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The current generation of dynamic global vegetation models (DGVMs) lacks a

mechanistic representation of vegetation responses to soil drought, impairing

their ability to accurately predict Earth system responses to future climate scen-

arios and climatic anomalies, such as El Niño events. We propose a simple

numerical approach to model plant responses to drought coupling stomatal

optimality theory and plant hydraulics that can be used in dynamic global veg-

etation models (DGVMs). The model is validated against stand-scale forest

transpiration (E) observations from a long-term soil drought experiment and

used to predict the response of three Amazonian forest sites to climatic

anomalies during the twentieth century. We show that our stomatal optimiz-

ation model produces realistic stomatal responses to environmental conditions

and can accurately simulate how tropical forest E responds to seasonal, and

even long-term soil drought. Our model predicts a stronger cumulative effect

of climatic anomalies in Amazon forest sites exposed to soil drought during El

Niño years than can be captured byalternative empirical drought representation

schemes. The contrasting responses between our model and empirical drought

factors highlight the utility of hydraulically-based stomatal optimization models

to represent vegetation responses to drought and climatic anomalies in DGVMs.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
El Niño events contribute to major climatic and ecologic impacts over the

Amazon basin [1–4]. Climatically, El Niño events are known to make the cli-

mate of most of Amazonia drier and warmer, especially affecting the rainfall

patterns in northern Amazonia [4]. This drier climate drives a shift in

Amazon forest carbon balance towards a net carbon source to the atmosphere

[1,5]. The mechanisms involved in this shift are thought to be related to temp-

erature-induced increases in respiration (particularly soil respiration) and

drought-induced decreases in gross primary productivity [3,5,6].
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Over the last decade, important advances have been

made to improve our understanding of the physiological

processes determining plant responses to drought [7,8].

Experimental manipulation and field observations have

shown that xylem hydraulic conductance loss is an important

mechanism triggering drought-induced plant mortality

[9–12]. One of the mechanisms that plants employ to avoid

reaching potentially lethal embolism thresholds is the regu-

lation of canopy water potential (Cc) through stomatal

control, which creates a coordination between stomatal

responses and plant hydraulic conductance losses [13–16].

While process-based models of stomatal functioning based

on plant hydraulics have been proposed recently [17–19],

most dynamic global vegetation models (DGVMs) rely on

empirical drought factors to represent stomatal responses to

soil drought [20–23]. These empirical approaches can per-

form well under many conditions [24–26], but they lack the

generality of models that use physiological and ecological

theory to predict the responses of vegetation and the global

carbon cycle to drier climates [21,27], such as the Amazon cli-

mate during El Niño events. In this study we describe and

test a new model of stomatal response to drought that is

numerically simple enough to implement in a DGVM appli-

cable at large spatial scales, without losing recent theoretical

advancements made in the field of plant hydraulics and

stomatal optimization theory [17,18].

Our model is based on optimality theory, that is,

plant structure and functioning have evolved to maximize

efficiencies within the limits of genotypic variation and phys-

ico-chemical constraints [28–32]. This principle has been

widely used to predict stomatal responses to environmental

conditions, starting with Cowan [33] and Cowan & Farquhar

[34], where stomata are assumed to maximize carbon assim-

ilation (A as carbon mass) while minimizing transpiration

(E as water mass) over a given time interval (dt). This concept

can be represented by maximizing the function A2lE over

dt. The parameter l represents the marginal carbon cost of

water (carbon mass per water mass). This E-based optimiz-

ation approach provides an alternative to empirical models

that has been widely used [35–39], such as in Medlyn et al.
[40] to derive the unified stomatal optimization model

(USO). The USO shows the potential of the E-based optimiz-

ation theory to predict stomatal conductance (gc) responses to

environmental drivers [40,41]. However, E-based optimiz-

ation does not account for soil drought effects on gc, which

need to be represented empirically as in Zhou et al. [25,26],

or with semi-empirical drought factors [36,37].

We represent drought effects on stomatal conductance

coupling plant hydraulics with stomatal optimality theory,

following the principles outlined in Wolf et al. [19] and

Sperry et al. [18] and using an optimization routine similar

to Friend [42]. Sperry et al. [18] propose that the costs associ-

ated with stomatal opening can be represented as the loss of

the plant capacity to transport water, which allows us to

replace the need for l with hydraulic traits that determine

plant vulnerability to drought-induced embolism. Plant

hydraulic traits that determine xylem vulnerability to embo-

lism at the branch-level are currently available for a large

number of species of different biomes [43], which makes

the hydraulics-based optimization approach particularly

attractive for inclusion in ecosystem models.

In this study we validate a stomatal optimization model

based on xylem hydraulics (SOX) against scaled-up sap
flux observations from an Amazon forest site subject to

long-term experimental drought [11,44] and evaluate its

predictions against other stomatal models. Subsequently,

we investigate how our model predictions differs from

empirical drought factors at simulating the response of

Amazon forest sites to climatic anomalies during the

twentieth century.

2. Material and methods
(a) Model description
The SOX model assumes the loss of xylem hydraulic conduc-

tance is the main cost associated with stomatal opening.

Therefore, we calculate the optimal stomatal conductance for a

given set of environmental conditions as the value that maxi-

mizes A (mol m22 s21) given concurrent hydraulic conductance

losses, using a numerical routine similar to the PGEN

model [42]. A schematic representation of the model is shown

in figure 1. The numerical routine we describe here can be

coupled to any photosynthesis model that computes A from

environmental inputs and the leaf intercellular CO2 concen-

tration (ci, mol mol21). In this study we use the photosynthesis

model from Collatz et al. [45], following Clark et al. [20],

described in electronic supplementary material, appendix S1.

