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Abstract: Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with
immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and
soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections
and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem
to be related to different pathological conditions, potentially acting as a disease progression biomarker.
Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels
and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial
infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis
of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of
sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as
immune modulators for other infections could be extended for the modulation of membrane-bound
HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning
the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict
pathogenesis in some infections or to influence the immune responses after vaccination among others.

Keywords: human leukocyte antigen-G; immune-regulation; co-infections; Plasmodium falciparum;
COVID-19

1. Introduction

Major Histocompatibility Complex (MHC or the synonymous HLA, Human Leucocyte
Antigens) has three regions designated as Class I, Class II, and Class III, and genes belonging
to each of them encode the synthesis of molecules with different structure and function.
The main function of class I gene products is the presentation of endogenous peptide
antigens to CD8+ T cells. The HLA-I molecules are classified into classical HLA-Ia (HLA-A,
B, and C) and non-classical HLA-Ib (HLA-E, F, and G). The classical molecules show high
polymorphism and are characterized by unique patterns of transcription, protein structure,
and immunological function. Non-classical MHC-I molecules exert functions in both the
innate and adaptive immune system and, compared to classical MHC-I, appear to have
mostly inhibitory effects on immune cells via interaction with inhibitory receptors [1].
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HLA-G plays a major role in the down-regulation of the functions of the innate and
adaptive immune system cells through interaction with multiple inhibitory receptors
such as Leukocyte Immunoglobin-Like Receptors (LILRs) and in the presentation of non-
peptidic antigens to non-classical T cells, leading to unique and fast immune responses
upon infections [2]. The origin, structure, and functions of this molecule have been recently
published. As of September 2020, the IMGT-HLA database includes 80 HLA-G alleles,
encoding 21 complete and 4 truncated proteins (HLA-G1*01:05N, G*01:13N, G*01:21N and
G*01:25N) [3,4]. Four membrane-bound (HLA-G1-4) and three soluble HLA-G isoforms
(sHLA-G5-7) have been identified, each with different globular domains, mainly α1, α2, α3,
and a beta-2-microglobulin (β2M) in HLA-G1 and HLA-G5 isoforms, the most important
ones [5,6]. HLA-G1 isoform is found in soluble form due to proteases shedding. Their
potential to dimerize plays important physiological roles for both soluble and membrane-
bound HLA-Gs including higher affinity and avidity for their corresponding inhibitory
receptors. Specially, the HLA-G1 homodimer orientation and the presence or absence of
β2M-free isoforms appear essential to provide the required plasticity and/or flexibility of
the complex states [7]. HLA-G does not seem to initiate immune responses as its classical
homologues. In addition, a number of studies have highlighted the important role of this
immune checkpoint molecule in the modulation of the immune system in immune-related
diseases, tumors, and infections through the structure and dynamics of the different HLA-G
isoforms [8–11].

HLA-G is mainly expressed in the placenta, in embryonic tissues, in adult immune-
privileged organs, and in cells of the hematopoietic lineage. HLA-G-positive (HLA-G+)
CD4+ and CD8+ T lymphocytes, monocytes, and Natural Killer (NK) and dendritic cells
are also detected in some patients with pathological disorders [12]. The molecule has
a particular conformation that allows the presentation of a promiscuous repertoire of
peptides similar to its functional homologue in mice, promoting a number of immunomod-
ulatory effects as specific non-classical cytotoxic T cell responses rapidly responding to
infections [13]. Accordingly, HLA-G+ cells control both the priming and the effector phases
of the immune responses, therefore participating in peripheral immune tolerance, and
these may be a target for strategies that have been aimed to develop immune checkpoint
inhibitors (Figure 1) [12,14]. Thus, HLA-G+ immune cells are probably implicated in the
complex mechanisms underlying the pathogenesis of various disorders including infections,
transplants, cancers, and immune-mediated diseases [15–18].

