musashi-1 in retinoblastoma tumors and cell lines.  Human
retinoblastoma (RB) tumors and cell lines were prepared as frozen
sections, and immunostained for Musashi-1: A: Human RB tumor;
B: Y79 cells; C: WERI-RB27 cells; D: Negative control. The scale
bar represents 5 µm. Arrows indicate positive cells.
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Musashi-1 expression in retinoblastoma tumors and cell
lines:  Musashi-1 is hypothesized to play a role in cell fate
determination, differentiation and tumorigenesis through its
influence on the Notch signaling pathway. The pattern of
Musashi-1 immunoreactivity in human RB tumors (frozen and
paraffin-embedded), as well as RB cell lines Y79 and WERI-
RB-27 is shown in Figure 3. In all cases, small numbers of
immunoreactive cells were present in both RB tumors and cell
lines.

Colocalization of Nanog or Oct 3/4 with Hoechst-dim/
ABCG2 positive cells:  Since we had previously shown a small
subpopulation of Hoechst-dim/ABCG2 positive cells in RB
[18], we sought to examine whether these same cells would
co-express the embryonic stem cell markers Oct3/4 and Nanog.
As seen in Figure 4, ABCG2-bright, Hoechst-dim cells co-
localize with Oct3/4 and Nanog. This result was demonstrated
in both the Y79 and WERI-RB27 cell lines.

Subpopulations of retinoblastoma cells are slow-cycling:
One of the hallmarks of stem cell growth is slow cell cycling
[25]. Cell cycling can be measured by incorporation of
bromodeoxyuridine (BrdU), followed by wash-out with me-
dium lacking BrdU. Slowly-cycling cells retain BrdU longer
after washout than quickly-cycling cells. In Figure 5, Y79
human retinoblastoma cells were pulsed with 10 µM BrdU
for 7 days and washed out for 14 days. The brightest cells

above background were counted as positive for BrdU label
retention. At 14 days, BrdU-immunoreactive cells comprised
3% of the population, an indication of slow cell cycling and
further evidence of the presence of stem cell-like cells in the
population. This 3% figure is greater than the percentage of
cells (less than 1%) that we detected in the side population
previously [18]. Therefore, there may be slow-cycling cells
that fall outside of the side population.

Neurosphere formation in retinoblastoma cultures as a
sign of self-renewal:  We examined Y79 and WERI-RB27 hu-
man retinoblastoma cells for their capacity to form
neurospheres, an indicator of stem cell self-renewal [26]. Cells
were plated as single cell suspensions in 96 well dishes at
initial plating densities of 50-1,000 cells per well, in tripli-
cate. Low cell densities were chosen to minimize effects of
non-specific cell aggregation in favor of neurospheres origi-
nating from one single cell. After five days, neurospheres were
counted and results presented, as shown in Figure 6. Both Y79
and WERI-RB27 human retinoblastoma cells were capable of
neurosphere formation at all cell densities tested. Both the Y79
and WERI-RB27 cell lines were able to generate neurospheres
at low cell density, a hallmark of stem cell self-renewal.
Neurosphere formation was higher at the lowest two densities
in Weri compared with Y79 cells. Furthermore, neurospheres
could be repeatedly passaged (Figure 6B).
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Figure 4. Colocalization of Nanog or Oct 3/4 in Hoechst-dim/ABCG2 positive cells.  Y79 and WERI-RB27 human retinoblastoma cells were
examined for fluorescent Hoechst 33342 dye uptake, ABCG2 immunoreactivity, coupled with either Nanog or Oct3/4 immunoreactivity. Each
horizontal panel depicts the same microscopic field, viewed under separate fluorescent filters for Hoechst, FITC and TRITC, as well as a
merged image of all three fields. As seen in the “Hoechst dye exclusion” field, the arrow points to a cell that has excluded the Hoechst dye and
appears “Hoechst dim”. This is due to the active Hoechst dye exclusion properties of the ABCG2 protein. In the next two panels, we see the
same cell, as indicated by the arrow, that is immunoreactive for Nanog or Oct3/4 and ABCG2. When the three images are merged, ABCG2
colocalizes with both Nanog and Oct 3/4. The scale bar represents 5 µm.
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DISCUSSION
 Human embryonic stem cell markers are expressed in devel-
oping embryos, germ cell tumors [27] and breast carcinomas
[28]. In the present study, we have shown that RB subpopula-
tions express human embryonic stem cell genes involved in
stem cell pluripotency and self-renewal, such as Oct 3/4, Nanog
and Musashi-1. Furthermore, the RB cell lines show functional
properties of stem cell populations. The expression of
pluripotency genes such as Oct 3/4 and Nanog would suggest
a broad range of differentiation options for these stem-like
subpopulations of cells. However, the full differentiation po-
tential of these stem-like cell populations remains unknown.

