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Abstract: Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple
Sclerosis (MS), are reliant on per-SNP p-values and are therefore heavily burdened by multiple testing
correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required,
while ignoring potentially valuable information that is readily available in existing datasets. To
overcome this, we used penalised regression incorporating elastic net with a stability selection
method by iterative subsampling to detect the potential interaction of loci with MS risk. Through re-
analysis of the ANZgene dataset (1617 cases and 1988 controls) and an IMSGC dataset as a replication
cohort (1313 cases and 1458 controls), we identified new association signals for MS predisposition,
including SNPs above and below conventional significance thresholds while targeting two natural
killer receptor loci and the well-established HLA loci. For example, rs2844482 (98.1% iterations),
otherwise ignored by conventional statistics (p = 0.673) in the same dataset, was independently
strongly associated with MS in another GWAS that required more than 40 times the number of cases
(~45 K). Further comparison of our hits to those present in a large-scale meta-analysis, confirmed
that the majority of SNPs identified by the elastic net model reached conventional statistical GWAS
thresholds (p < 5 × 10−8) in this much larger dataset. Moreover, we found that gene variants involved
in oxidative stress, in addition to innate immunity, were associated with MS. Overall, this study
highlights the benefit of using more advanced statistical methods to (re-)analyse subtle genetic
variation among loci that have a biological basis for their contribution to disease risk.

Keywords: multiple sclerosis (MS); genetic wide association study (GWAS); single nucleotide
polymorphisms (SNPs); natural killer cells; human leukocyte antigen (HLA) complex; natural killer
gene complex (NKC); leukocyte receptor complex (LRC); multi-variate regression analysis; elastic
net; gene–gene interaction
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1. Introduction

Multiple sclerosis (MS) is an autoimmune disease driven by a combination of genetic
predisposition and environmental factors [1] including reduced levels of vitamin D [2],
smoking [3] and viral infections, such as Epstein–Barr virus (EBV) and cytomegalovirus
(CMV) [4]. The most consistent and strongest genetic association with MS is conferred
across the human leukocyte antigen (HLA) complex [5], specifically by the HLA-DRB1*1501
variant with an average odds ratio of 3.08 [6]. The HLA loci is involved in distinguishing
‘self’ from ’non-self’ through the expression of proteins involved in antigen processing
and presentation, primarily interacting with CD4+ and CD8+ T cells [7]. The high degree
of sequence variation across the HLA region makes it difficult to characterise the genetic
architecture of this region in MS [5,8,9]. Furthermore, it is highly likely that interactions
with loci outside of the HLA locus contribute conjoint effects to disease causation.

Beyond binding antigens and interacting directly with CD8+ T lymphocytes, HLA
class I proteins also engage with natural killer (NK) cell receptors to either promote or
inhibit their function [8]. Unlike CD8+ T cells, NK cells can lyse a target cell without
priming depending on the balance of inhibitory and activating NK receptors. NK receptors
are encoded within the Natural Killer gene complex (NKC) [10] and Leukocyte receptor
complex (LRC) [11], and act in combination with their respective HLA ligands on the
target cell [12]. Indeed, NK cells have been increasingly implicated in MS aetiology and
attributed to some treatment success [13–16]. However, NK cells in autoimmune diseases
are reported to have duplicitous roles [17,18]; activated NK cells have been shown to be
able to kill autologous and heterologous oligodendrocytes in vitro [19], present in acute
inflammatory lesions [20] and expansion and reduction of specific NK subsets (reviewed in
Chanvillard et al. [14]). Therefore, determining if there is a genetic predisposition for altered
NK cells involving certain receptor–ligand interactions may help guide future studies in
the aetiology of MS.

The genome-wide analysis study (GWAS) design has enabled the discovery of more
than 200 non-HLA loci associated with MS [21], explaining 20–30% of the total disease
risk [22]. However, since GWASs can involve testing millions of single nucleotide poly-
morphisms (SNPs) in a one-test-per-SNP manner, they suffer from high type I error rates.
For this reason, a high significance threshold of α = 5 × 10−8 has routinely been adopted
to minimise type I errors as a result of multiple testing [23]. This analytical approach can
inadvertently increase the type II error rate by discarding SNPs with true, albeit small, effect
sizes. Methods have been developed to deal with SNPs that are suggestively significant
(i.e., 5 × 10−8 < p ≤ 0.05). For example, Baranzini et al. [24] developed a pathway and
network-based analysis to show that additional genes and biological pathways specific to
MS could be identified (compared to GWAS data from other diseases) through the consid-
eration of all disease ‘suggestive’ SNPs. However, even this method remains reliant on an
initial one-SNP-at-a-time p-value-based assessment. Thus, more appropriate methods are
required to mine GWAS datasets to uncover potentially important genetic and biological
insights into MS.

Penalized (or shrinkage) regression methods can overcome the ‘curse of dimensional-
ity’ problem of GWASs by including a constraint (or penalty) in the analysis to diminish the
coefficients of less informative SNPs toward zero. With appropriate tuning parameters, this
approach can be applied to GWAS datasets to detect a panel of SNPs predictive of disease
outcome without generating individual P-values and the need to meet stringent signifi-
cance thresholds. The GLMNet package [25] was developed to apply efficient penalized
regression procedures that can fit the entire least absolute shrinkage and selection operator
(lasso) or elastic-net regularization path for various regression models. While elastic net
has been available since 2005 [26], and the R package GLMNet since 2009 [25], there are
relatively few GWASs that have moved beyond evaluating their models in simulated and
publicly available datasets. Studies that have utilised penalised regression for GWAS have
tended to focus on feature selection, opting to use lasso regression to determine a subset
of associated variables. For example, Mavaddat et al. [27] successfully applied lasso to
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improve the polygenic risk score and associated odds ratio (OR) in breast cancer, and Wu
et al. [28] for coeliac disease, despite the overwhelming signal conferred by the HLA locus,
identified several additional non-HLA loci that remained undetected by conventional
GWAS analysis.

This has led to development of more computationally efficient methods to fit lasso
to high dimensionality datasets, including specifically for genotype data such as AUTO-
LASSO [29] and snpnet [30]. However, the lasso method is best suited to feature selection
rather than discovering the biological underpinning of genetic associations and potential
interactions due to the loss of correlated variables. Waldman et al. [31] evaluated the use
of lasso and elastic net in simulated and real-world GWAS data and identified an alpha
set at 0.1 (tuning parameter for elastic net determining ‘how close’ it penalises similar to
lasso—see methods) as the best compromise between false positives and maximising the
number of correct variables selected. This was the alpha setting applied in the current
study, as we aimed to capture interacting SNPs by avoiding the loss of correlated variables.
Benton et al. [32] successfully detected differentially methylated regions (DMRs), which
relied on the identification of correlated CpGs, using an elastic net set toward ridge regres-
sion. Therefore, our study is the first to utilise an elastic net framework on real-world MS
GWAS data with the aim of overcoming initial p-value thresholds to capture and evaluate
the complex genetic architecture and associated biological basis of MS. These findings were
achieved using a relatively small cohort of patients, by the incorporation of novel adapta-
tions onto elastic net. This includes a similar approach to Meinshausen and Bühlmann [33],
but on elastic net instead of lasso, whereby we perform ‘stability selection’ via iterative
subsampling (with replacement).

In the current study, we have adapted elastic net to re-analyse previous MS-GWAS
datasets to better understand the genetic signature in MS across the HLA and NK receptor
loci. We include a bootstrap wrapper to assign individual SNP probabilities, as well as a
weighting algorithm that tempers the strong signals contributed by HLA whilst reducing
unnecessary loss of weaker signal at NK loci. This alternate approach to analysing GWAS
data has allowed us to reveal new insights into the relationship of HLA and NK receptor
loci in MS and confirm findings recently revealed in a much larger GWAS [34].

2. Materials and Methods
2.1. Overview of Analysis Pipeline

This study implemented a gene-centric analysis of previously reported MS-GWAS
data focusing on the HLA, NKC and LRC regions. Figure 1 illustrates the workflow for
the major steps of the analysis for this study. The general aim was to identify whether
SNPs at the NK receptor loci (NKC and LRC) act in combination with HLA SNPS to
influence MS risk. Considering the limitations of standard GWAS analysis, which employs
a ‘one-at-a-time’ approach to analyse each SNP, our approach used a generalised linear
regression model with stability selection to consider all SNPs within a single model. This
was achieved using an elastic net penalty set toward a ridge-regression with stability
selection via iterative subsampling, henceforth referred to as the ‘elastic net model’. (See
Section 2.6 below for more detail). The elastic net model was chosen because it can capture
correlated and potentially interacting SNPs while removing those that do not contribute any
predictive value to the outcome (disease status). The addition of iterative subsampling was
performed to further reduce potential overfitting and assign a relative degree of importance
(probability) to associated SNPs/genomic regions identified. Therefore, the elastic net
model was implemented to achieve three specific aims:
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ary progressive MS]), 406 progressive onset (PO) MS and 1988 controls.  
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passing QC is given for each of the three loci, human leukocyte antigen complex (HLA) (green), 
natural killer cell complex (NKC) (orange) and leukocyte receptor complex (LRC) (blue) from chro-
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Discovery Dataset 

(ANZgene) 
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Cases Samples (n) 1617 1313 

Figure 1. Flow chart outlining the major steps within the analysis pipeline. Two MS GWAS have
been re-analysed. (i) First, the HLA and NK receptor loci were extracted from the pre-imputed
discovery cohort and both a conventional GWAS and elastic net analysis performed and compared.
Haploview [35] was used to determine if the SNPs identified by elastic net were in disequilibrium.
Secondly, both the discovery and replication cohort were imputed using the Michigan server with
resulting SNPs subject to a stringent imputation quality control (QC) threshold (R2 < 0.8) and
extraction of SNPs from the same HLA and NK receptor genetic boundaries. (ii) Then, an overlapping
elastic net analysis was performed on SNPs in common between the discovery and replication cohort
that met imputation QC threshold. (iii) Thirdly, an in-depth independent analysis on the imputed
discovery cohort was performed to maximise coverage of high-quality imputed SNPs. Grey boxes
indicate the stage of SNP extraction across the three regions, and purple boxes indicate the three
different combinations of datasets and SNPs being analysed.