From an initial value for A, we derive the canopy conductance

to CO2 (gc, mol m22 leaf s21) and transpiration (E, mol m22

leaf s21) as:

gc ¼
A

(ca � ci)
ð2:1Þ

and

E ¼ 1:6gcD, ð2:2Þ

where ca is the CO2 concentration (mol mol21) in the atmosphere

(assumed to be equal to the leaf surface). The leaf-to-air

vapour pressure deficit (D, mol mol21) is calculated with the

assumption that canopy temperature is close to air temp-

erature. These assumptions are justified on the basis that the

model implemented in this study is the proof of concept of a

scheme designed to be coupled to larger scale models that

often employ more detailed calculations of canopy aerodyna-

mical resistance and energy balance (e.g. Best et al. [46]). The

constant 1.6 is the ratio of water vapour to CO2 diffusivities

in the air.

The resulting value of E is used to calculate the xylem water

potential at the canopy (Cc, MPa) using Darcy’s Law, assuming

steady state conditions (i.e. no contribution of stored water to

transpiration):

Cc ¼ Cc,pd �
E
krc

, (2:3)

where krc is the root–canopy hydraulic conductance (mol m22

leaf s21 MPa21) and Cc,pd is Cc at the pre-dawn which, assuming

no night-time transpiration, can be approximated as the root C

(Cr) adjusted for the canopy height (h, m) induced C gradient:

Cc,pd ¼ Cr � hrg� 10�6, ð2:4Þ

where r is the water density (997 kg m23), g is the Earth’s grav-

itational acceleration (9.8 m s22) and the 1026 converts Pa to

MPa. Stored water can contribute significantly to tropical veg-

etation transpiration [47,48]. However, this contribution is

lower during periods of high water stress, when the internal

water reserves are depleted, which makes equation (2.3) a

reasonable approximation when Cc is more relevant for our

model. The krc in equation (2.3) itself depends on Cc for its com-

putation as krc declines from its maximum value (krc,max) as the

xylem pressure (C) drops due to cavitation-induced embolism
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Figure 1. Schematic representation of the stomatal optimization based on the xylem hydraulics (SOX) model. The blue arrows represent the water flow from soil and
roots (dashed box) to canopy. The resistor symbols represent dynamic resistances to water flow computed using the equations in the respective boxes. The Collatz
et al. photosynthesis model (electronic supplementary material, appendix S1) is used to produce the gross carbon assimilation (A, green lines in subpanels a and b)
for a set of environmental conditions and initial leaf internal CO2 concentration (ci) value. We use equations (2.1) – (2.3) from the main text to calculate the xylem
water potential at the canopy (Cc) associated with the given A value. The midpoint of the root to canopy Cc gradient is used to compute the normalized root to
canopy hydraulic conductance (kcost), which represents the cost of stomatal aperture in SOX (red dashed lines in a and b). The kcost and A are used to numerically
find the optimum ci (circles on the x-axis of a and b), at the maximum point of the A . kcost function (black lines in a and b). In the subpanels a and b, we represent
the SOX optimization routine at increasing soil drought stress (lighter coloured lines represent lower soil water potential, Cs) at two different levels of atmospheric
demand. The optimum ci value of the interval evaluated by the SOX routine (0 to atmospheric CO2 levels) is used to calculate the optimum A, denoted by the circles
on the A – ci curve. The equations in the dashed box represent how changes in soil conductance can be incorporated in SOX by modelling the soil to root hydraulic
conductance (krc) as a function of Cs as described in electronic supplementary material, appendix S4. (Online version in colour.)
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formation [49]. This process can be described with a function

such as the inverse polynomial from Manzoni et al. [50]:

f ðCÞ ¼ krc,max 1þ C

C50

� �a� ��1

, ð2:5Þ

where C50 is C when krc ¼ 0.5krc,max and a controls the shape of

the function. The empirical relationship between C50 and a from

Christoffersen et al. [51] described in electronic supplementary

material, appendix S2, reduces the plant hydraulic parameters

needed in SOX to only C50, krc,max and h used in equation

(2.4). SOX is designed as a dynamic model that uses the krc pro-

duced at the previous timestep (krc[t21]) to compute the current

timestep Cc and krc via equation (2.3). The purpose of this

choice is to facilitate the incorporation of long-term drought

effects in krc, associated with the incomplete recovery of cavita-

tion [52]. In this study we assume krc recovers instantaneously

as Cc and Cc,pd increase following a rain event. This might over-

estimate the fluxes immediately after the dry season, depending

on the forest recovery rates from embolism through growth

[53,54] or other processes [55,56]. More complex schemes
describing partial and gradual krc recovery processes will be

explored in future studies.

Sperry & Love [17] and Sperry et al. [18] employ the Kirch-

hoff transform in equation (2.5) to account for the gradual C

drop along the tree, computing krc as:

krc ¼
Ð Cc;pd

Cc
f(C)dC

dC
: ð2:6Þ

In SOX we represent the gradual C drop along the tree using

the middle value of the root–canopy gradient (Cc,mid):

Cc,mid ¼
Cc,pd þCc

2
: ð2:7Þ

Using f (Cc,mid) is numerically simpler than equation (2.6)

and provides similar results within a realistic range of Cc,pd

and Cc (electronic supplementary material, figure S1). The krc

produced by f (Cc,mid) normalized as a function of krc,max,

giving kcost, represents the costs of stomatal aperture in SOX:

kcost ¼
f ðCc,midÞ

krc,max
: ð2:8Þ



Table 1. Default environmental and plant inputs used in this study.

type symbol definition default value

environmental input IPAR incident photosynthetically active radiation 2 � 1023 mol m22 s21