Reduced production 
of tumor necrosis 
factor (TNF) by 

monocytes in bacterial 
infections

NK cells

Inhibition of cytotoxicity/ Inhibition of 
interferon gamma (INF-γ) secretion/ Inhibition of 

chemotaxis/ Inhibiting the anti-tumor effect of NK cells 
through Immunoglobulin-Like Transcript 2 (ILT2)

T cells

Inhibition of proliferation/ Inhibition of cytolysis/ Induction of regulatory T cells (Tregs)/ 
Induction of Th2-type cytokines/ Inhibition of chemotaxis/ Inhibition of proliferation, 

cytotoxicity, and INF-gamma secretion of γδ T cells/ Inhibiting the function of antigen-
specific CD8 cytotoxic T cell (CTL)/ Inducing apoptosis of phytohemagglutinin-activated 
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Figure 1. Various immune tolerogenic properties of HLA-G by modulating the functions of immune
cells [15,19–25].
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2. Functions of HLA-G in Diseases

It has been reported that the expression of HLA-G polymorphic variants could be asso-
ciated with susceptibility to different diseases [26,27]. Figure 2 shows some correlations be-
tween HLA-G expression and several disorders especially cancers [1,12,19,21,24,26,28–37].
Furthermore, the expression of HLA-G has been described in several infectious diseases
caused by bacterial, viral, or parasitic agents (Table 1) [16,38,39]. In viral infections, the
overexpression of HLA-G can lead to the induction of a tolerogenic environment and to
the inhibition of the immune response which makes it an immune escape mechanism.
Moreover, differential expression patterns of sHLA-G or its polymorphisms seem to be
related to different pathological conditions, potentially acting as a disease progression
biomarker and a therapeutic target [40]. To this end, a number of different monoclonal
antibodies (mAbs) able to recognize several HLA-G isoforms (mainly HLA-G1 and HLA-
G5) must be assayed for diagnostic purposes due to its cross-reactivity, mainly with the
β2M free classical HLA class I antigens; in particular, the 4H84 mAb and because differ-
ent epitopes of HLA-G are detected by different monoclonal antibodies. One mAb, the
MEM-G/9 is the option to simultaneously detect by an enzyme-linked immunosorbent
assay (ELISA) captured β2M-related HLA-G1 shedding and HLA-G5 using a polyclonal
anti-β2M antiserum [41–43].

The correlations between 
HLA-G expression and 

different disorders

Cancers

A significant association between HLA-G 14-
bp deletion allele and the risk of laryngeal 

squamous cell carcinoma

Transplantation

Other disorders

The possible involvement of interleukin 
10 (IL-10)/HLA-G feedback loop in 

maintaining human papillomavirus (HPV)
infection in nasal polyps from patients 
who suffered from sinonasal polyposis 

and allergic diseases

HLA-G up- or down-regulation in 
breast cancer cells leading to 

escape from immune responses
(a diagnostic marker)

HLA-G expression and potential 
correlations with the adverse 
prognosis of Gastric cancer  

HLA-G expression induces 
unfavorable outcomes and

immunodeficiency in chronic 
lymphocytic leukemia

HLA-G upregulation may represent a protective 
response to inflammatory mediators, including 
interferons, present in the microenvironment of 

islets with residual β cells in type 1 diabetes

HLA-G upregulates
immunoglobulin-like transcripts (ILTs) and 

improves the dysfunction of immune cells in 
immune thrombocytopenia
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prognostic biomarker of long-term 

survival rate in Glioblastoma

Decreased sHLA-G levels in patients with 
one metastatic site compared with 

patients with more than one metastatic 
site in metastatic colorectal cancer
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binding to another family of receptors 
(ILT2/ ILT4) expressed by natural killer 

(NK) cells (in the liver allograft is 
associated with a lower frequency of 

hepatic and renal acute
rejection)

HLA-G (due to it's anti-inflammatory 
properties) reduces susceptibility to atopy and 

asthma in sinonasal polyposis

HLA-G*01:04 and HLA-G*01:05N alleles 
may influence susceptibility to 

ulcerative colitis and Crohn’s disease

HLA-G 3′UTR gene polymorphisms 
and correlation with risk for the 

development and severity of 
rheumatic heart disease

Figure 2. Correlation between HLA-G expression and different disorders.