(I) detect any additional signal across the three loci (HLA, NKC and LRC) that standard
GWAS analysis missed (Figure 1i).

(II) identify SNPs with a similar signal strength across two imputed GWAS cohorts
and determine which biological pathways these SNPs are associated with (Figure 1ii).

(III) determine the gene (or intergenic) region associated with disease risk when
accounting for the combined signal strength of multiple SNPs representing the same region
(Figure 1iii).

2.2. Datasets and QC

Table 1 briefly outlines the demographics and sample size for both datasets used. The
ANZgene GWAS dataset was used as a discovery cohort [36] with one case removed due
to an ambiguous phenotype leaving 1211 relapse onset (RO [relapse-remitting + secondary
progressive MS]), 406 progressive onset (PO) MS and 1988 controls.

Publicly available data from the IMSGC were obtained from the database Genotypes
and Phenotypes (dbGaP) for phs000275 [37], phs000139 [38] and phs000171 [38] as a repli-
cation cohort containing an unknown mix of MS subtypes. The national (UK) blood service
(NBS) control cohort, obtained from the Wellcome Trust Case Control Consortium, which
matches ‘the distribution of the samples in the 1958 British Birth Cohort’ [39] (the control
cohort used in the ANZgene dataset). Datasets were updated to Hg19 coordinate build [40]
and merged on common SNPs among the three platforms using custom scripts in R [41],
and the same quality control (QC) threshold used for the ANZgene dataset was applied
to the merged IMSGC dataset (henceforth referred to as the ‘IMSGC dataset’) using plink
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v1.9 [42,43]. Both the discovery ANZgene dataset [36] and the IMSGC dataset [37,38], used
in this study, targeted and QC’d their studies toward case-control samples of European descent.

Table 1. Cohort summary information for the discovery (ANZgene) and the replication dataset
(merged from two IMSGC GWAS and the national blood service as controls. The number of SNPs
passing QC is given for each of the three loci, human leukocyte antigen complex (HLA) (green),
natural killer cell complex (NKC) (orange) and leukocyte receptor complex (LRC) (blue) from chro-
mosomes 6, 12 and 19, respectively. The number of SNPs is provided for both cohorts, pre-imputation
and restricted to common SNPs post- imputation (with a high imputation quality threshold of
R2 = 0.8). Independent post-imputation analysis was restricted to the discovery cohort (ANZgene)
due to the increased number of SNPs available pre-imputation compared to the merged replication
dataset, resulting in a much greater yield of high-quality imputed SNPs (R2 = 0.8).

Discovery Dataset
(ANZgene)

Replication Dataset
(IMSGC + NBS)

Cases

Samples (n) 1617 1313

F 1172 994

M 445 319

F:M 2.6 3.1

Controls

Samples (n) 1988 1458

F 1231 753

M 757 705

F:M 1.6 1.1

Pre-imputed
(# of SNPs)

HLA 1047 62
NKC 137 33
LRC 122 44
Total 1306 139

Post-imputation
overlapping
(# of SNPs)

HLA 2359
NKC 2872
LRC 520
Total 5751

Post-imputation
ANZgene only

(# of SNPs)

HLA 54,541

N/ANKC 3790
LRC 1576
Total 59,907

Access to these datasets was obtained following and under approval by the in-
stitutional review board of Hunter New England Human Research Ethics Committee
(2019/ETH12346).

2.3. Imputation

Imputation was performed on entire chromosomes (6, 12 and 19) using Minimac3 on
the Michigan server [44] with the human reference consortium [45] as a reference panel,
phasing with Eagle (v.2.3) [46] and the European population selected for QC. Initial data
preparation was performed as directed by the Michigan server. Imputed SNPs for both
cohorts were subject to a stringent high-quality imputation threshold using the minimac3
estimated value of the squared correlation between imputed genotypes and true, unob-
served genotypes set at R2 ≥ 0.8 [47]. This filtering was performed in plink converted to
binary plink files and SNPs extracted from the selected regions. Imputation of SNPs was
performed to maximise the number of variables that could be analysed for both datasets,
and because one caveat of elastic net is that it cannot ‘handle’ missing data.
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2.4. SNP Boundary Selection and Extraction

The hg19 coordinate build was used for all datasets and the USCS genome browser [48]
was utilised to ensure all genes targeted within the given regions were captured. The
boundaries for the HLA, NKC and LRC were based on a combination of the Genome
Reference Consortium (GRC) website [49] and published literature [10–12], which were
extracted using plink and corresponded to the following regions (see supplementary files
‘additional file S2’ for USCS exports):

HLA—Chr6:28,467,000-33,458,000 (GPX6-to-SYNGAP1).
NKC—Chr12:9,737,870-10,762,434 (KLRB1-to-KLRAP1).
LRC—Chr19:54,534,080-55,559,632 (VSMT1-to-GP6).
Only SNPs with complete genotype information (for all individuals) were selected

because analysis by elastic net cannot be performed using incomplete (i.e., missing) data.

2.5. Standard Association Testing

The extracted regions were subject to Fisher’s exact testing using plink. Multiple
testing correction was applied using both the gold standard GWAS Bonferroni adjustment
(p-value < 5 × 10−8) and at a relaxed threshold relative to the number of variants anal-
ysed. Visualisation of ‘SNP significance’ by Manhattan plots was created using −log10
transformation of p-values in the ‘qqman’ package [50] in R.

2.6. ‘Elastic Net Model’ Optimisation with Stability Selection via BootNet (Iterative Subsampling)

GLMNet [25] is an R package that fits a generalized linear model via penalized
maximum likelihood. An alpha of 0.1 was applied to all tests to perform an elastic-net
penalty that tended towards a ridge model. An alpha set towards a ridge model (α = 0)
was favoured over a least absolute shrinkage and selection operator (lasso) penalty (α = 1)
to capture and avoid losing SNPs that may have a correlated disease association and may
also be in linkage disequilibrium (LD) with neighbouring or long-distant SNPs (inter and
intra-chromosomal). Feature selection is possible using lasso modelling (L1 regularisation),
which shrinks less associated variable’s coefficients to zero removing them from the model.
However, for associated variables that are correlated, otherwise known as multicollinearity
(such as SNPs in LD), lasso tends to randomly drop one and keep the other thereby
reducing model complexity. Therefore, lasso is ideal for biomarker selection by retaining
only the most strongly associated/predictive variables. In contrast, ridge regression (L2
regularisation) will shrink less correlated variables toward but never reaching zero, thus
keeping all variables within the model. Meanwhile, elastic net was created to overcome
the limitations in both these algorithms by incorporating both L1 and L2 penalties, but
to an adjustable degree. Furthermore, an alpha of 0.1 has previously been shown in
simulated and real-world GWAS data to be optimal in capturing maximal true positives
while minimising type I error, compared to lasso and other alpha levels [31].

The second parameter that requires tuning is λ/lambda (the degree of penalty applied
to the model) to minimise the predicted mean-square error (MSE) obtained from cross-
validation (cv) by GLMNet. This was set by stabilising the lambda.min value returned
from cv by GLMNet with the default 10-folds. Since each time cv by GLMNet is run the
data is randomly split into 10 folds, a slightly different ‘optimal lambda’ can be observed.
Therefore, the average lambda.min was obtained from repeating cv 20 times. Lambda.min
was chosen over lambda.1se (largest lambda within 1 standard error of the MSE) as we
aimed to maximise the number of variables identified, and the additional stabilisation
wrapper (described below) was utilised instead to further reduce potential type I error and
assign relative SNP importance.

A custom ‘stability selection wrapper’ (called BootNet) was then applied to GLMNet
using the lambda.min obtained from the prior cv procedure (and α = 0.1). In this context,
the ‘wrapper’ is a code built on top of GLMNet that splits the data prior to running the
algorithm (subsampling with replacement), identifies all the variants with a non-zero
coefficient (retained within the model) and iterates (repeats) the procedure a select number
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of times. Therefore, this could be considered as ‘elastic net stability selection by iterative
subsampling’ (with replacement). We performed 3000 iterations with 66% subsampling
with replacement (of sample/case-control groups) to produce a table of SNPs that were
retained/ ‘selected’ by elastic net with the number of times each SNP was identified and
converted to percentage i.e., if SNP1 was identified 2400 times, this corresponds to 80%
iterations. Thus, the term ‘elastic net model’ will be used to refer to the optimised algorithm
with stability selection. A link to the code for this GLMNet stability selection procedure is
made available below.

Results were visualised in R, with ‘Manhattan-inspired plots’ showing the percentage
of times (iterations) each SNP was identified by the elastic net model against their genomic
base position (bp).

2.7. Replication Analysis Using SNPs in Common

To further reduce any interpretation error from potential over-fitting, elastic net analy-
sis was performed on both the ANZgene and IMSGC datasets independently but restricted
to SNPs common to both datasets and met the imputed QC threshold (R2 ≥ 0.8). A com-
bined false discovery rate (FDR) for each SNP was created by multiplying (1 − (number of
iterations the SNP was selected/total iterations [3000])) from both cohorts. An absolute
cut-off was set, removing any SNP below 30% iterations in either cohort. This was to
prevent any SNP with a high signal (above 90% iterations) in only one cohort automatically
being identified. For any SNP reaching 100% iterations, a nominal value of 1 less than the
total number of iterations was used (i.e., 2999/3000) to enable ranking in relation to the
number of iterations in the reciprocal cohort and were denoted with an Asterix. SNPs were
considered highly robust and replicated (in common to both GWASs), with a combined
FDR ≤ 0.1. This more stringent FDR value (in comparison to the initial 70% iteration
threshold utilised for the preliminary analysis) was selected to provide a robust set of SNPs
in common to both cohorts, while still providing flexibility, as the strength of signal from
both cohorts was considered, i.e., so that SNPs with both a strong and moderate-strong
signal in common to both cohorts can be identified, while ignoring SNPs with a strong
signal in only one cohort.

