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Abstract. Clear cell renal cell carcinoma (ccRCC) is the
most prominent subtype of renal cancer and E47-like factors
(ELFs) are important in tumorigenesis; however, the specific
role of key ELFs in ccRCC remains unclear. The present study
comprehensively analyzed RNA sequencing and clinical data
from multiple databases, and identified differentially expressed
ELFs (ELF3-5) in ccRCC. The DNA promoter methylation,
genetic variation and clinical significance of ELF3-5 in ccRCC
were analyzed using the cBioPortal and UALCAN databases.
The association between ELF3-5 and multiple immune cell
infiltration was analyzed using Tumor Immune Estimation
Resource. Subsequently, ELF4 was selected and its association
with biological functions was assessed. Cell counting kit-8
(CCK-8), colony formation, Transwell, macrophage chemo-
taxis and polarization assays were conducted to validate the
functions of ELF4. Notably, the mRNA expression levels
of ELF4 were significantly upregulated in ccRCC, whereas
ELF3 and ELF5 mRNA expression levels were significantly
downregulated. Clinical significance analysis revealed that
ELF4 showed a high clinical significance with tumor grade,
clear cell type A and B subtypes, and incidence rates of ampli-
fication in genetic variation. Further analyses indicated that
ELF4 may be involved in multiple immune cell differentiation.
Additionally, cell experiments revealed that ELF4 inhibition
downregulated 769-P and 786-0O proliferation, migration and
invasion. Knockdown of ELF4 in cancer cells also inhibited
M?2 macrophage polarization and chemotaxis towards 769-P
and 786-0 cells. Conclusively, the present findings indicated
the clinical significance of ELF4 in ccRCC, and verified its
key role in driving cell proliferation, migration and invasion,
and promoting M2 macrophage polarization and chemotaxis
in ccRCC.
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Introduction

Renal cell carcinoma (RCC) is a prominent tumor within
the urinary system; it accounts for ~2% of global cancer
diagnoses and deaths, and is projected to increase in burden
worldwide (1). Clear cell RCC (ccRCC) is the predominant
subtype of RCC. Despite recent advances in treating advanced
and metastatic ccRCC, the 5-year survival rate of metastatic
ccRCC is <10% (2). Surgical resection is currently the main
treatment option for ccRCC; however, it has been reported that
30-40% of patients with local lesions experience post-surgery
recurrence (3). Despite gradual improvements in immune and
targeted therapies, these approaches have failed to achieve
desirable progression-free survival in patients with ccRCC.
Moreover, subsequent treatments for recurrent ccRCC have
yielded suboptimal outcomes (4). Therefore, exploring the
mechanisms underlying ccRCC development, and identifying
highly sensitive and specific tumor biomarkers have emerged
as current research trends.

Recent studies have highlighted the role of specific
transcription factor families in the malignant progression of
ccRCC (5,6). Within these families, the E-twenty-six (ETS)
transcription factor family serves major roles in tumorigen-
esis, including that of ccRCC, with some members functioning
as oncogenes and others as tumor suppressors (7). Among
the ETS family, various E47-like factors (ELFs) influence
the biological activity of ccRCC cells through transcriptional
regulation. For example, ELF1 exhibits bidirectional suppres-
sion of the tumor suppressor TSC2 and the repair-related gene
NTHI (8). Additionally, ELF2 has been reported to promote
ccRCC cell proliferation by mediating the transcription of
c-Myc-induced ELF2 regulator (9). However, the molecular
mechanisms underlying the carcinogenic or tumor-suppressive
effects of these ELFs in ccRCC remain poorly understood.