Ta air temperature 208C

D vapour pressure deficit 5 � 1023 mol mol21

Oa air O2 concentration 0.2 mol mol21

ca air CO2 concentration 4 � 1024 mol mol21

Pa atmospheric pressure 0.1 MPa

Cs soil water potential 20.1 MPa

plant input v* leaf scattering coefficient 0.15

Vcmax25
a maximum Rubisco carboxylation rate at 258C 5 � 1024 mol m22 s21

Tupp
a high temperature photosynthesis range 408C

Tlow
a low temperature photosynthesis range 108C

a* quantum efficiency 0.1 mol mol21

krc,max xylem maximum hydraulic conductance 0.01 mol m22 s21 MPa21

h plant height 20 m

C50 xylem water potential when krc ¼ 0.5krc,max 22.5 MPa

*Parameters used in the Collatz et al. [45] photosynthesis model described in electronic supplementary material, appendix S1.
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Lower kcost implies a higher cost associated with a given level of

stomatal aperture. These costs are balanced with A using a

numerical optimization routine. A detailed discussion of the

differences between the cost functions used in SOX and Sperry

et al. [18] is given in electronic supplementary material,

appendix S3.

The SOX optimization routine is implemented in this paper

following similar principles to the PGEN model optimization

routine [44], which assumes the optimum gc can be found

where the product between A and its unitless drought factor

are maximized. In SOX, as A and kcost are functions of ci, the opti-

mum ci, hereafter ci,opt, for a given set of environmental

conditions is found at:

@(A � kcost)

@ðciÞ
¼ 0: ð2:9Þ

We use an algorithm (see the SOX model code available as

electronic supplementary material) to evaluate ci over the inter-

val (0, ca) and find the solution to equation (2.9). The ci,opt is

used to calculate optimum values of A, gc, E and Cc using the

photosynthesis model in electronic supplementary material,

appendix S1 and equations (2.1)–(2.3).

Changes in soil hydraulic conductance can also be included

in SOX by computing Cr as a function of soil-to-root conductance

as shown in figure 1 and explained in detail in electronic sup-

plementary material, appendix S4. The model evaluations

conducted in this study used the simplest version of SOX with-

out the equations from electronic supplementary material,

appendix S4 (i.e. assuming Cr �Cs), unless noted otherwise.

(b) Model evaluation
The model was written in R (v. 3.4.2; [57]), and the code is available

as electronic supplementary material; all the subsequent analyses

were also conducted in R. The model responses to environmental

drivers were evaluated by holding all meteorological inputs con-

stant at their default values (table 1) and varying a single input

at a time. Because equation (2.3) depends on krc[t21], we run the

model at constant environmental conditions for 50 iterations to

evaluate SOX instantaneous responses to the environment. This
procedure is not necessary when SOX is run as a dynamic

model, which is the case when SOX is coupled to a DGVM or

in the subsequent model evaluations we conduct in this study.

We evaluated the model capacity to produce realistic predic-

tions of vegetation response to seasonal and experimental soil

drought using observations from an evergreen broadleaf tropical

forest located in Caxiuanã National Forest in the eastern Brazilian

Amazon (electronic supplementary material, figure S3 for site

details). We compared the modelled E with the stand-scale sap

flux data from two 1 ha plots at the site. One of the plots has

been subjected to a throughfall exclusion treatment (TFE) since

2001 [11,58], which provides an ideal scenario to test the capacity

of SOX to reproduce vegetation response to severe soil drought.

Details on sap flux data collection and procedures to scale the

data from tree to stand-level can be found in da Costa et al.
[59]. The meteorological forcing data were collected at the top

of a 40 m tower at the site, and the soil moisture data were

measured with time-domain reflectometry sensors placed at

0.0–0.3, 0.5, 1 and 2.5 m depth. We used the Clapp & Hornberger

[60] equation from electronic supplementary material, appendix

S4 to obtain Cs from the site observations of root mass-weighted

soil moisture content (u, m3 m23), with the soil hydraulic par-

ameters derived from the soil ancillary data used in the Hadley

Centre Global Environmental Model Earth System Model

(HadGEM2-ES) [44], which is based on the Harmonized World

Soil Database (v. 1.2) [61]. The root biomass profile was modelled

using the equations from Best et al. [46] assuming soil and root

depth were 3 m, which is the default value for broadleaf evergreen

tropical trees (BET) used in JULES [20]. We used the site-averaged

values of tree hydraulic and physiological data, or the reference

JULES values for BET (electronic supplementary material,

table S1). Vegetation krc,max was obtained from branch-level

xylem specific conductivity (Kx), h, the ratio between sapwood

area and leaf area (i.e. the Huber value, hv) and a tapering correc-

tion factor calculated following Christoffersen et al. [51]; see full

description of these calculations in electronic supplementary

material, appendix S5. We scale the model predictions from

leaf to plot area using the big leaf approach as described in

Clark et al. [20], with the light extinction coefficient set to the

default BET value (0.5) and leaf area index (LAI) fixed at the
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mean value observed at the site (4.8 m2 leaf m22 soil). We con-

sider the use of a fixed LAI in this study is the most

parsimonious choice for the purpose of validating our model,

considering the small LAI changes observed at the site (standard

deviation of 0.5 m2 leaf m22 soil).

We compare SOX agreement with observations against a model

that uses a drought representation model based on the b-function

(bfun) soil drought factor described by Cox et al. [24]. A description

of this model is given in electronic supplementary material figure

S4. We fitted the relationship between A and stomatal conductance

of water (gw, mol m22 s21) predicted by SOX to the unified stomatal

optimization model (USO) of Medlyn et al. [40], described in elec-

tronic supplementary material, appendix S6.