Mapping of identified SNPs was performed using Kaviar [51] to obtain rsIDs as an
input for dbSNP [52] and variant effect predictor (VEP) [40] to assign associated genes and
their functions. Gene enrichment analysis [53–55] within ToppFun was performed on the
resulting gene list with an adjusted FDR (Benjamini–Hochberg [B & H] ≤ 0.05).

2.8. Independent Analysis of the Discovery Cohort

All SNPs that met the stringent imputation QC threshold (R2 ≥ 0.8) for the ANZgene
dataset were analysed by elastic net model (methods 2.6), independently. In addition to
determining the percentage iterations for each SNP, the contribution of signal strength
(iterations) for all SNPs within genomic boundaries (gene and intergenic regions) was
evaluated to better understand the contribution of subtle genetic variations amongst larger
signals. This was achieved by setting boundaries for each gene obtained from the USCS
table browser—hg19 format [56]. Each intergenic stretch of interest was labelled according
to the gene directly up or downstream, i.e., ‘INT (gene1_gene2)’. All SNPs identified by
elastic net were then assigned to their specific gene or intergenic region according to their
bp coordinates and the sum of iterations for each region calculated. Each genetic region
identified was plotted showing the percentage of iterations for the given gene relative to
the total number of iterations for all SNPs.

Static and interactive circos plots were created to compare the one-at-a-time P-value
based Manhattan plot in a circularised format against the elastic net model for (1) percentage
iterations for each SNP and (2) the contribution of iterations for all SNPs within the
designated genetic boundaries. This was created with custom scripts using the R package
‘BioCircos’ [57,58]. Interactive plots are accessible as additional files and coded in html.
We recommend viewing these in the web browser Chrome. These are intended to allow
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personal interrogation of the results and regions studied. Access to these plots is made
available through the GitHub page: https://sburnard.github.io/Elastic_Net_MS_GWAS_
paper_data/.

2.9. Haploview Analysis

Plink 1.9 was used to convert binary HLA genotype data for haplotype analysis by
Haploview v4.2 [35] to reveal SNPs in linkage-disequilibrium (LD). When SNPs (at two
or more loci) are in LD, they are deemed not to occur at random (not at equilibrium)
in the studied population and may be ‘linked’. Both LD measurements D’ and R2 were
considered. D’ is the difference between the observed and expected haplotype frequency
(D’ = 1.0 is ‘complete disequilibrium’). R2, is the correlation between the pair of SNPs and
is susceptible to alteration (reduced) when SNPs have different minor allele frequencies
(MAFs). Therefore, SNPs can be found to be in LD (high D’) but still have a low R2 value.
SNPs were deemed to be in LD and co-inherited (also referred to as ‘proxy SNPs’) if D’ ≥ 0.9
and R2 ≥ 0.8.

The purpose being to identify potential independent SNP associations with MS and to
add confidence in SNPs identified reaching the lower end of our bootstrapping threshold
(70–80%).

2.10. Epistasis Analysis

An exploratory epistasis analysis was performed on two different sets of SNPs and two
different datasets, considering only inter-chromosomal SNPs; (1) the set of SNPs identified
by elastic net analysis found to be in common to both the ANZgene and IMSGC dataset
using a single combined ANZgene + IMSGC dataset, and (2) SNPs ≥70% iterations from
the independent elastic net analysis of the discovery cohort using the same dataset. Plink
1.9 was used to both remove/ ‘prune’ SNPs in perfect LD (r2 >0.9999) (–indep-pairwise 300 1
0.999) and to perform epistasis analysis (–epi1 0.05 –epistasis).

2.11. Code Availability

The code used for elastic net stabilisation (BootNet) can be found on GitHub
(https://github.com/sirselim/bootNet) and archived in zenodo [59]. Access to all the asso-
ciated figures and tables for this paper will also be made available on GitHub (including
the interactive plots): https://github.com/SBurnard/Elastic_Net_MS_GWAS_paper_data.

3. Results
3.1. Re-analysis of the ANZgene GWAS by Elastic Net Identifies SNPs above and below
Conventional p-Value Thresholds

A preliminary comparison of analytical approaches was performed using the ANZ-
gene GWAS dataset as a discovery cohort with SNPs extracted from the NK receptor loci
(NKC and LRC) and HLA region that were directly genotyped (see methods for analysis
pipeline). Specifically, 1617 cases and 1958 controls yielded complete genotype data for
1047, 137 and 122 SNPs from the HLA, NKC and LRC regions, respectively (see Table 1 for
a summary of the SNPs available for both cohorts).

Figure 2 shows the Manhattan plot created from the extracted SNPs. Only the HLA
region contained SNPs reaching significance when using either the ‘gold standard’ GWAS
Bonferroni correction threshold of 5 × 10−8 (red line) or with a relaxed threshold of 4 × 10−5

(blue line), i.e., accounting for the number of SNPs analysed within this targeted analysis.
As previously reported by ANZgene [36], the tag-SNP for the HLA-drb15 haplotype,
rs9271366, was the most significant (highlighted in green). There are two distinct peaks in
the HLA region (Figure 2), the largest encompassing genes across HLA-class I, II and III
with the apex in class II (rs9271366). The second region of interest, albeit with lower p values,
is still prominent and located in class I, with the apex of the signal centred upstream of
MOG and downstream of HLA-F. Table 2 highlights the 5 SNPs with the lowest p-values for
each region. In terms of the NKC and LRC loci, even if the p-value thresholds are adjusted

https://sburnard.github.io/Elastic_Net_MS_GWAS_paper_data/
https://sburnard.github.io/Elastic_Net_MS_GWAS_paper_data/
https://github.com/sirselim/bootNet
https://github.com/SBurnard/Elastic_Net_MS_GWAS_paper_data
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independently (accounting for the number of variables at a loci level), no SNP reached
significance when corrected for multiple testing.
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Table 2. Comparison of the five SNPs with the lowest p value (2sf) from each loci, using Fisher’s
exact testing on the ANZgene dataset. When using Bonferroni correction only SNPs below 5 × 10−8

or 4 × 10−5 would be considered ‘significant’, representing the gold standard for GWAS or relaxed
relative to the number of SNPs analysed, respectively. SNPs, in bold and with an adjacent asterisk,
denote those that met the elastic model threshold (Table 3).

HLA NKC LRC
rsID p Value rsID p Value rid p Value

SNP

rs9271366 * 1.83 × 10−61 rs11053043 * 9.91 × 10−4 rs11672654 * 3.29 × 10−3

rs9267992 * 1.30 × 10−59 rs3764021 * 1.08 × 10−3 rs13344319 * 0.0136
rs2395182 * 7.59 × 10−50 rs11052552 2.08 × 10−3 rs4806741 * 0.0153
rs3132946 1.83 × 10−48 rs10844638 * 2.27 × 10−3 rs1671196 0.0269

rs3129941 * 1.59 × 10−47 rs10845080 * 3.57 × 10−3 rs10418607 * 0.0270

However, both the NKC and LRC loci contain SNPs that would be considered ‘statisti-
cally significant’ if each SNP were independently tested (i.e., p-value < 0.05) and thus may
represent more subtle, yet biologically important, MS loci. For this reason, penalised re-
gression using elastic net was employed, which takes into account the effect of all variables
(SNPs in this case) within a single association model. Furthermore, using an elastic net
with an alpha level set towards ridge regression (α = 0.1) served to increase the likelihood
of capturing correlated SNPs associated with disease outcome, such as SNPs in LD or
the interaction of SNPs within and between regions (e.g., between NK receptor loci and
HLA loci). After applying elastic net with stability selection by iterative subsampling and
setting an initial cut-off at 70% iterations, a panel of SNPs localising to all three regions
were identified (Table 3), implicating a more comprehensive set of genomic differences that
contribute to MS risk.

Not surprisingly, the majority of strongly associated SNPs identified by the elastic net
model were from the HLA loci (24 SNPs ≥ 90% iterations). However, at least one SNP
in both the NKC and LRC loci also reached over 90% iterations. For all three loci, only
four of the five SNPs with the lowest p-value (Table 2) reached above the 70% threshold
(Table 3, bold*), indicating that the elastic net model did not simply select SNPs with the
lowest possible p-values and may also provide some filtering for those most correlated
with disease. Furthermore, the SNP that reached the highest percentage of iterations in the
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NKC loci (rs10845080, 93.3%, p = 3.57 × 10−3) was not the SNP with the lowest p-value
from that region (rs11053043, 82.7%, p = 9.91 × 10−4). The elastic net model also identified
SNPs that would not meet any loose conventional threshold (p ≤ 0.05) in not only the
LRC and NKC loci, but also the HLA region such as rs2844482 in lymphotoxin alpha (LTA)
(98.1%, p = 0.673). This was unexpected, since the HLA loci contains an abundance of SNPs
that already meet conventional and GWAS statistical significance (Figure 2). As expected,
the HLA-DR15 tag-SNP rs9271366 was unequivocally associated with MS risk (Table 3).
Elastic net identified a further 5 SNPs within the HLA loci that were also called in 100%
of iterations. These SNPs are located within or immediately downstream of HLA-DRA,
HLA-DRB9, HCG23 and c6orf10.