Overall, HLA-G expression is upregulated in infectious diseases in response to changes
in the cytokine microenvironment that is mainly related to increased levels of IL-10 and
class I interferons. sHLA-G can be also expressed as a membrane-bound form on monocytes
or different types of T cells (mainly CD4 and regulatory T cells (Tregs)) [12]. HLA-G is
expressed in infected tissues and more frequently in peripheral blood, in the form of
sHLA-G via alternative splicing or proteolytic cleavage, with a half-life between 6 and 24 h.
Interestingly, the metalloproteases involved in the cleavage of the HLA-G membrane-bound
molecule may act also as anti-inflammatory molecules [44].

HLA-G may have deleterious effects, promoting pathogen escape from immune
system control (in cancers), or it may be beneficial (in septic shock), reflecting appropriate
and effective feedback control of inflammatory processes [45,46]. HLA-G can be a single
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marker of infectious diseases when dealing with pathogens and/or to the immune response,
or it may constitute a therapeutic target, once its function has been clarified in particular
types of infections [38].

Investigations into sHLA-G, including purified sHLA-G1 protein and sHLA-G-linked
extracellular vesicles, revealed the potential role of sHLA-G in mediating immune-modulatory
activities in different diseases towards differential modifications in the phenotype of CD8 T
cells [20,47] and suggested it as a potential diagnostic and prognostic biomarker even being
implicated in the predisposition to infection [11,48,49]. Both membrane-bound and sHLA-
G induce regulatory mechanisms, such as apoptosis of CD8+ T and NK cells, inhibition
of B-cell proliferation, differentiation, and antibody secretion [50,51]. For instance, the
up-regulation of HLA-G in tumors and the enhanced serum levels of soluble form have
been identified in malignancies, probably leading to tumoral immune evasion and cancer
progression due to their inhibitory actions on the immune system [52].

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently a threat
to human life worldwide. It is well known that different HLA alleles can affect antigen
presentation and thus both the exposure and the severity of viral infections. Specifically,
in SARS-CoV-2 infection, this correlation between HLAs and SARS-CoV-2 susceptibility
and Coronavirus disease 2019 (COVID-19) severity has been highlighted, pointing out
the relationship between particular alleles and severe infections [53]. Upregulated HLA
molecules upon infections such as HLA-G membrane-bound, but mainly sHLA-G-, are
potentially implicated in the suppression of immune system functions, including NK
cells cytolysis, favoring immune tolerance to infections and thus virus subversion and
replication during SARS-CoV-2 infections or COVID-19 disease [10,54]. Since the immune
disability of NK cells has been related to interactions with its NKG2A/CD94 receptor that
is upregulated in severe patients of COVID-19, the engagement of HLA-G to this receptor
might be the cause of immune exhaustion observed in severe disease, which is highly
dependent on key pathogen-induced cytokines and the binding affinity of different HLA-G
alleles. In general, viral HLA-G upregulation can aggravate the morbidity of the virus
and/or the mortality of the patient, such that HLA-G expression in these disorders may
predict a worse outcome and increased susceptibility to cellular transformation [51].

The dynamics of peripheral immune cells, cytokines, and HLA-G and its receptor
expressions have been described during critical COVID-19 pneumonia [55]. It has been
suggested that the follow-up of sHLA-G could be used to identify the prognosis of COVID-
19 among patients with high levels of sHLA-G [54,56]. It seems that HLA-G molecules
control soluble Intercellular Adhesion Molecule-1 (sICAM-1) and sE-selectin expression
through CD160 interaction and Fibroblast Growth Factor 2 (FGF2) induction and conse-
quently lead to neutrophil adhesion and to the improvement of the disease outcomes [57].
The presence of HLA-G, as an important immune check point, might suggest the use of
Immune-Checkpoint Inhibitors (ICIs) against this molecule in COVID-19 treatment [58].