(c) El Niño simulations during the twentieth century
We compared SOX’s sensitivity to drought events with the bfun

model (electronic supplementary material, figures S4) using

meteorological and vegetation hydraulic observations coupled

to the modelled soil moisture dynamics of three Amazonian

sites (electronic supplementary material, figure S3). We used

the CRU-NCEP (v. 4, see supplementary figure S5; N. Viovy,

Laboratoire des Sciences du Climat et de l’Environnement,

(LSCE), France, 2016, personal communication) 6-hourly meteor-

ological data from 1901 to 2016 to drive our models (see

electronic supplementary material, figure S5). These forest sites

possess distinct climatic responses to El Niño events (electronic

supplementary material, figure S3), represented by the Niño-3

index, which is calculated as the mean sea surface temperature

(SST) anomaly from 58N to 58S and 150–908W [62]. Additionally,

we used the site-specific monthly soil moisture product from

JULES, applied following the TRENDY protocol [27,63], to

drive our simulations. The soil hydraulic parameters for each

site were obtained from the HadGEM2-ES soil ancillaries [64].

We used the plant inputs given in electronic supplementary

material, table S1 to represent the Caxiuanã site. For the Tapajós

and Manaus sites, we used the mean plant hydraulic [65] and

photosynthetic parameters measured at each site to parameterize

the models (electronic supplementary material, table S2), while

the other parameters were assumed equal to those of the Cax-

iuanã site. The vegetation hydraulic trait sampling in each site

represents approximately 40, 36 and 15% of the forest basal

area for the Caxiuanã, Tapajós and Manaus sites, respectively.

We measured the effects of climatic anomalies on air temp-

erature and atmospheric demand (Ta and D) and soil water

availability (Cs) by conducting experiments where we drove

the models with the 6-hourly data that correspond to an average

year based on the historical climate from the CRU-NCEP dataset

(1901 to 2016, electronic supplementary material, figure S5). This

procedure eliminates climatic anomalies, such as those associated

with El Niño (electronic supplementary material, figure S3). In

total we conducted four simulations for each site: Sim1 is the con-

trol run using the unaltered CRU-NCEP dataset; Sim2 is the run

without anomalies in Ta and D; Sim3 is the run without

anomalies in Cs; and Sim4 is without anomalies in any of the

previously mentioned variables (Ta, D and Cs, see electronic sup-

plementary material, table S3 for summary).
3. Results
(a) Theoretical responses to environment
SOX predicts that resistance to cavitation produces a sto-

mata behaviour more responsive to changes in incident

photosynthetically active radiation (IPAR), ca, Tc and D.

However, Cs has a much stronger effect in plants more vul-

nerable to cavitation (figure 2; electronic supplementary

material, figure S6).
The asymptotic stomatal response to IPAR (figure 2a) is

caused by the light-limitation predicted by the photosynthesis

model (electronic supplementary material, appendix S1). The

SOX predictions represent a hydraulic effect on the plant

light response, as plants more resistant to cavitation can sus-

tain light-saturated gc 2–3 times higher than the more

vulnerable plants. The SOX response to ca (figure 2c,d) is

driven by equation (2.2) producing lower gc for a given

A as ca increases. The lower intrinsic water use efficiency

(i.e. A/gc) at low ca is partially compensated in cavitation-

resistant plants, which can maintain stomatal aperture with

low cavitation costs, reducing the ca and ci gradient (electronic

supplementary material, figure S6). The Tc response in

figure 2e,f results from the Vcmax–Tc relationship present in

the photosynthesis model (electronic supplementary material,

appendix S1), which is more pronounced in plants vulnerable

to cavitation. These plants maintain a greater distance to their

potential maximum gc due to premature, hydraulically-

induced stomatal closure.

The SOX response to atmospheric demand (figure 2g,h)

results from the increased krc loss associated with the lower

Cc necessary to maintain carbon assimilation when the atmos-

phere is drier (i.e. higher D, see equations (2.2) and (2.3)). The

lower Cc induces an exponential decline in gc as the ci,opt shifts

closer to 0 (figure 1). This pattern is commonly observed

[66–68], and more accentuated in plants with a less negative

C50 owing to their increased cavitation costs as the atmosphere

dries (figure 2g,h). The bfun predicts a more gradual stomatal

closure in response to D, which approximates SOX predictions

for C50¼ 22.5 MPa when D . 0.02 mol mol21(figure 2g).

The SOX response to a drying soil emerges from the same

mechanism as its responses to D, that is, increased cavitation

costs due to the lower Cc necessary to maintain A when Cs is

low. SOX predicts a more gradual decline in gc in response to

drying soil when compared with the bfun model (figure 2i,j ).
The b model predicts gc¼ 0 when Cs¼ 21.5 MPa and u¼ uw

(electronic supplementary material, figure S4; figure 2i,j),
whereas SOX predicts that even plants very vulnerable to cavi-

tation (C50¼ 21 MPa) still have 30% of their maximum gc at the

same Cs. Accounting for changes in ksr with equations in the

electronic supplementary material, appendix S3 makes gc

more responsive to Cs, affecting particularly plants more

resistant to cavitation. At Cs ¼ 25 MPa, even plants with

C50 ¼ 25 MPa will have dropped to 1% of their maximum

gc, whereas in the model that assumes Cr � Cs the plant

would still have 58% of its maximum gc. Using a steeper vul-

nerability curve (higher a from equation (2.5)) also greatly

increases the plant sensitivity to soil drought (figure 2k,l ).