Previous reports have highlighted the association of various
ELFs with malignant progression, prognosis and infiltration
in numerous types of cancer. For example, ELF1, which has
been identified as a carcinogen, has been observed to regulate
the cell proliferation of multiple types of cancer, including
prostate and lung cancer (7,10). ELF4 has been implicated
in the malignant progression of gastric cancer by regulating
CDX2 (11). In tumor prognosis research, ELF4 expression
has emerged as an independent predictor of poor prognosis in
colorectal cancer (12). Furthermore, ELF5 expression levels
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have also been linked to the survival and prognosis of patients
with epithelial ovarian cancer (13). As immunotherapy gains
wider application, research on the regulatory mechanisms of
ELFs in the tumor immune microenvironment have gained
attention. For example, a decrease in T-cell receptor (TCR) €
chain transcription factor ELF1 and its binding to DNA may
contribute to reduced or absent TCR € chain transcripts in
tumor-infiltrating lymphocytes (14). In breast cancer, ELF5
has been identified as a key transcriptional determinant of
tumor subtype and increased levels of ELF5 have been asso-
ciated with enhanced leukocyte infiltration (15). Despite the
significant roles played by ELFs in other cancer types, their
specific functions and related mechanisms in ccRCC remain
unclear.

In the present study, a comprehensive analysis of ELF1-5
in ccRCC was conducted using multiple databases and the
clinical significance of ELF3-5 was confirmed in patients
with ccRCC. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were also
performed. Notably, the effects of ELF4 on the proliferation,
migration and invasion of ccRCC cells were assessed, as were
its effects on macrophage polarization and chemotaxis. The
present study is expected to reveal the clinical significance,
biological activity and immune infiltration of ELF4, in order to
identify a potential new target for patients with ccRCC.

Materials and methods

Analysis of differentially expressed genes in multiple data-
bases. The Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn/) was used to
analyze ELF1-5 expression data (16). GEPIA is a newly devel-
oped interactive web server for analyzing the RNA sequencing
expression data from 9,736 tumor tissues and 8,587 normal
tissues of patients obtained from The Cancer Genome Atlas
(TCGA) and The Genotype-Tissue Expression projects (16).
For Gene Expression Omnibus (GEO) analysis, raw sequencing
data were obtained from the GEO database (GEO accession:
GSES53757) (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSES53757) (17). Differential expression analysis and
gene expression data normalization were performed using
the R package edgeR (18). The differential expression levels
of ELFI-5 in ccRCC and normal tissues were also illustrated
using UALCAN (http://ualcan.path.uab.edu) (19). UALCAN
is a comprehensive, user-friendly web resource for analyzing
cancer omics data in TCGA project. The differential expression
levels of ELF1-5 in various cancer types and normal tissues
were illustrated using the Oncomine database (https:/www.
oncomine.org) (20). Oncomine, the largest cancer gene chip
database and integrated data mining platform is designed
to extract valuable cancer gene information. The threshold
parameters of P-value and fold-change were demarcated as
0.05 and 2, respectively.

Clinical significance analysis. The expression levels and
promoter methylation levels of ELF3-5 were assessed in
relation to cancer stage, subtype and tumor grade using
UALCAN (19). The threshold parameters of P-value and
fold-change were demarcated as 0.05 and 2, respectively.
The clinical significance of ELF3-5 on the overall survival

(OS) and disease-free survival (DFS) of patients with ccRCC
was evaluated using GEPIA. Kaplan-Meier survival analysis
and log-rank test were performed using GEPIA database,
and log-rank P-values and hazard ratio (HR) values were
obtained (16). A log-rank test with P<0.05 was considered to
indicate a statistically significant difference.

cBioPortal analysis. Genetic alterations of ELF3-5 were
obtained and analyzed from the cBioPortal based on TCGA
project (11). As a comprehensive web resource, the cBioPortal
database (http://www.cbioportal.org) is used for visualizing
and analyzing multidimensional cancer genomics data.

GO and KEGG enrichment analysis. The LinkedOmics
(https://www.linkedomics.org/login.php) database was used to
search for ELF3-5-related co-expressed genes in ccRCC (21).
LinkedOmics is a publicly accessible portal integrating
multi-omics data from all 32 TCGA cancer types and 10
Clinical Proteomics Tumor Analysis Consortium cancer
cohorts. It is a valuable platform for biologists and clinicians to
access, analyze and compare multi-omics data across various
tumor types. Co-expression analysis was performed using
the Pearson correlation coefficient as a statistical measure.
GO analysis and KEGG pathway enrichment analysis were
conducted on the ELF3-5-related co-expressed genes using
the LinkInterpreter module of LinkedOmics to obtain
descriptive information. The Gene Set Enrichment Analysis
tool (https://www.linkedomics.org/lo_batchfile/qindex_gsea.
php?fn=122773) was employed to explore the functional
network of co-expressed genes, including GO (biological
process, cellular component, molecular function) and KEGG
pathway analyses. The rank criterion for significance was set
at a false-discovery rate <0.05 and 1,000 simulations were
performed.