HLA-G can interact with the inhibitory receptor Immunoglobulin-Like Transcript 2
(ILT2) in the blood and be secreted as a free soluble form (sHLA-G) or through extracellular
vesicles [47]. Recently, new approaches revealed that the blockage of the HLA-G/ILT axis,
could be insightful for the development of effective anti-tumor treatments strategies [59–61].
Since HLA-G exists in several polymorphs that affect both the protein expression levels
and its peptide-binding cleft, targeting peptide binding cleft of the most common HLA-G
polymorphs can also be suggested as a therapeutic strategy [31]. Moreover, it may be
possible to modulate HLA-G transcription with microRNAs (miRNAs, miRs), such as
hsa-miR-148a and miR-152, which bind to the 3′ untranslated region of the HLA-G gene
(3’UTR), downregulating its mRNA levels [52,62]. Furthermore, mAs or RNA interfering
strategies can be used to block HLA-G expression or HLA-G receptor, or the application of
HLA-G-derived immunogenic peptide and anti-idiotype antibodies to activate immune
cells can be fruitful approaches [15]. Since the option of blocking HLA-G using mAs appears
unfeasible, mainly because they lack sufficient specificity, other options have recently been
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proposed. The core goal is directly blocking HLA-G binding with its receptors, and to this
end, antibodies should be targeted for different key domains [14].

Therefore, based on the major immunomodulatory roles of HLA-G both in infectious
and non-communicable diseases, we hypothesize a more-than-likely plausible capacity
of key infections to upregulate HLA-G as therapeutic or immunomodulatory options,
potentially allowing us to manage other infections.

Table 1. The correlation of HLA-G with infectious diseases caused by viruses, bacteria, and proto-
zoan parasites.

Pathogens or
Diseases HLA-G Observations References

Hepatitis B virus
(HBV)

HLA-G (14 bp
ins/ins genotype) Positive correlation with worse clinical manifestations [63]

sHLA-G
A significant correlation with the phase of HBV

infection, clinical diagnosis, and disease persistence, and
also progression toward hepatocellular carcinoma

[64]

Hepatitis C virus
(HCV)

Higher levels of sHLA-G and
interleukin-10 (IL-10) Negative correlation with response to treatment [65]

HLA-G A plausible function in the genesis of HCV liver fibrosis [66]

Human
immunodeficiency

virus 1 (HIV-1)
HLA-G polymorphisms

HLA-G polymorphisms independently and
synergistically induce susceptibility to heterosexual

acquisition of HIV-1
[67]

Human
Papillomavirus

(HPV)
HLA-G polymorphism

Associations with the outcomes of oral HPV, affecting
some characteristics of the women’s reproductive health,

dual function (tumor progression and a good
immunotherapeutic target) in cervical HPV

[68,69]

Herpesvirus
(6A and 6B) HLA-G Inhibits in vitro angiogenesis through HLA-G [70]

Cytomegalovirus
(CMV)

HLA-G Influences HLA-G expression in healthy individuals and
probably contribute to viral immune evasion [71]

sHLA-G As a promising biomarker of diagnosis of maternal
CMV in maternal blood and amniotic fluid [72]

Arbovirus sHLA-G A plausible biomarker to monitor
neurological complications [73]

SARS-CoV-2 HLA- G The possible induction of profound immune suppression
leading to the escape of virus from immune attack [10]

Helicobacter pylori HLA-G Correlated with milder colonization and
milder inflammation [74]

Pseudomonas
aeruginosa

sHLA-G Decreasing levels during antibiotic therapy in patients
with cystic fibrosis (negative correlation with inflammation) [75]

HLA-G Inducing HLA-G expression in monocytes and T cells by
P. aeruginosa (protecting from immune responses) [76]

Tropheryma whipplei HLA-G Increased HLA-G levels in patients’ sera (promoting
bacteria colonization) [23]
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Table 1. Cont.