The a also affects the Cc response to Cs, which is linear

when a is low, but higher a produces a more stable Cc at

high soil moisture (figure 2j,l ).
(b) Model evaluation
The SOX predictions agree with the E observed at both plots

in Caxiuanã more consistently than the alternative bfun

models (figure 3; electronic supplementary material,

figure S7). We were able to approximate the sap flux at

both the control and the TFE plot, even though we made

the simplifying assumption that the vegetation of both plots

was identical (electronic supplementary material, table S1)

and used the relationship from Christoffersen et al. [51] to

estimate the shape parameter of the vulnerability curve (a),



0

0.5

1.0

1.5

2.0

2.5  Y50 = −1 MPa 
Y50 = −2.5 MPa 
Y50 = −5 MPa
bfun

0.0005 0.0015

IPAR (mol m−2 s−1)

0.0005 0.0015

IPAR (mol m−2 s−1)

−2.5

−2.0

−1.5

−1.0

−0.5

0

−2.5

−2.0

−1.5

−1.0

−0.5

0

10 30 50 70

ca (Pa)

10 30 50 70

ca (Pa)

−2.5

−2.0

−1.5

−1.0

−0.5

0

0 10 20 30 40 50

Tc (°C)

0 10 20 30 40 50

Tc (°C)

0 0.02 0.04

D (mol mol−1)

0 0.02 0.04

D (mol mol−1)

0

0.5

1.0

1.5

2.0

2.5

g c 
(m

ol
 m

−
2  

s−
1 )

0

0.5

1.0

1.5

2.0

2.5

g c 
(m

ol
 m

−
2  

s−
1 )

0

0.5

1.0

1.5

2.0

2.5

g c 
(m

ol
 m

−
2  

s−
1 )

0

0.5

1.0

1.5

2.0

2.5

g c 
(m

ol
 m

−
2  

s−
1 )

g c 
(m

ol
 m

−
2  

s−
1 )

0

0.5

1.0

1.5

2.0

2.5

g c 
(m

ol
 m

−
2  

s−
1 )

−5

−4

−3

−2

−1

0 a = 2
a = 3
a = 4
a = 5
a = 6

0 −1 −2 −3 −4 −5

Ys (MPa)

0 −1 −2 −3 −4 −5

Ys (MPa)

0 −1 −2 −3 −4 −5

Ys (MPa)

Y
c 

(M
Pa

)

−5

−4

−3

−2

−1

0

Y
c 

(M
Pa

)

−5

−4

−3

−2

−1

0

Y
c 

(M
Pa

)
Y

c 
(M

Pa
)

Y
c 

(M
Pa

)
Y

c 
(M

Pa
)

0 −1 −2 −3 −4 −5

Ys (MPa)

(e) ( f )

(b)(a) (c) (d )

(i) (k) (l)( j)

(g) (h)

Figure 2. Response curves of stomatal conductance to CO2 (gc, left panels) and canopy water potential (Cc, right panels) to changes in incident photosynthetically
active radiation (IPAR), atmospheric carbon dioxide partial pressure (ca), canopy temperature (Tc), vapour pressure deficit (D) and soil water potential (Cs). All the
other environmental inputs and plant inputs were held constant at their default values (table 1), except the parameters of the xylem vulnerability curve represented
by different colours. The grey lines are the predictions of the b-model described in electronic supplementary material, figure S4. The dashed lines in i are the
predictions of SOX accounting for changes in soil hydraulics (electronic supplementary material, appendix S4), parameterized with b ¼ 10, ksr,max ¼

0.1 mol m22 s21 and Cs,max ¼ 20.1 MPa. The dotted line in j and l is the 1 : 1 line.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170315

6

which predicts a ¼ 2.1. Optimizing a to the observations of

each plot produces a very high agreement on the control

plot (a ¼ 2.4; R ¼ 0.94) and a strong agreement on the TFE

plot (a ¼ 1.1; R ¼ 0.44). Accounting for changes in ksr

(electronic supplementary material, appendix S4) allows us

to improve even further the agreement between SOX

predictions and observations in the TFE plot (R ¼ 0.5). SOX

can also reproduce well the observed seasonal fluctuations

in Cc (electronic supplementary material, figure S8). The

bfun model greatly overestimates the soil moisture effects,

leading to excessive stomatal regulation in the control treat-

ment (R ¼ 20.3) and almost complete stomatal closure in

the TFE (figure 3b; electronic supplementary material,

figure S8). A model that ignores soil moisture effects (boff )

can fit the control plot data (R ¼ 0.94) but cannot capture

the seasonality in the TFE plot (R ¼ 0.11).
The relationship between gw and A predicted by SOX

agrees with the Medlyn et al. [40] USO model under high

IPAR (figure 4), and produces estimates of g1 and its response

to Cc,pd (electronic supplementary material, table S4;

figure 4) within the range observed for tropical trees in other

studies [26,69]. Deviations from the 1 : 1 line occur at low gw

and are associated with low IPAR periods. These deviations

are present even if we set the minimum conductance par-

ameter from USO, g0, to 0. Therefore, the SOX A–gw

relationship implies a dependency of the water marginal

carbon costs (related with the USO parameter g1, see electronic

supplementary material, appendix S6) on the light regime that

is not present in USO. The g1 predicted by USO is lower at the

TFE plot than in the control plot (electronic supplementary

material, table S4), indicating that SOX predicts a higher

water carbon cost at the TFE. This pattern cannot be observed
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with the USO parameters estimated from the b model’s output

(electronic supplementary material, table S4).
(c) El Niño predictions during the twentieth century
Tapajós was the only site where JULES predicted significant

soil drought, which could be particularly intense in El Niño

years (electronic supplementary material, figures S3, S5

and S9). At this site, the bfun model is oversensitive to soil

drought, strongly limiting A (electronic supplementary

material, figure S10) in a similar way to what is observed
in figure 3. The bfun model is also more sensitive to soil

drought anomalies, as shown by the greater interannual

variability between Sim1 and Sim3 in Tapajós (figure 5).

Both models produce a similar magnitude of negative

responses to soil drought anomalies of ca 20.7 kg C m22,

but bfun predicts that A can rise by up to 0.52 kg C m22 in

years when the soil is more humid than usual, while SOX

predicts a maximum increase of 0.16 kg C m22 yr21

(figure 5e). This divergence amplifies over the years, leading

to the cumulative effect of soil drought anomalies in Tapajós

predicted by the bfun model being 20.49 kg C m22 after 115

years, while SOX predicts a strong negative cumulative

effect of 25.37 kg C m22.