The presence of early embryonic genes in RB may con-
tribute to our understanding about the RB cell of origin. Dyer
and Bremner [29] have proposed either a “progenitor cell
model” or a “transition cell model” in which epigenetic and/
or genetic differences in individual RB cells could lead to tu-
mor formation upon inactivation of the RB1 tumor suppres-
sor gene. In this study, we have detected subpopulations of
RB cells that are immunoreactive for human embryonic and
neuronal stem cell markers. Considering the early childhood
diagnosis of RB, this phenomenon raises questions regarding
the persistence of stem cells of embryonic origin in RB tu-
mors and the possibility that an embryonic stem cell may be
responsible for the initiation of RB tumors. Our results sug-
gest that either amplification of a resident stem cell popula-
tion or reversion of retinal cells to a stem-like state may be
associated with the development of RB.

A number of stem cell genes are expressed in RB and are
of interest based upon the stem cell characteristics that they
are known to confer. ABCG2 corresponds with a Hoechst-
33342-negative phenotype of side population (SP) cells [19].
ABCG2 is expressed in leukemia [30], germ cell cancers [31],
as well as cancers of the breast [32], prostate [16], and lung
[33]. Our previous study demonstrated expression of ABCG2
along with the neural stem cell marker MCM2 in RB cells and
tumors [18]. Expression of ABCG2 and MCM2 has been as-
sociated with increased tumor invasiveness in retinoblastoma
[24]. The present findings illustrate that ABCG2 is not only
expressed in Hoechst-dim RB cells, but is co-localized with

human embryonic stem cell markers, such as Oct3/4 and Nanog
as further indication of a stem-like cell phenotype.

Musashi-1 is an RNA binding protein linked to asymmet-
ric cell division and expressed in brain tumors and breast can-
cer [34,35]. Oct-3/4 is a POU transcription factor that is asso-
ciated with self-renewal and pluripotency of stem cells [36].
Oct3/4 has been associated with tumorigenesis of adult germ
cells. Ectopic expression of Oct3/4 in mice leads to formation
of dysplastic skin and intestinal lesions due to an increase in
the number of progenitor cells [37]. Ours is the first report of
Oct3/4 expression in a CNS tumor of non-germ cell origin..
This is also the first report of the homeodomain gene Meis1
associated with retinoblastoma. Meis1 is known to be
coexpressed with homeobox genes, such as HOXA5, 7 and 9
in myelogenous leukemias [38]. Patched, implicated in the
carcinogenesis of medulloblastoma [39], reelin, expressed in
normal retinal development and in response to tissue injury
[40], were also found to be upregulated in RB in our microarray
analysis. The upregulation of Notch4 indicates that the Notch
signaling pathway, important in breast development/cancer
[41] may be a potential target for novel RB therapies. Our
findings of stem cell markers upregulated in RB that share
characteristics with other cancers may help identify common
mechanisms among divergent types of cancer stem cells in
terms of gene expression and stem cell phenotypes.

Nanog, another human embryonic stem cell marker, is
also a transcription factor. Overexpression of Nanog in hu-
man embryonic stem cells promotes pluripotency and allows
propagation over multiple passages [42], whereas knockdown
of Nanog induces differentiation into mature cell types [43].
Nanog has been proposed as a diagnostic marker for
germinomas of the central nervous system [44]. Greater than
90% of CNS germinomas exhibit Nanog expression, whereas
tumors considered in the differential diagnosis of germinomas
do not [44]. In light of our results, retinoblastoma is another
CNS tumor that exhibits both Oct3/4 and Nanog expression.