Pathogens or
Diseases HLA-G Observations References

Human African
trypanosomiasis

(HAT)

HLA-G 3′ UTR-2 and
UTR-5 haplotypes Association with increased susceptibility to HAT

[77]

HLA-G 3′ UTR-4 haplotype Association with a decreased risk of HAT

HLA-G 5′ URR-010102a/UTR-2
and 5′URR-

0103e/CR-G*01:03:01:02/UTR-5
haplotypes

Association with HAT disease progression [78]

HLA-G (rs1611139 T, rs17875389
A, rs9380142 G alleles) Association with increased risk of infection [79,80]

HLA-G (rs1233330 A, rs1233330
G alleles) Association with decreased risk of infection [80,81]

American
trypanosomiasis
(Chagas disease)

Cell-surface HLA-G
Reduced HLA-G expression on cardiac muscle and

colonic cells in patients with cardiac or digestive forms
of Chagas, respectively

[82]

HLA-G (+3003 T allele and
+3003TT, +3187GG and

+3196GC genotypes)
Association with an enhanced risk of symptomatic Chagas

HLA-G (+3003C allele and
+3003CT and +3196CC

genotypes)
Association with a decreased risk of symptomatic Chagas

HLA-G (+3027C and +3035C
alleles and of +3027CC and

+3035CC genotypes)
Association with the digestive form of Chagas

Malaria

sHLA-G
Increased sHLA-G levels in cord blood and correlation
with low weight at birth and clinical outcome (positive

correlation with high risk of infection in infancy)
[83]

HLA-G (+3187G allele and
UTR1 haplotype)

Association with reduced level of parasite burden
during Plasmodium falciparum asymptomatic infection

[84]

HLA-G (UTR3 haplotype) Association with enhanced level of parasite burden and
increased severity of P. falciparum asymptomatic infection

HLA-G (+3010G and
+3142C alleles)

Association with enhanced total IgG and IgG1
antibodies levels against P. falciparum glutamate-rich

protein (GLURP) [85]

HLA-G (+3196G and
UTR2 haplotype)

Association with a decreased IgG3 response against P.
falciparum Merozoite Surface Protein 2 (MSP2)

sHLA-G
The correlation of increased sHLA-G levels in cord

blood with low birth weight and an enhanced risk of
malaria (P. falciparum) in the first year of life

[83,86]

sHLA-G
The correlation of an increased mean sHLA-G levels during
infancy with low birth weight and an enhanced risk of
malaria (P. falciparum) during the two first years of life

[87]

Visceral
leishmaniasis (VL)

sHLA-G

Increased levels of blood sHLA-G in
Leishmania-infected patients [88]

Decreased levels of blood sHLA-G after anti-parasitic
treatment of VL [89]
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Table 1. Cont.

Pathogens or
Diseases HLA-G Observations References

Toxoplasma spp.

sHLA-G

Parasite increased the secretion of sHLA-G by
trophoblast inducing apoptosis of decidual natural killer
(dNK) cells (positive correlation with abnormal pregnancy)

[90]

Increased sHLA-G levels in the amniotic fluid of
pregnant women infected by Toxoplasma and in

congenitally infected fetuses
[91]

The increased secretion of sHLA-G by trophoblast due
to Toxoplasma infection (inducing apoptosis of dNK cells) [90]

Cell-surface HLA-G
Increased HLA-G expression in the Toxoplasma-infected
cells (decreasing HLA-G after treatment of infected cell

by IL-10)
[92]

3. HLA-G Expression in Parasitic Diseases

It has been shown that high levels of sHLA-G are correlated with its involvement
in the immune tolerance induced by hookworm’s infections during pregnancy [93]. In
echinococcosis, the cyst activity may induce the release of sHLA-G in the blood, highlight-
ing the presence of an immune-modulatory strategy, leading to the downregulation of
the host inflammatory responses [94]. Increased levels of sHLA-G have been reported in
patients presenting active phase of echinococcosis [39].