The effect of atmospheric anomalies is comparatively

small in Tapajos (figure 5d,e), but is the dominant effect in

Caxiuanã and Manaus (figure 5a–c,g–i). Atmospheric

anomalies tended to increase A until ca 1950, with bfun pre-

dicting a maximum effect of accumulated anomalies of

2.1 kg C m22 in 1947 at Manaus, whereas SOX predicts

only 0.76 kg C m22 at the same year (figure 5g). The

increase of frequency and magnitude of positive climatic

anomalies in the second half of the twentieth century (elec-

tronic supplementary material, figure S9) had a detrimental

effect on forest A, particularly strong in Manaus. The bfun

model predicts that at the end of the 115 years climatic

anomalies would reduce forest A by 0.85 kg C m22, while

SOX predicts a reduction of 0.92 kg C m22. The responses

of Caxiuanã to climatic anomalies are similar to Manaus

but less pronounced, with an overall cumulative effect of

climatic anomalies of 20.62 kg C m22 according to bfun

and 20.15 kg C m22 by SOX (figure 5c).
4. Discussion
Our results show that a xylem hydraulics-based stomatal

optimization scheme can produce realistic stomatal responses
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to environmental variables (figure 2), being able to predict

the observed responses of a tropical forest to seasonal, and

even severe experimentally-induced soil drought (figure 3).

This finding complements recent studies that have estab-

lished the theoretical basis for a hydraulically-based model

of plant stomatal responses to drought [17,18], and supports

the recent findings of Anderegg et al. [70], showing the poten-

tial of xylem hydraulics-based optimization approaches to

simulate the responses of tropical forests to drought. The

SOX predictions agree with other models based on the optim-

ality theory, such as the USO, under most circumstances

(figure 4). However, SOX predictions are considerably differ-

ent from the drought factor approach, represented here by the

bfun model (figures 4 and 5; electronic supplementary

material, figure S4). The drastic differences that emerge

from long-term simulations between SOX and the bfun

model (figure 5) highlight the importance of using a more

mechanistic plant hydraulic representation to simulate the

effects of climatic anomalies, such as El Niño, on forest

carbon and water fluxes.
The drastic divergence between the bfun predictions and

observations found in our study (figure 3) could be partly

explained by the choice of using soil moisture data to drive

our simulations. The bfun model and other empirical drought

factors used in DGVMs are often coupled to a soil hydrology

scheme [20,46,71,72]. The influence of plant transpiration on

soil moisture dynamics could attenuate the extreme soil

drought responses we observed (figure 5). However,

other studies show that even when soil hydrology is

accounted for, bfun might still overestimate soil drought

responses [73]. The approach we adopted can be con-

sidered a conservative test of the model capability to

predict forest transpiration, as no assumptions were

made modelling the soil water dynamics.

(a) Generality and limitations of SOX
Our model is designed to be coupled to large-scale ecosystem

models such as DGVMs, and therefore its performance

depends on the coupled routines representing vegetation
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processes (e.g. photosynthesis, canopy energy balance, and

phenology), soil hydrology and atmospheric processes. For

this study we assumed constant leaf area over time when

scaling from leaf-level to plot-level in figure 3, as the LAI

variation at this site is relatively small. However, phenology

schemes [20,74] should be easily integrated with SOX; in

addition, our model opens the possibility for plant hydrau-

lics-driven phenology schemes. Linking vegetation

phenology to drought responses is a much-needed function-

ality in many ecosystem models [21,75], and could further

improve how SOX represents vegetation responses to extreme

drought (figure 3b). The hydraulic processes represented by

SOX also open up the possibility for a more explicit represen-

tation of drought-induced mortality in DGVMs. The

thresholds of hydraulic conductance loss associated with

increased risks of plant mortality, thought to be close to

0.5krc,max for gymnosperms [12] and 0.12krc,max for angios-

perms [9,10], can be linked from the SOX output into a

DGVM module that controls vegetation demographic pro-

cesses, such as the TRIFFID module currently used in

JULES [74].

The good performance of the simplified SOX implemen-

tation we show in this study, which is comparable even to

that of more detailed models previously used on the site

[51,76], illustrates the parsimony of the xylem hydraulics-

based optimization approach. Our model evaluation at the

Caxiuanã TFE plot shows that accounting for soil hydraulic

conductance loss is an important step for reproducing

long-term drought effects (electronic supplementary material,

figure S7). These results complement previous work made at

the site [76], showing that even after over a decade of exper-

imental drought, soil hydraulic conductance loss remains an

important driver for forest response to drought. Even

accounting for changes in soil conductance, the performance

of SOX in figure 3b shows that there is room for improvement

in how we model long-term drought in SOX. Together with

phenological responses to soil drought mentioned above,

legacy effects of cavitation [52] could be an important mech-

anism driving the TFE plot responses. The SOX treatment

of krc in equation (2.3) makes it simple to incorporate the

processes determining the recovery of krc by the plant.

The accuracy of our model predictions requires further

testing against observations from other ecosystems and

plant functional types (PFTs). The agreement of our model

predictions with data depends on the two main theoretical

assumptions of optimality theory being satisfied: (1) that it

is physiologically possible for plant stomata to operate close

to the SOX definition of optimum, and (2) the optimization

criterion used in SOX can be strongly linked to plant fitness

[29–32]. Plant stomata have been often observed to function

close to a theoretical optimum [34,38–41,77], but deviations

from this behaviour have also been observed [78,79]. These

departures can be interpreted as consequences of physical

and biochemical limitations on stomatal reaction times [80].