Table 3. List of SNPs above 70% iterations identified by elastic net analysis on the pre-imputed
discovery cohort compared to their corresponding P value from Fisher’s exact testing. The ge-
netic consequence is given for each SNP identified and intergenic SNP placements represented as
INT(gene1_gene2). SNPs identified in bold * were also highlighted in Table 2 as one of the five SNPs
with the lowest p value for that region. Only four out of the five SNPs for each region (from Table 2)
made it above the 70% threshold; the SNPs that did not reach bootstrapping threshold were rs3132946,
rs11052552 and rs1671196 for the HLA (green), NKC (orange) and LRC (blue) region, respectively.
The shades of colour relates to the elastic net model range of iterations (70–79, 80–89, 90–100).

Chromosome/Loci rsID Iterations (%) p Value (Fisher’s Exact
Testing) Gene: Genetic Consequence

rs2395182 * 100 7.59 × 10−50 HLA-DRA: 500B Downstream Variant

rs3117098 100 2.95 × 10−35 HCG23: Non Coding Transcript Variant;
LOC101929163: Intron Variant

rs3129941 * 100 1.59 × 10−47 C6orf10: Missense Variant; LOC101929163:
Intron Variant

rs6903608 100 3.14 × 10−32 INT(HLA-DRB9_HLA-DRB5)
rs9271366 * 100 1.83 × 10−61 INT(HLA-DRB1_HLA-DQA1)
rs9267992 * 100 1.29 × 10−59 INT(NOTCH4_TSPBP1-AS1)
rs2854050 99.6 7.36 × 10−10 NOTCH4: Intron Variant
rs9277535 99.6 5.45 × 10−4 HLA-DPB1: 3 Prime UTR Variant
rs926070 99.2 2.74 × 10−36 TSBP1-AS1: Intron Variant
rs2281389 98.4 4.73 × 10−4 HLA-DPA2: not reported

rs2394160 98.4 3.00 × 10−12 HLA-F: Intron Variant; HLA-F-AS1: Intron
Variant

rs2844482 98.1 0.673 LTA: Intron Variant; LOC100287329: Intron
Variant

rs2647050 96.5 4.00 × 10−19 INT(HLA-DQB1_MTC03P1)
rs2856718 96.5 4.00 × 10−19 INT(HLA-DQB1_MTC03P1)

rs2395150 95.2 3.90 × 10−29 C6orf10: Intron Variant; LOC101929163:
Intron Variant

rs1362126 94.3 7.31 × 10−13 HLA-F: 2KB Upstream Variant
rs3130299 94.3 7.53 × 10−11 INT(NOTCH4_TSPBP1-AS1)

6/HLA rs2301271 94.1 2.35 × 10−23 HLA-DQB2: Intron Variant

rs1611285 93.6 6.58 × 10−6 LOC105379663: Non Coding Transcript
Variant

rs7453920 92.9 2.40 × 10−23 HLA-DQB2: Intron Variant

rs2050190 92.7 2.43 × 10−9 C6orf10: Intron Variant; LOC101929163:
Intron Variant

rs3819721 92.7 7.70 × 10−12 TAP2: Intron Variant
rs2284178 92.3 3.02 × 10−15 HCP5: Non Coding Transcript Variant
rs2051549 90.2 3.02 × 10−23 HLA-DQB2: Intron Variant
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Table 3. Cont.

Chromosome/Loci rsID Iterations (%) p Value (Fisher’s Exact
Testing) Gene: Genetic Consequence

rs1077393 88.9 6.93 × 10−23 BAG6: Intron Variant
rs2647012 88.2 1.10 × 10−34 INT(HLA-DQB1_MTC03P1)
rs9275184 88.1 0.529 INT(HLA-DQB1_MTC03P1)
rs2395174 87 2.00 × 10−8 INT(BTNL2_HLA-DRA)
rs2394412 86.8 3.35 × 10−5 LINC00243: Non Coding Transcript Variant
rs2894046 86.8 3.35 × 10−5 LINC00243: Non Coding Transcript Variant
rs2975033 86.4 3.48 × 10−11 LOC105375010: Intron Variant
rs9277554 84.9 3.11 × 10−3 HLA-DPB1: 3 Prime UTR Variant
rs2848713 84.8 1.02 × 10−3 INT(MICA_LINC01149)

rs9296057 84.2 3.17 × 10−4 LOC100294145: Non Coding Transcript
Variant

rs2517912 84 1.90 × 10−13 INT(ZDHHC20P1_HLA-F)
rs620202 83.4 2.00 × 10−7 BRD2: Intron Variant
rs2395349 82.8 2.37 × 10−5 HLA-DPB2: Intron Variant
rs2260000 82.7 1.25 × 10−19 PRRC2A: Intron Variant
rs6904029 82.6 3.75 × 10−11 HCG9: Non Coding Transcript Variant
rs2071653 82.3 1.10 × 10−11 MOG: Intron Variant
rs3117230 82.2 3.37 × 10−3 INT(COL11A2PA1_HLA-DPB2)
rs719653 81.4 5.24 × 10−26 INT(HLA-DQB2_HLA-DOB)
rs4151657 80.8 9.87 × 10−19 CFB: Intron Variant
rs2064478 79.2 3.69 × 10−3 COL11A2PA1: not reported
rs1035798 78.4 1.24 × 10−12 AGER: Intron Variant
rs3129882 78 3.58 × 10−23 HLA-DRA: Intron Variant
rs2395173 76.9 2.78 × 10−32 INT(BTNL2_HLA-DRA)
rs3135338 76 2.76 × 10−32 INT(BTNL2_HLA-DRA)
rs1611185 75.6 8.21 × 10−10 HLA-P: not reported

rs2299851 74.8 2.32 × 10−3 MSH5: Intron Variant; MSH5-SAPCD1:
Intron Variant

rs1737046 74.2 2.77 × 10−10 INT(LOC353010_HLA-V)
rs6941112 72.2 2.51 × 10−18 STK19: Intron Variant

rs12665700 72 0.662 MUC22: Missense Variant
rs721394 71 0.417 INT(HCG24_COL11A2)

rs10845080 * 93.3 3.57 × 10−3 KLRD1: Non Coding Transcript Variant
rs6488285 91.1 0.0259 LOC101928100: Intron Variant

rs3764021 * 85.2 1.08 × 10−03 CLEC2D: Synonymous Variant
12/NKC rs11053043 * 82.7 9.91 × 10−4 INT(CD69_KLRF1)

rs10505741 79.9 0.0179 CLEC2A: Intron Variant
rs10844780 74.5 0.0103 INT(CD69_KLRF1)

rs10844638 * 74 2.27 × 10−3 INT(CLECL1_CD69)
rs11672654 * 97.3 3.29 × 10−3 LOC100421130

rs6509868 82.5 0.0449 INT(LAIR1_TTYH1)
rs10411879 82 0.0706 INT(LILRA1_LILRB1)
rs4806741 * 78.9 0.0153 INT(LILRB2_LILRA5)

19/LRC rs11669029 77.6 0.0706 INT(TARM1_OSCAR)
rs10418607 * 71.5 0.027 INT(LILRA4_LAIR1)

rs272411 70.9 0.0878 LILRA1: Intron Variant
rs13344319 * 70.1 0.0136 INT(LAIR1_TTYH1)

rs2296371 70.1 0.185 LILRP2: Non Coding Transcript Variant

Given the known and extensive LD across the HLA locus and because the elastic net
model applied was designed to capture correlated variables (which could include both
interacting SNPs and those in LD), haplotype block analysis was used to distinguish SNPs
in LD from potential independent associations and asses the credence for the threshold
set (≥ 70% iterations). Using the SNPs that met our elastic net model threshold (Table 3),
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Figure 3 illustrates the complex haplotypic structure across HLA in the ANZGene cohort
with 11 haplotype blocks detected, containing 2–5 SNPs within each block. Most haplotype
blocks identified (7 out of 11) included at least one SNP that reached above 90% iterations
(Figure 3) with each haplotype block most likely representative of an independent genetic
association. Haplotype block 4, consisted of four SNPs above 90% iterations, two of which
reached 100% iterations, suggesting a strong and common association with MS. Haplotype
block 6 included three SNPs that covered a range of iterations (rs2395182; 100%, rs2395174;
87.0%, and rs3129882; 78%). This block maps onto HLA-DRA with rs2395182 which is
already associated with HLA-DR15 status and an established risk factor for MS.

Figure 3. Haplotype structure of the HLA SNPs identified by the elastic net model (Table 2) using
haploview. The rsIDs are given at the top of the display, with the coloured rings representing the
following range of iterations they were selected by the elastic net model: blue (70 ≤ 79%), orange
(80 ≤ 89%), red (90 ≤ 99%) and red dotted (100%). For each SNP, their corresponding r2 value
are given within each diamond (shown as 0–100, which is equivalent to 0.00–1.0) and red shading
indicating strength of D’ between SNPs intersecting diagonally (see Figure S1 for the individual r2

and D’ plots). As expected, there is a complex underlying LD structure across the HLA region with
11 blocks of inherited SNPs predicted by haploview, consisting of 2–5 SNPs each. Of the 12 SNPs that
were identified above 98% iterations from elastic net analysis, only rs9267992 and rs9271366 (black
arrows meeting at the black circle) were determined to be in strong LD and co-inherited (r2 ≥ 0.7 and
D’ ≥ 0.8). These two SNPs also flank a central set of SNPs (encompassing blocks 4, 5 and 6), both
with a relatively high level of LD for all SNPs located between them (see supplemental notes for
additional comments).