The expression of HLA-G gene and molecule has been also investigated in protozoan
parasitic diseases including African trypanosomiasis, Chagas disease, malaria, toxoplas-
mosis, and leishmaniasis [39]. For instance, the enhanced expression level of sHLA-G was
correlated with the increased predisposition to develop human African trypanosomiasis
and promoted susceptibility to malaria, suggesting sHLA-G as a prognostic biomarker in
such diseases [39,78]. The level of sHLA-G is also a crucial biomarker of the incidence of
malaria during infancy and further confirm that mother sHLA-G levels could be considered
a diagnostic marker of malaria susceptibility in children [95]. Moreover, sHLA-G also
exerts a critical immune-modulatory function to decrease fetal loss due to toxoplasmosis
infection; however, its overexpression could lead to a congenital transmission [91].

Furthermore, co-infections by several parasites are not uncommon. For example,
those by Schistosoma haematobium and Plasmodium falciparum are frequent [96–99]. It has
been shown that children with S. haematobium and P. falciparum coinfections exhibit lower
expression levels of LILRB2, one of the receptors of HLA-G in B cells and neutrophils.
However, its interaction with HLA-G led to complex sHLA-G derived immune regulatory
pathways inducing effective neutralizing antimalarial humoral responses. Moreover, the
impact of malaria on viral co-infections has been highlighted in patients with both diseases,
suggesting a potential of malaria parasites to improve COVID-19 management due to their
immune derived ability to influence virus clearance and pathology [100].

In addition, antibody responses to protective vaccine candidates for malaria are de-
pendent on polymorphisms in the HLA-G gene. sHLA-G upregulation upon vaccination
has shown important regulatory effects on the response to vaccination, with a blood-stage
malaria vaccine candidate stimulating antigen presenting cells to secrete this molecule.
Such a molecule seems to have a dual regulatory role, modulating anti-vaccine responses
generating a decreased immunogenicity upon vaccination. These observations suggest that,
depending on the levels of sHLA-G, the vaccine immunogenicity and parasite infection
progression may change [86,101,102].

4. HLA-G as Target for Potential Immunotherapeutic Strategy

Recent data have elucidated the plausible antagonism between parasites and parasites,
parasites and bacteria, and parasites and viruses (including Plasmodium against Chikungunya
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virus, Heligmosomoides polygyrus against Respiratory Syncytial Virus, and Echinoparyphium
against Ranavirus) through different mechanisms including immunomodulation, vector
modulation, interference competition, and exploitation competition. The immunomod-
ulation strategy could happen in co-infections by the reduction in immunopathological
changes caused by the Th1-type immune response [103]. Although some viruses such
as Herpesvirus B and SARS-CoV-2 stimulate the upregulation of HLA-G and HLA-E to
facilitate immune escape [56,104], the induction (by different pathogens such as parasites)
of a dramatic reduction in HLA-G expression levels in disorders or in pathogen-infected
tissues might be significant.