These effects should be more conspicuous at short time-

scales and in PFTs with slower stomatal responses, such as

gymnosperms [79]. Other mechanisms that have been

proposed to cause stomatal departure from a theoretical

optimum include non-stomatal limitations to A, such as

a reduction of Rubisco activity [26,35] and mesophyll

conductance [81].

The second SOX assumption concerns our optimization

criterion as the maximization of the cost-regulated carbon
assimilation product (A . kcost). The optimality theory replaces

the need for detailed physiological parameterization, with

evolutionary assumptions that depend on the impact of

specific processes and structures on the fitness of organisms

[29–32]. The link between A and plant fitness is clear, as

the reproductive success of a plant depends on its energetic

investment in reproductive tissues over its lifespan [82], and

in tissues necessary for survival and acquisition of resources

other than carbon. The cost term in SOX, represented by

xylem hydraulics dysfunction, implies that the complete

loss of hydraulic conductance (i.e. kcost ¼ 0) would be associ-

ated with plant mortality, which represents the ultimate

fitness cost [18,19,82]. There is substantial evidence that

high levels of xylem cavitation-induced embolism are in

fact associated with plant mortality [9–11], which corrobo-

rates this assumption. Even non-lethal loss of hydraulic

conductivity should be detrimental to plant fitness, as recov-

ery of hydraulic conductivity through construction of new

vessels [53,54,83], or through active refilling of embolized

vessels [84–87], requires carbon investment, which would

necessarily detract from plant tissue growth and reproductive

investments. Differences in plant capabilities of recovering

hydraulic conductivity, be it through refilling or through

the construction of new vessels, imply that a given level of

hydraulic damage predicted by the xylem vulnerability func-

tion might not fully represent the costs of stomatal opening,

as the long-term carbon balance impact of embolism are

not explicitly represented. Even though the normalized

xylem vulnerability-based cost function we use here rep-

resents a satisfactory first approximation, an appropriated

weighting of the carbon costs associated with the recovery

of hydraulic conductivity [54,56] might be a necessary theor-

etical development to improve the generality and accuracy of

xylem hydraulics-based optimization models.

(b) Agreement with alternative drought-representation
schemes

The relationship between gw and A predicted by SOX agrees

well with that of the USO model from Medlyn et al. [40],

which reflects the agreement between the different optimiz-

ation principles underlying each model. The USO assumes

stomata maximize the mass of carbon gain per mass of

water lost (i.e. A2El), while SOX maximizes the fraction of

xylem lost per mass of carbon assimilated (A . kcost). The

association between these principles can be interpreted as a

result of the dependency between E and k loss (equations

(2.3) and (2.5)). As high E has no direct detrimental effect

on plant fitness, its association with plant hydraulics pro-

vides the necessary theoretical link between E and plant

fitness to satisfy the fundamental assumption of optimality

theory [28–32].

Xylem hydraulics-based optimization models have the

advantage of combining stomatal responses to D and Cs

using a few hydraulic parameters (table 1) that are currently

widely available [43]. The difference between our integrated

drought representation and approaches usually employed

in DGVMs that rely on combining two empirical/semi-

empirical functions [20,24,72] is highlighted in the long-

term simulations and their responses to climatic anomalies

(figure 5). The carbon assimilation in Caxiuanã and,

especially, in Manaus was dominated by atmospheric

anomalies, as there was little soil drought in the driving
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data used for this experiment. The soil moisture data used to

drive these simulations were the product of large-scale JULES

simulations and meteorological datasets (0.58 � 0.58 resol-

ution), which explains their contrast with the environmental

data collected at the site that was used to drive the model

in the evaluation against sap flux data from Caxiuanã

(figure 3). Atmospheric demand is an important driver of

vegetation carbon and water fluxes [88], and a more likely

mechanism driving Amazon forest responses to climatic

anomalies than soil water stress, as the latter often requires

multiple years of sustained rainfall reduction to produce a

significant response in tropical forests [11,44,59].

Tapajós was the only site with a significant interannual Cs

variability (electronic supplementary material, figure S3), and

it was the site where the divergences between the bfun model

and SOX were largest (figure 5; electronic supplementary

material, figures S9 and S10). The bfun excessive soil moisture

response and highly variable response to climatic anomalies

reflect the steep gradient between the critical and wilting

points of the bfun equation (electronic supplementary material,

figure S4), producing a stronger decline in gc in response to soil

drought than SOX, especially for plants more resistant to cavi-

tation and with lower a value (figure 2i,k). Other studies have

also shown that the excessive stomatal regulation produced

by the bfun produces divergences between model predictions

and seasonal GPP patterns in Tapajós [73]. The large discre-

pancy between the two models, especially over the last 50

years, indicates that tropical forest sites exposed to soil water

limitations during El Niño years might have stronger responses

to climatic anomalies than can be captured by models based on

empirical drought factor schemes.
5. Conclusion
Our stomatal optimization model, SOX, provides a simple

but theoretically robust approach to simulate tropical forest

responses to drought, capable of reproducing the effects of
even severe experimental droughts. A process-based rep-

resentation of atmospheric and soil drought responses is

essential for the unbiased simulation of tropical forest

responses to El Niño-style climatic anomalies. Improving

the representation of plant hydrodynamics is a priority

for the current generation of ecosystem models [21–

23,27]. The flexibility, relative simplicity and small

number of parameters required by SOX make it an attrac-

tive candidate to be used in large-scale modelling of

tropical forest responses to climate change and extreme cli-

matic anomalies. More studies are necessary to assess the

generality of our approach in distinct PFTs and environ-

ments, and there is a potential need to incorporate

additional mechanisms, such as processes involved in the

recovery of hydraulic conductance, hydraulically-driven

phenological changes, and mortality.
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30. Mäkelä A, Givnish TJ, Berninger F, Buckley TN,
Farquhar GD, Hari P. 2002 Challenges and
opportunities of the optimality approach in
plant ecology. Silva Fenn. 36, 605 – 614.
(doi:10.14214/sf.528)