Haplotype block 11 also encompassed SNPs covering a range of iterations, including
rs721394, identified by elastic net that would not have met any conventional threshold (71%
iterations, p = 0.417). Therefore, the identification of some of these SNPs above conventional
thresholds could be explained by LD, such as rs9275184 (88.1% iterations, p = 0.529) found
to be in LD with rs2647012 (88.2% iterations, p =1.1 × 1034) and forming haplotype block 7.
As SNPs can be in LD and ‘inherited together’ but not necessarily at the same frequency,
both LD scores D’ and r2 were considered (Figure 3 and Figure S1). Meanwhile, a ‘proxy
SNP’ more meaningfully refers to SNPs that are co-inherited (Table S1). For rs9275184 and
rs2647012 their LD score (D’ = 1 and r2 = 0.08) reflects their minor allele frequencies (MAFs)
of <0.09 and 0.4, respectively (see additional data). Therefore, since these SNPs were found
to be in LD, it is very likely that with an increased sample size that rs9275184 would become
‘significant’ by conventional comparison, but our elastic net model has circumvented this
need for an increased sample size.

There were a number of SNPs not in LD with any other HLA associated SNP that
may indicate unique independently associated loci that were not previously revealed. For
example, rs12665700 (72% iterations, p = 0.662), rs2844482, (98.1% iterations, p = 0.673),
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rs2299851 (74.8%, p = 2.32 × 10−3) and rs3819721 (92.7%, p = 7.7 × 10−12) mapped to
MUC22, LTA, MSH5 and TAP2, respectively, and were not in LD with any other HLA SNPs
identified by elastic net (Figure 3). Overall, these results corroborate the inclusion of SNPs
that pass the 70% iteration threshold in revealing key signals and with the percentage of
iterations possibly indicative of their relative levels of importance. (see the Supplemental
note in ‘Supplemental Data’ for a detailed interrogation of haplotype analysis.)

3.2. Replication Analysis Using SNPs Common to Both the Discovery and Replication Cohort

To further reduce the risk of potential overfitting that can cause false positive associa-
tions, the use of, and comparison to, a replication cohort was undertaken. After filtering
both cohorts for genotyped and imputed SNPs with high accuracy (R2 ≥ 0.8) within the
selected boundaries (see methods); 2359, 2872 and 520 SNPs were common between the
two cohorts for the HLA, NKC and LRC loci, respectively (Table 1).

Only the NKC loci had a good distribution of SNPs across the whole region. This
was primarily due to the loss of SNPs when merging the replication dataset from four
different platforms (see methods), resulting in a lower yield of high-quality imputed SNPs.
Following elastic net analysis for both cohorts independently, multiple SNPs for all three
loci in either cohort exceeded 70% iterations (Figure S2). Focused signal peaks (reaching
toward 100% iterations) were observed in the HLA loci for both cohorts, with commonality
of peaks between cohorts located towards the centromere, in HLA class II. There were
also distinct peaks observed in the LRC loci for both cohorts, but with a greater overall
signal strength seen in the replication cohort and less clear commonality between cohorts.
The regions between the peaks mostly represented missing data, rather than unselected
SNPs by elastic net. The NKC loci produced a strong signal across the entire region for
both cohorts. To discern SNPs that were of interest and of similar importance across the
two cohorts, a combined FDR value (≤0.1) was evaluated. This revealed 69 SNPs common
(Table S2) to both cohorts. For those SNPs that aligned with a corresponding gene in
dbSNP (Table 4), the resulting gene list was then used for functional enrichment analysis
by ToppFUN (Table 5).

Table 4. Summary table for all the identified SNPs with a combined FDR value ≤ 0.1 and their
associated genetic regions from the combined analysis. For all SNPs that corresponded to a gene,
the total number of SNPs identified and a representative lowest combined FDR value (see appendix
for full list) and genetic consequences (with the corresponding number of SNPs for that genetic
consequence) is given. For SNPs that mapped to an intergenic region, the closest gene upstream and
downstream has been indicated by INT(Gene1_Gene2) with the total number of SNPs and lowest
representative combined FDR value. SNPs identified within genes for each loci are highlighted; HLA
(green), NKC (orange) and LRC (blue).

CHR/Loci Gene Total # of
SNPs

Lowest combined
FDR Value Genetic Consequence(s)

BRD2 1 0.0767 Intron Variant (1)
C2 4 3.18 × 10−5 Intron Variant (4)

CFB 1 1.38 × 10−3 Intron Variant (1)

GPX5 2 6.86 × 10−3 Intron Variant (1); Non-coding
transcript variant (1)

GPX6 3 6.86 × 10−3 Intron Variant (2); missense
variant (1)

HLA-DOB 3 0.0133 Intron Variant (1); 2KB Upstream
Variant (2)

KIFC1 1 0.0693 Intron Variant (1)

LTA 2 0.0129 Downstream Variant (1); Missense
Variant (1)
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Table 4. Cont.

CHR/Loci Gene Total # of
SNPs

Lowest combined
FDR Value Genetic Consequence(s)

LOC100287329 2 0.012855556 2KB Upstream Variant (2)
PHF1 1 0.032153333 Intron Variant (1)

SYNGAP1 2 0.069256 Intron Variant (2)
TAP1 1 4.05E-03 Intron Variant (1)

6/HLA TAP2 4 1.87 × 10−4 Intron Variant (3); synonymous
Variant (1)

TNF 1 0.012855556 2K Upstream Variant (1)

TNXB 10 1.11 × 10−4 Intron Variant (9); Missense
Variant (1)

WDR46 1 0.0254 Intron Variant (1)
INT(FKBPL_PPT2) 4 5.56 × 10−7

NA/Intergenic

INT(HLA-DOA_HLA-DPA1) 2 0.0118

INT(HLA-DQB2_HLA-DOB) 4 4.05 × 10−3

INT(PPP1R2P1_ LOC100294145) 2 4.05 × 10−3

INT(TAP1_PPP1R2P1) 1 1.47 × 10−5

INT(ZBTB9_BAK1) 2 0.0235

INT(ZSCAN23_GPX6) 1 0.022343889
CLEC12B 1 0.022577778 Intron Variant (1)

LOC102724020 1 0.022577778 Intron Variant (1)
LOC112268091 Intron Variant (1)

CLEC2A 2 1.74 × 10−3 Intron Variant (2)
KLRF2 1 1.74 × 10−3 Intron Variant (1)

KLRA1P 2 0.054753333 Intron Variant (1); 2KB Upstream
Variant

KLRB1 1 0.093155556 Intron Variant (1)
12/NKC KLRC4-KLRK1 readthrough 1 0.083367778 Intron Variant (1)

KLRC4 1 0.083367778 2KB Upstream Variant (1)
LINC02390 1 0.084108444 Non-Coding Transcript Variant (1)

LOC105369658 1 0.037733333 Intron Variant (1)
LOC374443, C-type lectin

domain family 2 member D
pseudogene

2 0.012474 Intron Variant (2)

INT(KLRB1_CLEC2D) 1 0.023585333
NA/Intergenic

INT(LINC02446_KLRA1P) 2 0.0377

INT(LOC408186_KLRB1) 1 0.0286

19/LRC RPS9 3 9.78 × 10−4 Intron Variant (3)
INT(LILRA2_LILRB1) 2 0.0520 NA/Intergenic

In total, 52 HLA, 15 NKC and 2 LRC SNPs were identified to be the most robust of
the studied loci when considering both the discovery and replication cohorts (Table S2).
One third of the SNPs (23 out of 69) were in intergenic regions, while the remainder
corresponded to 16 HLA and 12 NKC genes (Table 4). Several HLA genes had three or
more associated SNPs, including GPX6, HLA-DOB, TAP2, C2 and TNXB. Additionally,
non-coding transcript variants for GPX5 and LINC02390, as well as missense SNPs for
GPX6, LTA and TNXB, were identified. In total, 10 SNPs mapped to the gene TNXB, which
is known to have multiple transcript variants and overlaps at its 5’ and 3’ ends with CREBL1
and CYP12A2, respectively.
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Table 5. Top hits from the functional Enrichment analysis by ToppGENE using the identified
genes in the overlapping analysis (Table 3) and passing FDR (adjusted p < 0.05). The top five
biological processes identified all belong to the same lineage of pathways, with leukocyte mediated
immunity being a parent pathway of natural killer cell mediated cytotoxicity (numbered 1 to 4). See
ssupplementary files ‘additional file S1’ for full results.

GO (Biological
Process) ID p-Value q-Value FDR

B & H

Hit Count
in Query

List

Hit Count
in

Genome
Hit in Query List

natural killer cell
mediated cytotoxicity GO:0042267 8.59 × 10−11 5.45 × 10−8 6 72

KLRC4-KLRK1, TAP1,
TAP2, KLRF2, CLEC12B,

CLEC2A

natural killer cell
mediated immunity GO:0002228 1.11 × 10−10 5.45 × 10−8 6 75

KLRC4-KLRK1, TAP1,
TAP2, KLRF2, CLEC12B,

CLEC2A

lymphocyte mediated
immunity GO:0002449 1.18 × 10−10 5.45 × 10−8 9 407

C2, LTA, TNF,
KLRC4-KLRK1, TAP1,

TAP2, KLRF2, CLEC12B,
CLEC2A

leukocyte mediated
cytotoxicity GO:0001909 3.63 × 10−9 1.25 × 10−6 6 133

KLRC4-KLRK1, TAP1,
TAP2, KLRF2, CLEC12B,

CLEC2A
regulation of

lymphocyte mediated
immunity

GO:0002706 2.54 × 10−8 7.03 × 10−6 6 184
LTA, TNF,

KLRC4-KLRK1, TAP1,
TAP2, CLEC12B

regulation of immune
effector process GO:0002697 3.06 × 10−8 7.05 × 10−6 8 527

C2, LTA, TNF,
KLRC4-KLRK1, TAP1,
TAP2, CFB, CLEC12B

cell killing GO:0001906 6.96 × 10−8 1.38 × 10−5 6 218
KLRC4-KLRK1, TAP1,

TAP2, KLRF2, CLEC12B,
CLEC2A

GO (Molecular
Function)

tapasin binding GO:0046980 1.12 × 10−6 1.36 × 10−4 2 2 TAP1, TAP2
ABC-type peptide
transporter activity GO:0015440 6.68 × 10−6 2.04 × 10−4 2 4 TAP1, TAP2

ABC-type peptide
antigen transporter

activity
GO:0015433 6.68 × 10−6 2.04 × 10−4 2 4 TAP1, TAP2

TAP2 binding GO:0046979 6.68 × 10−6 2.04 × 10−4 2 4 TAP1, TAP2
TAP1 binding GO:0046978 1.11 × 10−5 2.65 × 10−4 2 5 TAP1, TAP2

carbohydrate binding GO:0030246 1.31 × 10−5 2.65 × 10−4 5 295
KLRC4-KLRK1, KLRB1,

KLRF2, CLEC12B,
CLEC2A

TAP binding GO:0046977 3.11 × 10−5 5.42 × 10−4 2 8 TAP1, TAP2
MHC protein binding GO:0042287 4.15 × 10−5 6.34 × 10−4 3 63 HLA-DOB, TAP1, TAP2
MHC class Ib protein

binding GO:0023029 8.63 × 10−5 1.17 × 10−3 2 13 TAP1, TAP2

ABC-type transporter
activity GO:0140359 2.54 × 10−4 2.82 × 10−3 2 22 TAP1, TAP2

glutathione peroxidase
activity GO:0004602 2.54 × 10−4 2.82 × 10−3 2 22 GPX5, GPX6
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Table 5. Cont.