In a recent study, it has been shown that there are common immune-dominant regions
between SARS-CoV-2 and P. falciparum that may explain the low COVID-19 incidence in
the malaria-endemic areas [105]. Interestingly, a decreased membrane-bound HLA-G has
been detected in the placenta of patients infected by P. falciparum and in the heart and
colon of Chagas disease patients [39]. Although the parasite may have a possible dual role
regulating HLA-G, it seems that P. falciparum infection is able to downregulate HLA-G
production (42% vs. 90% in controls) in extravillous cytotrophoblast cells in correlation
with the increased presence of NK cells [106]. The increased number of NK cells is probably
related to the direct or indirect action of some cytokines, especially the pro-inflammatory
IL-10 produced by a large variety of cells such as macrophages, which also induce NK-cell
proliferation [107]. Numerous pathogens, including malaria parasites, induce high levels
of proinflammatory cytokines by the upregulation of co-inhibitory receptors [108]. These
inhibitory receptors are present in unconventional T cells, pointing out the high potential
of these cells in infectious diseases [109].

Both IL-10 and Transforming Growth Factor Beta (TGF-β) act as important anti-inflammatory
immunomodulators helping to control malaria. Furthermore, at the early stages of SARS-
CoV-2 infection, TGF-β upregulation and downstream signals have antiviral implications,
as demonstrated with artemisin therapy. Moreover, there are data supporting the corre-
lating levels of total sHLA-G in plasma with elevated TGF-β levels in systemic sclerosis,
TGF-β also being one major factor upregulating HLA-G expression in cancers, and subse-
quently influencing immune cells mainly Treg cells and, on the other hand, participating in
cancer immune escape and immune checkpoint resistance [110,111]. Thus, we speculate
that the key immunomodulatory role of the cytokines TGF-β and IL-10 and the essential
regulation of T cells including Treg cells by TGF-β might initially be linked molecularly at
least during the early phase of parasite infections with HLA-G levels. This could be most
probably through indirect regulatory interactions with the pathway (involving HLA-G)
finally affecting different immune cells [112]. Publications with data of high levels of
HLA-G, IL-10, and TGF-β bearing therapeutic exosomes improving disease symptoms
together with peripheral blood cells unresponsiveness might support this molecular path-
way [113]. In this sense, demonstrating the implication of HLA-G levels in TGF-β-derived
signaling could serve as a novel and important therapeutic strategy [114,115]. From this
angle, P. falciparum or special antigens related to this parasite might be involved in the
HLA-G reduction in extravillous cytotrophoblast cells. Although the mechanisms leading
to such conditions remain unknown, experimental studies in this regard could further
highlight this issue and might suggest the use of parasites including P. falciparum in the
modulation (reduction) of HLA-G expression in other tissues, such as tissues infected by
SARS-CoV-2. Since impaired NK cell counts and the cytolytic activity of these cells are
important characteristics of severe COVID-19 [116,117], the increased levels of NK cells
induced by P. falciparum might be considered a potential mechanism and strategy related to
immune-modulatory-based therapies against COVID-19.

5. Conclusions

Taking into account that, in parasite endemic areas of COVID-19 cases, the severity
of the disease and numbers of deaths decreased mainly due to patient coinfections with
parasites, it seems that the effect of some pathogens such as parasites restricting HLA-G
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expression can be further considered in future studies [118,119]. Unlike other viral or
bacterial coinfections that negatively impact respiratory viral diseases such as COVID-19,
some parasitic infections could modulate disease severity and the clinical outcome of other
infectious diseases such as COVID-19 via intricate molecular networks involving HLA-G,
IL-10/TGF-β, and Treg cells [103,118,120]. Finally, as master immune modulators, their
levels may be critical for the development of proper immune responses to vaccination, thus
serving as potential targeting molecules to achieve desirable outcomes. These data high-
light the importance of HLA-G molecule immune modulation in the context of previous
infections, revealing the promising outlook for future research on this molecule and its
potential ability to understand pathogen interactions and the molecular mechanism under-
lying the specific criteria of suitable helminths for therapy and to manage COVID-19 disease
progression and pathogenesis. This would be assessed adapting appropriate experimental
model systems of coinfections which might also help to reinforce the idea of parasites more
than their products, keeping proper immune function and the need of controlled exposures
that may render us less susceptible to pandemics or chronic inflammatory diseases [121].
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