31. Dewar RC. 2010 Maximum entropy production
and plant optimization theories. Phil.
Trans. R. Soc. B 365, 1429 – 1435.
(doi:10.1098/rstb.2009.0293)

32. Cowan IR. 2002 Fit, fitter, fittest; where does
optimisation fit in? Silva Fenn. 36, 745 – 754.
(doi:10.14214/sf.536)

33. Cowan IR. 1978 Stomatal behaviour and
environment. Adv. Bot. Res. 4, 117 – 228. (doi:10.
1016/S0065-2296(08)60370-5)

34. Cowan IR, Farquhar GD. 1977 Stomatal function in
relation to leaf metabolism and environment. Symp.
Soc. Exp. Biol. 31, 471 – 505.

35. Medlyn BE, Duursma RA, De Kauwe MG, Prentice IC.
2013 The optimal stomatal response to atmospheric
CO2 concentration: alternative solutions, alternative
interpretations. Agric. For. Meteorol. 182, 200 – 203.
(doi:10.1016/j.agrformet.2013.04.019)

36. Bonan GB, Williams M, Fisher RA, Oleson KW. 2014
Modeling stomatal conductance in the earth system:
linking leaf water-use efficiency and water transport
along the soil – plant – atmosphere continuum.
Geosci. Model Dev. 7, 2193 – 2222. (doi:10.5194/
gmd-7-2193-2014)

37. Novick KA, Miniat CF, Vose JM. 2016 Drought
limitations to leaf-level gas exchange: results from a
model linking stomatal optimization and cohesion-
tension theory. Plant Cell Environ. 39, 583 – 596.
(doi:10.1111/pce.12657)

38. Farquhar G, Schulze E, Kuppers M. 1980 Responses
to humidity by stomata of Nicotiana glauca L. and
Corylus avellana L. are consistent with the
optimization of carbon dioxide uptake with respect
to water loss. Aust. J. Plant Physiol. 7, 315 – 327.
(doi:10.1071/PP9800315)

39. Schulze ED, Hall AE. 1982 Stomatal responses, water
loss and CO2 assimilation rates of plants in
contrasting environments. In Physiological plant
ecology II. Water relations and carbon assimilation
(eds OL Lange, PS Nobel, CB Osmond, H Ziegler),
pp. 181 – 230. Berlin, Germany: Springer.

40. Medlyn BE et al. 2011 Reconciling the optimal
and empirical approaches to modelling stomatal
conductance. Glob. Chang. Biol. 17,
2134 – 2144. (doi:10.1111/j.1365-2486.2010.
02375.x)

41. Héroult A, Lin YS, Bourne A, Medlyn BE, Ellsworth
DS. 2013 Optimal stomatal conductance in relation
to photosynthesis in climatically contrasting
Eucalyptus species under drought. Plant Cell Environ.
36, 262 – 274. (doi:10.1111/j.1365-3040.2012.
02570.x)

42. Friend AD. 1995 PGEN: an integrated model of leaf
photosynthesis, transpiration, and conductance.
Ecol. Modell. 77, 233 – 255. (doi:10.1016/0304-
3800(93)E0082-E)

43. Kattge J et al. 2011 TRY—a global database of
plant traits. Glob. Chang. Biol. 17, 2905 – 2935.
(doi:10.1111/j.1365-2486.2011.02451.x)

44. Rowland L et al. 2015 After more than a decade of
soil moisture deficit, tropical rainforest trees
maintain photosynthetic capacity, despite increased
leaf respiration. Glob. Chang. Biol. 21, 4662 – 4672.
(doi:10.1111/gcb.13035)

45. Collatz GJ, Ball JT, Grivet C, Berry JA. 1991
Physiological and environmental regulation of
stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar
boundary layer. Agric. For. Meteorol. 54, 107 – 136.
(doi:10.1016/0168-1923(91)90002-8)

46. Best MJ et al. 2011 The Joint UK Land Environment
Simulator (JULES), model description—part 1:
energy and water fluxes. Geosci. Model Dev. 4,
677 – 699. (doi:10.5194/gmd-4-677-201)

47. Meinzer FC, James SA, Goldstein G. 2004 Dynamics
of transpiration, sap flow and use of stored water in
tropical forest canopy trees. Tree Physiol. 24,
901 – 909. (doi:10.1093/treephys/24.8.901)

48. Goldstein G, Andrade JL, Meinzer FC, Holbrook NM,
Cavelier J, Jackson P, Celis A. 1998 Stem water
storage and diurnal patterns of water use in tropical
forest canopy trees. Plant Cell Environ. 21,
397 – 406. (doi:10.1046/j.1365-3040.1998.00273.x)

49. Sperry JS, Tyree MT. 1988 Mechanism of water
stress-induced xylem embolism. Plant Physiol. 88,
581 – 587. (doi:10.1104/pp.88.3.581)

50. Manzoni S, Vico G, Katul G, Palmroth S, Jackson RB,
Porporato A. 2013 Hydraulic limits on maximum
plant transpiration and the emergence of the
safety – efficiency trade-off. New Phytol. 198,
169 – 178. (doi:10.1111/nph.12126)

51. Christoffersen BO et al. 2016 Linking hydraulic traits to
tropical forest function in a size-structured and trait-
driven model (TFS v.1-Hydro). Geosci. Model Dev. 9,
4227 – 4255. (doi:10.5194/gmd-9-4227-2016)

52. Anderegg WRL, Plavcová L, Anderegg LDL, Hacke
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