GO (Biological
Process) ID p-Value q-Value FDR

B & H

Hit Count
in Query

List

Hit Count
in

Genome
Hit in Query List

GO (Pathway)
Antigen processing

and presentation 83074 (KEGG) 9.58 × 10−8 2.08 × 10−5 5 77 TNF, HLA-DOB, TAP1,
TAP2, KLRC4

Herpes simplex
infection

377873
(KEGG) 7.45 × 10−6 8.09 × 10−4 5 185 LTA, TNF, HLA-DOB,

TAP1, TAP2
Type I diabetes

mellitus
83095

(Reactome) 3.74 × 10−5 2.41 × 10−3 3 43 LTA, TNF, HLA-DOB

Activation of C3 and
C5

1269248
(KEGG) 4.73 × 10−5 2.41 × 10−3 2 7 C2, CFB

Malaria 152665
(KEGG) 5.55 × 10−5 2.41 × 10−3 3 49 TNF, KLRC4-KLRK1,

KLRB1
Staphylococcus aureus

infection
172846

(KEGG) 8.30 × 10−5 3.00 × 10−3 3 56 C2, HLA-DOB, CFB

Antigen Presentation:
Folding, assembly and

peptide loading of
class I MHC

1269194
(Reactome) 6.64 × 10−4 2.06 × 10−2 2 25 TAP1, TAP2

Regulation of
Complement cascade

1269250
(Reactome) 7.76 × 10−4 2.10 × 10−2 2 27 C2, CFB

Asthma 83120 (KEGG) 1.02 × 10−3 2.10 × 10−2 2 31 TNF, HLA-DOB
Initial triggering of

complement
1269242

(Reactome) 1.02 × 10−3 2.10 × 10−2 2 31 C2, CFB

Systemic lupus
erythematosus 83122 (KEGG) 1.06 × 10−3 2.10 × 10−2 3 133 C2, TNF, HLA-DOB

Primary
immunodeficiency 83125 (KEGG) 1.46 × 10−3 2.35 × 10−2 2 37 TAP1, TAP2

Detoxification of
Reactive Oxygen

Species

1270420
(Reactome) 1.54 × 10−3 2.35 × 10−2 2 38 GPX5, GPX6

Consistent with the autoimmune and antigen driven association with MS, molecular
functions and pathways involved in antigen/ protein binding, processing and presentation
were identified (Table 5). MHC class I binding was overrepresented with multiple SNPs
having identified TAP2 and TAP1 (Table 3). While not all the receptors within the NKC
loci are exclusive to NK cells, gene ontology (Biological Process) ‘top hits’ indicated the
involvement of natural killer cell activity rather than any other leukocyte subset (Table 5).

3.3. Independent Analysis of Discovery Cohort Provides Further Insight Due to Imputation

An independent analysis of the imputed ANZgene data was performed to maximise
the coverage of SNPs analysed across the three loci, while maintaining a high imputation
accuracy threshold (R2 ≥ 0.8). This enabled the interrogation of 54541 HLA, 3790 NKC and
1576 LRC SNPs (Table S1). Analysis by elastic net of these more densely covered regions
highlights the complex genetic architecture contributing to MS, particularly across the HLA
region (Figure 4). Distinct peaks were observed across all three loci with both the NKC
and LRC containing peaks approaching 100% iterations (see Supplemental for individual
interactive plots of the HLA, NKC and LRC loci). When directly comparing the p-value
based single SNP association testing (Figure 4, inner ring) to the elastic net model output
(Figure 4, outer ring), we were able to identify additional SNPs that are biologically relevant
and associated with disease (Figure 4, orange dots). Furthermore, elastic net analysis also
discriminated between those SNPs whose p-values were suggestive of association-based
significance thresholds (by GWAS analysis) that could be ignored (Figure 4, blue dots).
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Figure 4. Circos plot for the imputed SNPs from the ANZgene dataset, extracted from the HLA
(green), NKC (orange) and LRC (blue) loci on chromosomes 6, 12 and 19, respectively. Each dot
represents a single SNP plotted clockwise in bp order (see Methods for region boundaries). This plot
compares one-at-a-time SNP evaluation using P values against our elastic net model for the exact
same set of SNPs. The innermost ring is the -log10 P values from Fisher’s Exact testing (a circularised
Manhattan plot). The values range from 0 to the outer edge representing the lowest P value (65.3).
SNPs in blue represent those that were never selected by elastic net with bootstrapping (0 out of
3000 iterations), while orange signifies SNPs that were selected by elastic net with stabilisation by
iterative subsampling (≥1 out of 3000 iterations). The outer ring with orange dots, represents the
percentage of iterations that each SNP was selected by elastic net with 3000 iterations, ranging from
0 to 100 at the outermost edge. The middle ring of blue SNPs indicates the position of SNPs that
were never selected by elastic net. Each dot representing the elastic net result is aligned at the same
degree as the dots representing the -log10 P value in the innermost circle. The outermost ring with
blue bars represents the combined contribution of all the iterations of each SNP (from elastic net with
bootstrapping) within each genomic boundary relative to the total number of iterations, given as a
percentage. The scale ranges from zero to 4.17%, which is the largest value representing the intergenic
region between HLA-DQB1 and HLA-DQA2.

To take into consideration the contribution from multiple SNPs and ascribe signal
strength to a gene or intergenic region, all SNPs identified by the elastic net model for the
imputed ANZgene dataset were assigned by their bp to the genetic boundaries obtained
from the USCS genome browser. For an unbiased interpretation of disease association, the
percentage contribution of each genetic boundary was made relative to the total number of
iterations across all SNPs (Supplemental file ‘additional file S2’). The blue bars in Figure 4
map this combined ‘signal’ from all identified SNPs to their respective gene or intergenic
region across the HLA, NKC and LRC loci.
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The strongest genetic boundary signal for both NKC and LRC was a quarter of the
greatest signal in HLA (Figure 4). However, it is important to note that the boundaries
in the HLA are on average much larger than that of the NKC and LRC, as well the HLA
containing a denser coverage of SNPs in this dataset. The strongest boundary signal
for NKC was located in the intergenic region between CD69 and KLRF1 and the most
prominent gene CLEC2D (Figure S3a). For the LRC, the strongest boundary signal was the
intergenic region between the LILRA1 and LILRB1, which was the region also identified
in the replication analysis (Table 4), and the gene with the strongest overall signal was
LILRA1, which was also the second most prominent signal within the LRC loci. The genetic
boundary and individual SNP signals peaks within this ILT/LIR family, encompassing
LILRA1 to LILRB4 (Figure S3b), encode receptors located predominantly on myeloid lineage
cells and some NK and T cells. The most associated individual single SNP for the LRC was
located in VSTM1.

As expected, the HLA region accounted for the highest proportion of total iterations
(82.8%) covering ~5Mb and included 10 times as many SNPs compared to the NKC and
LRC loci, which are both ~1Mb in size and account for 9.8% and 7.4% of the total number of
iterations, respectively. The intergenic region HLA-DQB1 to HLA-DQA2 had the strongest
signal of any region (4.17%), even though none of the SNPs within this boundary reached
100% iterations, while the intergenic region downstream of HLA-DRA contained all six
individual SNPs reaching 100% iterations and was the fourth highest boundary (2.14%).
This highlights the difference between only ranking regions by the iterations at an indi-
vidual SNP level, compared to considering the number of iterations of all SNPs within a
given region. A further seven boundaries contained at least one SNP above 99% iterations,
with two located in HLA-class I and five located in HLA Class-II, mostly clustered around
HLA-DRA and the boundary with HLA Class-III. This prominent cluster of signals in HLA
Class II consisted of both individual SNP scores (Figure S4, black bars) and gene boundary
scores (Figure S4, green bars). The six genes with the highest boundary scores were c6orf10,
HLA-F-AS1, HLA-DPB1, TRIM26, MUC22 and NOTCH4, while the highest representative
SNP for each of the boundaries ranged from 54.3% for TRIM26 to 99.3% for HLA-F-AS1 (see
supplementary files). For HLA class III, the regions bounded by BAG6 and GPANK1 both
contain one SNP above 90% iterations. HLA class I is also a region of interest as there are
distinct signals represented by both genetic boundary and individual SNP scores including
a signal around the classical HLA Class-I receptor, HLA-B and another at HLA-F-AS1 which
overlaps with the non-classical HLA Class-I receptor, HLA-F.