CD133 (Prominin-1) is a cell surface marker of cancer
stem cells [45,46]. In addition, CD133 expression was previ-
ously reported for both Y79 and WERI-RB1 cells [47]. Inter-
estingly, a frameshift mutation of CD133 at codon 614 has
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Figure 5. Label-retaining cells in retinoblastoma cultures.  Y79 human retinoblastoma cells were pulsed with 10 µM BrdU for 4-7 days and
washed out for 14 days. At 14 days, BrdU-immunoreactive cells comprised approximately 3-4% of the population. A: No BrdU added
(negative control); B: BrdU added for 7 days without washout. C: BrdU for 7 days and 14 days of washout. Three percent of cells were still
labeled after 14 days (arrow). The scale bar represents 5 µm.

829



been associated with human retinal degeneration, whereas
native CD133 protein is localized to photoreceptors [48].
Therefore, CD133 appears to be an important component in
photoreceptor maintenance and/or function. In our study, in-
dependent microarray analyses of both the Y79 cell line and
RB tumors demonstrated the presence of CD133 and an
upregulation of CD133 in RB tumors, as compared with sur-
rounding retinal tissues. In glioblastoma, CD133+ cells were
significantly more resistant to chemotherapy agents such as
carbaplatin, taxol, and etoposide than CD133 negative cells
[45]. Therefore, the extent of CD133 expression, in addition
to expression of the ABCG2 drug transporter, may be another

factor to consider with regard to chemotherapy resistance in
retinoblastoma.

In brain tumors, nestin-positive cells are associated with
a perivascular cancer stem cell niche [49]. In human medullo-
blastoma, ependymoma, oligodendroglioma and glioblastoma,
tumors with the highest concentrations of blood vessels ex-
hibited the greatest number of Nestin+ cells. Furthermore, these
same cells were located proximal to blood vessels within the
tumors [49]. From the present study, nestin expression is
upregulated in RB over normal retinal tissue and expressed in
Y79 cells. The proximity of nestin-positive cells to blood ves-
sels in RB tissues remains to be determined over a large num-
ber of samples.

We cannot make conclusions as to the overlap between
the various stem cell markers and behaviors in RB, aside from
our data that ABCG2-positive cells co-localize Nanog and
Oct3/4. Are these the same cells that initiate neurospheres or
retain BrDU? Further investigations are necessary to deter-
mine whether the subpopulation of stem-like cells represent
yet another heterogeneous population. The ability of particu-
lar stem cell-like subpopulations to form tumors in animals
will be an important test of the cancer stem cell phenotype.

It is interesting to note that a number of human embry-
onic and neuronal markers are present in normal human retina.
It is known that retinal progenitors exist in the ciliary margin
[50], These retinal progenitor cells may contribute to our de-
tection of stem cell markers in normal retina after nucleic acid
amplification in PCR analyses. However our microarray analy-
sis does show that these genes, although present in normal
retinal tissue, are upregulated in RB tumors, as shown in Table
3.

The presence of embryonic stem cell markers in RB has
clinical implications. It appears that RB tumors contain sub-
populations of cells that possess sufficiently unique proper-
ties that would allow them to survive chemotherapy and re-
tain their tumor-forming potential. The identification of a sub-
population of cancer stem cells that drives tumorigenesis and
chemo-resistance in retinoblastoma may lead to new ap-
proaches for determining prognosis and optimal therapy. Ex-
pression patterns of stem cell markers, especially CD133 [45],
may indicate the differentiated state of retinoblastoma tumors,
and may correlate with a favorable/unfavorable prognosis in
the clinical setting. Human RB tumors express a variety of
multi-drug transporters with the ability to confer resistance to
chemotherapy [51,52]. New agents designed to efficiently kill
or terminally differentiate these RB subpopulations may lead
to more effective treatments for both primary tumors and me-
tastases.
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