Overall, this elastic net boundary analysis highlights the need to consider signals from
potentially subtle genetic regional variation (multiple SNPs) in concert with individual
strongly associated SNPs that potentially may contribute to disease aetiology. However,
the biological consequence of these signals still needs to be elucidated.

3.4. Epistasis Analysis

An exploratory epistasis analysis was performed on inter-chromosomal SNPs identi-
fied by the elastic net models to identify if any potentially interacting SNPs were identified.
For the set of 69 SNPs identified from the replication analysis (Table 4 and Table S2), the dis-
covery and replication cohort were merged and assessed. After pruning (removal of SNPs
in near-perfect LD, 49 SNPs remained for the analysis. This identified several potential
epistatic interactions between the HLA and NKC and LRC, but not between the NKC and
LRC, for SNPs located in genes and intergenic regions (Table 6). Several potential epistatic
interactions were detected for a SNP in the transcribed pseudogene KLRA1P and SNPs in
the HLA loci, which could suggest the ubiquitously expressed but non-translated KLRA1P
may have multiple genetic interactions that could influence MS. Similarly, an intergenic
SNP between LILRA1 and LILRB1 also showed potential interaction with multiple SNPs in
different genes from the HLA loci.
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Table 6. Epistasis results on the panel of SNPs identified by the combined FDR results (Table
S2) performed using a merged discovery and replication dataset. Epistatic interactions were only
considered for SNPs in different loci for HLA (green), NKC (orange) and LRC (blue), and not within
genomic regions.

SNP1 SNP2 Epistasis Interaction

Chr:bp Genomic Location Chr:bp Genomic Location OR_INT P
6:32829320 INT(TAP1_PPP1R2P1) 12:10750157 KLRA1P 0.48 0.000255
6:32832786 INT(TAP1_PPP1R2P1) 12:10750157 KLRA1P 0.487 0.000685
6:32102305 INT(FKBPL_PPT2) 19:55116651 INT(LILRA1_LILRB1) 0.632 0.00306
6:32112626 INT(FKBPL_PPT2) 19:55116651 INT(LILRA1_LILRB1) 0.639 0.00392
6:32069806 TNXB 19:55116651 INT(LILRA1_LILRB1) 0.636 0.00418
6:31916400 CFB 12:9742327 INT(LOC408186_KLRB1) 1.76 0.00526
6:32109165 INT(FKBPL_PPT2) 19:55116651 INT(LILRA1_LILRB1) 0.646 0.00561
6:32026257 TNXB 19:55116651 INT(LILRA1_LILRB1) 0.648 0.00601
6:31879158 C2 19:55116651 INT(LILRA1_LILRB1) 0.662 0.0105
6:31888367 C2 19:55116651 INT(LILRA1_LILRB1) 0.667 0.012
6:31884823 C2 19:55116651 INT(LILRA1_LILRB1) 0.672 0.0137
6:32852448 INT(PPP1R2P1_LOC100294145)12:9742327 INT(LOC408186_KLRB1) 2.8 0.0162

6:31542308 TNF; LTA;
LOC100287329 12:9742327 INT(LOC408186_KLRB1) 0.561 0.018

6:32069806 TNXB 12:10750157 KLRA1P 0.679 0.022
6:32026257 TNXB 12:10750157 KLRA1P 0.682 0.0239
6:32112626 INT(FKBPL_PPT2) 12:10044542 CLEC2A; KLRF2 6.42 0.0287
6:32109165 INT(FKBPL_PPT2) 12:10044542 CLEC2A; KLRF2 6.23 0.0314

6:32938199 BRD2 12:10169041 CLEC12B; LOC102724020;
LOC112268091 0.722 0.0423

6:32057972 TNXB 12:10700014 LOC105369658 0.142 0.0432
6:32010272 TNXB 12:10700014 LOC105369658 0.142 0.0434
6:32021838 TNXB 12:10700014 LOC105369658 0.142 0.0434
6:32030284 TNXB 12:10700014 LOC105369658 0.142 0.0435
6:32019746 TNXB 12:10700014 LOC105369658 0.142 0.0436
6:31540556 LTA; LOC100287329 12:9742327 INT(LOC408186_KLRB1) 0.629 0.0467
6:31916400 CFB 19:55116651 INT(LILRA1_LILRB1) 0.785 0.0472

Epistasis analysis was then performed using elastic net results from the independent
discovery cohort analysis (Figure 4) due to the benefit of the improved coverage of SNPs
across the three loci (Table 1). After pruning the 108 SNPs that reached above 70% itera-
tions, 72 SNPs were assessed, which identified additional epistatic interactions (Table S3).
Epistatic interactions between all three loci were identified with SNPs mapping to inter-
genic regions, intron variants, non-coding variants and synonymous variants. In the LRC,
the same intergenic SNP between LILRA1 and LILRB1 identified in the replication epistasis
analysis (Table 6) and an additional SNP in LILRA1 showed an interaction with several HLA
SNPs (Table S3) including the HLA-DRA synonymous variant rs3135391 (chr6:32410987),
which previous studies have correlated with HLA-DRB1*1501 allele.

3.5. Confirmation of Elastic Net Model Hits to Largest MS Meta-Analysis

Comparison of our hits from the pre-imputed discovery analysis (Table 2) and com-
bined FDR ‘replication analysis’ (Table 4 and Table S2), to those present in the meta-analysis
summary statistics from the most recent and largest IMSGC MS study (Figure 5a), con-
firmed the majority identified by the elastic net model reached conventional statistical
GWAS thresholds (p < 5 × 10−8) in this much larger dataset (Figure 5b). Furthermore, at
least three of these SNPs were not below this threshold in the discovery dataset, when
identified by the elastic net model (Figure 5c). The full table comparing the original p values
and our elastic net model results to the IMSGC meta-analysis can be found in Table S4.
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Figure 5. The majority of SNP ‘hits’ identified by the elastic net model, also present in the IMSGC
meta-analysis, are found to be increasingly ‘significant’ by conventional methods in the largest MS
dataset. (A) Around 25% of the hits identified by both the ‘combined FDR analysis’ (Table 4 and
Table S2) and the pre-imputed discovery dataset were present in the IMSGC meta-analysis. (B) For
the SNPs that were present in the meta-analysis, the majority were found to have P value below the
conventionally adopted GWAS threshold (p < 5 × 10−8) in both analyses. (C) Comparison of the
13 SNPs found to reach GWAS level significance in the IMSGC meta-analysis with those identified by
the elastic net model in the discovery dataset, confirmed all hits with increasing significance in the
meta-analysis compared to the discovery p value. This also included at least three SNPs identified
by the elastic net model with p values not reaching GWAS significance threshold in the discovery
dataset (denoted with an Asterisk *).

4. Discussion

Overall, we present findings that support a genetic predisposition to MS across the
HLA, NKC and LRC loci for MS while highlighting the need to re-evaluate GWAS data
using statistical tools such as penalised regression that can handle thousands to millions
of variables at once to provide biological insight into disease aetiology. We have shown
there is a significant amount of information that has been untapped within existing GWAS
data. While this approach has better implicated specific genetic signals contributing to MS
susceptibility, the biological consequences remain to be confirmed.

Arguably, the greatest issue with multiple testing correction, when relying on p-value-
based statistical methodologies for large studies such as GWAS, is the extraordinary samples
sizes required to overcome type II errors when trying to control for type I errors. The results
presented herein argue that with a relatively modest GWAS sample size, the elastic net
model was able to discriminate which SNPs were most likely to be associated with MS;
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for SNPs including those (i) above the conventional GWAS threshold (p < 5 × 10−8), (ii) of
nominal or suggestive significance (5 × 10−8 < p < 0.05), and (iii) below conventional
statistical threshold (p > 0.05), for all three loci studied. For example, our elastic net
model for the pre-imputed discovery cohort identified SNPs in the NKC and LRC of
nominal and borderline significance, while, for the HLA, at least four SNPs that reached
above 70% iterations had an associated p-value above 0.4. This is particularly surprising,
considering the amount of ‘highly significant’ p-value-based SNPs within the HLA loci
(Figure 2). In particular, rs2844482 reached 98.1% iterations (Table 3) and maps to LTA, a
gene previously associated with MS disease aetiology [60], including in terms of SNPs [61],
methylation [62] and expression differences [63], and would be completely ignored by
conventional statistical methods (p = 0.673). We confirmed this not to be in LD with any
other SNPs (Figure 3). Thus, combined with the elastic net model result, this indicated
a strong independent association with MS. The latest International Multiple Sclerosis
Genetics Consortium (IMSGC) study, which is the largest MS study to date (>47K cases,
and >68K controls), also identified rs2844482 as the fourth largest independent HLA risk
factor MS (p = 7.13 × 10−124) [34]. This report by the IMSGC (2019) successfully confirmed
and expanded, at a genome-wide level, the number of loci associated with MS and went
further to assign likely biological association. This enabled the authors to implicate genetic
alterations and pathways associated with both adaptive and innate immune cells, including
NK cells. However, their methodology was still reliant on conventional p-values both as
end discriminator, and as an initial screening tool; with any SNP not reaching ‘suggestive
significance’ (p < 0.05) removed from any further analysis. Therefore, if we had adopted a
prior p-value-based screening approach, this study would not have successfully detected
many of the SNPs discussed.

A rationale for our elastic net model identifying SNPs when they are of borderline
or below conventional significance, such as rs2844482, is the combination of elastic net
being able to consider all variables at once with the addition of the stability selection
wrapper which utilises subsampling. More specifically, these SNPs may be marginally
overrepresented in combination with other disease relevant SNPs in our studied cohorts,
and the ‘random’ subsampling of cases and controls for each iteration of elastic net further
highlighted this disparity in lieu of a much larger sample size. Therefore, novel methods to
study diseases are warranted, particularly for those that are rarer and unable to gather the
sample sizes required by conventional GWAS. Nevertheless, new approaches would need
to be devised to validate and provide confidence in the findings of the elastic net model
when detecting SNPs below conventional statistical thresholds, especially when larger
GWAS are unavailable for comparison. Fortunately, we were able to compare our ‘hits’
identified by the elastic net model to that of the summary stats from the latest, and largest
IMSGC meta-analysis, which included up to 15 different GWASs (Figure 5). The ‘hits’
that were compared were from (1) the preliminary and pre-imputed discovery analysis
(Table 3), which represent directly genotyped SNPs to ensure utmost confidence in the
accuracy of SNPs included in the analysis, and (2) the combined FDR ‘replication analysis’
of the two datasets (Table 4 and Table S2), which represents a set of robustly MS associated
SNPs, common across both independent cohorts (post-imputation). The majority of SNP
hits that were also present in the IMSGC meta-analysis (Figure 5a), were found below
conventional statistical GWAS thresholds (Figure 5b) with at least 3 SNPs in our discovery
dataset originally below this threshold while identified by elastic net (Figure 5c). This
provides additional confidence in the SNPs identified by the elastic net model in our modest
sized GWAS datasets. Ideally, future studies would test and compare this analysis directly
using individual genotype data from these larger scale studies, rather than using only
summary statistics.

The use of penalised regression models for GWAS is not new, but it is under-appreciated/
utilised. There is also an apparent trade-off with the use of machine learning approaches
prioritising feature selection for either prediction (of an outcome) or gaining biological
insight. For example, Wei et al. 2009 used support vector machine (SVM) to improve
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the accuracy of type 1 diabetes disease risk prediction, developed and tested on three
large scale GWAS datasets [64]. Furthermore, the authors also compared SVM to logistic
regression with an L2 penalty (ridge regression) that was modified and developed by
Park and Hastie [65] to aid gene–gene interaction, and showed the former was more
accurate in this context. Interestingly, Wei et al. also utilised and assessed several p value-
based pre-screening levels (p < 1 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4 and
1× 10−3) prior to input into the model development and found that in some instance
that the area under the ROC curve (AUC) improved for the L2 logistic regression models
with increasing looser thresholds compared to the inverse effect for SVM [64]. More
recently, Ghafouri-Fard et al. [66] published a preliminary report testing an artificial neural
network (deep learning model) to predict MS disease risk, developed using a subset of
SNPs (23 genotyped SNPs, across 11 genes) and a relatively small cohort (401 MS patients,
and 390 controls), and reported a modest ROC AUC (69.67%). The inclusion of all SNPs
across the genome would be the next logical step but may be computationally demanding
with such an approach. The authors also utilised L2 regularisation (ridge regression) of
hidden layers to ‘reduce over-fitting and enhance model generalisation’. Arloth et al. [67]
in a modest sized cohort of MS and control data, applied a combination of deep learning
(DeepSea) to identify ‘functional units’, which encapsulates SNPs with known regulatory
effects of chromatin features (within 1000 bp from the SNPs present in the studied dataset)
and treatments, leveraged from publicly available cell line experiment data. Similarly, they
then utilise stability selection, but with L1 regularisation (lasso) to perform feature selection,
and identify which of the SNPs from these ‘functional units’ were then associated with MS.
They go further, to test the SNPs identified with publicly available cis-eQTL ci-meQTL,
and cis-eQTM data, aiming to assign additional functional and biological importance. This
latter approach is one that could be more readily and standardly adopted for all GWAS.

Similar to our approach, the L2 penalised logistic regression model developed by
Park and Hastie for gene–gene interaction with SNPs also validated their findings using a
bootstrapping approach with a set lambda (identified by prior cross-validation) to assess
the frequency each variable was selected and compared those with the highest frequencies
to other studies [65]. In the meantime, there have been further developments of more
computationally efficient implementation of these various algorithms, but the underlying
statistical principles typically remain the same (each with their own strengths and weak-
ness). Therefore, the most important principle remains to use the most appropriate tool for
the aims and dataset being investigated, while still appreciating the potential weaknesses
(and attempt to mitigate these where possible). Thus, since our aim was to aid biological
insight by the identification of potentially interacting SNPs, we opted to use an elastic net
model set towards ridge regression which has been previously shown in GWAS data to
maximise variable selection and minimise false positives [31]; and has also been shown to
capture correlated variables in methylation data [32].

In this study, we adopted two additional approaches to validate the findings by our
elastic net model (which included stabilisation). Firstly, for our pre-imputed discovery
cohort analysis, haplotype structure was interrogated with the use of LD plots providing
some credence for the use and benefit of a 70% iteration threshold as an initial cut-off with
our elastic net model (See Figure 3 and supplementary notes for a detailed interrogation on
the HLA haplotype analysis results). This analysis also suggested which SNPs selected by
elastic net that were below conventional threshold could be explained through LD. The
second approach was to further reduce the risk of “over-fitting” data with the inclusion of
an independent cohort and use of a combined FDR (see methods), which was in addition
to the utilisation of cross-validation to set the lambda parameter prior to running elastic net
and incorporation of a bootstrap wrapper with subsampling. This enabled the identification
of 69 SNPs robustly associated with MS across the three loci (Table 5 and Table S1). A total
of 10 SNPs mapped to TNXB, including a missense SNP, and is a gene shown in RRMS
patients to contain a differentially methylated region identified in CD8+ T cells [68], but
not CD4+ T cells [69]. TNXB is part of the RCCX module, which includes CYP21, C4 and
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STK19, another hypervariable region (in addition to HLA-DRB) with modular duplication,
and a deletion of C4A in the presence of HERV-K [70,71]. Together, this set of 10 SNPs in
TNXB may represent genetic variance across the region, with previous studies having also
identified linkage across TNXB, CYP21A2 and AGER [72] and conflicting reports on the
role of C4 [73,74] in MS. Therefore, these data support further investigations into RCCX
allelic and CNV studies in MS.

To garner biological insight into the aetiology of MS, pathway and functional en-
richment analysis was performed (Table 5) on the 16 HLA and 12 NKC genes identified
(Table 4). In keeping with the involvement of NK cells and innate immunity in MS, path-
ways involved in bacterial and viral infections were associated as well as MHC class I
protein binding. Support for the role of oxidative stress and cellular detoxification were also
revealed with the identification of GPX5, GPX6 and TNF (see additional files for the full list)
from this replication analysis. Oxidative stress has previously been associated with inflam-
matory conditions such as MS, including altered GPX activity amongst MS subgroups [75],
but with little known about the potential underlying genetics causing such associations.
Both reactive oxygen species [76,77] and oxidised low-density lipoproteins [78] have been
shown to alter NK functionality, which is likely to contribute to disease. This information
correlates with the host micro-environment altering NK targets that have been suggested
to result in reduced NK functionality in MS patients; since in vitro studies of NK functional
assays from MS patients compare to controls has been conflicting [14,79], the evidence now
points towards the internal environment of MS patients that dictates NK activity. This
coincides with studies that have shown fluctuations of NK function in MS patients [79,80]
and reduced oxidative stress (or better control) being associated with a more benign disease
course [81].

An exploratory epistasis analysis was performed as the elastic net model was tuned
(alpha set toward ridge regression) with the additional aim of capturing interacting SNPs if
they are of equal importance to disease status. The results provided suggestive evidence
that some of the SNPs revealed in the replication (Table 6) and in-depth discovery cohort
analysis (Table S2) were biologically relevant indicating interaction across the HLA, NKC
and LRC loci.

This study also highlighted the benefit of considering signals from potentially subtle
genetic regional variation (or ‘genetic boundaries’) in concert with individual SNPs that
could contribute to disease aetiology. The strength and complexity of signal across the HLA
region was evident (Figure 4), with the largest concentration of genetic boundary variance
in combination with individual SNPs centred around the HLA-class II, bordering class III
(Figure S4). However, HLA-class I also contained some distinctive boundaries with a high
signal in combination with a single SNP such as HLA-F-AS1. Meanwhile, for the LRC loci,
VSTM1 contained the SNP with the strongest individual SNP signal, whereas LILRA1 was
the gene with the highest boundary signal. In addition, epistasis analysis identified several
interactions with a non-coding SNP in LILRA1 gene with several HLA SNPs (Table S2).

A limitation of the combined analysis was the reduced coverage of SNPs across all
three regions due to the use of ‘SNPs in common’ to both cohorts. The benefit of a combined
analysis being the identification of a robust set of SNPs associated across two independent
cohorts, but at the expense of genetic coverage. Furthermore, the proportion of MS subtypes
in the replication cohort was unknown and may not reflect that of the discovery dataset,
which could have influenced the results. Therefore, future studies should consider and
evaluate potential differences in subtype. Additionally, even the independent discovery
cohort analysis was burdened by poor coverage of SNPs in certain regions due to the
genotyping platform. For example, the killer immunoglobulin-like receptors (KIRs) loci
within the LRC, which has previously been implicated with MS [82,83], was mostly absent
from this study even after imputation, which should be addressed in future studies when
using these approaches. This limitation is also exacerbated by the fact that elastic net cannot
handle missing data, which is why imputation was utilised and good coverage of genetic
regions is beneficial prior to imputation.
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5. Conclusions

In this study, we have used an elastic net model with stability selection by iterative
subsampling to better define three regions of interest in MS aetiology. We identified a
robust set of ‘SNP hits’, validated across two independent cohorts and confirmed using
summary statistics from a large-scale meta-analysis. The results of this in silico analysis
demonstrate the importance of re-analysing GWAS data to reveal biological insight into the
MS disease. Future studies could also benefit from incorporating clinical measurements
such as disability burden and severity to better understand the biological consequence
of genotypes, as well as the consideration of potential differences in MS subtypes. Fur-
thermore, these results provide further evidence for the involvement of NK cells in MS
aetiology in a genetic context.
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