Tumor immune estimation resource (TIMER) analysis. The
TIMER web server (https://cistrome.shinyapps.io/timer/) is
a comprehensive resource for analyzing immune infiltrates
in various cancer types (22). The gene module of TIMER
allows users to select any gene of interest and visualize the
correlation of its expression with immune infiltration level
in diverse cancer types. The partial Spearman's correlation
analysis was performed to determine the relationship between
the RNA-sequencing expression profiles of ELF3-5 in ccRCC
and immune cells.

Cell culture and transfection. The 786-0 and 769-P ccRCC
cell lines, and the HK-2 normal human renal tubular epithe-
lial cell line were purchased from The Cell Bank of Type
Culture Collection of The Chinese Academy of Sciences.
769-P and 786-0 cells were cultured in RPMI-1640 medium
(cat. no. C11875500BT; Gibco; Thermo Fisher Scientific, Inc.)
containing 10% heat-inactivated fetal bovine serum (FBS;
cat. no. 16140089; Gibco; Thermo Fisher Scientific, Inc.) and
1% penicillin-streptomycin (cat. no. P4333; MilliporeSigma).
HK-2 cells were cultured in minimum Eagle's medium
(cat. no. SH30244.01; Hyclone; Cytiva) containing 10% FBS.
The THP-1 human monocytic leukemia cell line was also
purchased from The Cell Bank of Type Culture Collection
of The Chinese Academy of Sciences and were cultured in
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RPMI-1640 containing 10% FBS and 1% penicillin-strepto-
mycin. THP-1 cells were differentiated into macrophages by
treating them with 10 ng/ml phorbol-12-myristate-13-acetate
(PMA,; cat. no. P8139; MilliporeSigma) for 24 h at 37°C. All
cells were cultured at 37°C in a humidified atmosphere with
5% CO,.

The small interfering RNA (siRNA) constructs targeting
ELF4 (si-ELF4) and the corresponding negative control (si-NC)
were purchased from Guangzhou RiboBio Co., Ltd. 769-P and
786-0 cells were seeded into 6-well plates at 1x10° cells/well.
According to the manufacturer's instructions, the transfection
of the aforementioned siRNAs into 769-P and 786-0 cells was
performed using Lipofectamine® 2000 transfection reagent
(cat. no. 11668030; Invitrogen; Thermo Fisher Scientific, Inc.)
for 48 h at 37°C. Approximately 48 h post-transfection, cells
were collected for further studies. The siRNAs were used at a
concentration of 100 nM and the sequences were as follows:
si-ELF4 sense, 5'-GCUGGACGACGUUCACAAUTT-3' and
antisense, 5S-AUUGUGAACGUCGUCCAGCTT-3"; si-NC
sense, 5S'-AUCAACGAUAUCCGGUUGG-3' TT and anti-
sense, 5'-CCAACCGGAUAUCGUUGAUTT-3".

Macrophage polarization assay. The macrophage polarization
experiment was performed as previously described (23). Si-NC
and si-ELF4 groups of 769-P and 786-0O cells were seeded
at 1x10° cells/ml in 6-well plates (3 ml/well). The supernatant
of ccRCC cells was collected. PMA-induced THP-1 cells
(macrophages) were seeded at 1x10° cells/ml in 6-well plates
(3 ml/well) in RPMI-1640 medium containing ccRCC cell
supernatant and were incubated for 48 h. The mRNA expres-
sion levels of the M1 macrophage markers (IL-6, CXCL10 and
CD80) and M2 macrophage markers (CD206, fibronectin and
CCL22) were determined to study the effects of ccRCC cell
supernatant on polarization of macrophages.

Macrophage chemotaxis assay. A chemotaxis assay
was performed as previously described (24,25). Briefly,
PMA-induced THP-1 cells (macrophages) were incubated with
IL-4 and IL-13 (20 ng/ml IL-4 and IL-13; cat. nos. 6507IL
and 213ILB; R&D Systems, Inc.) for 48 h at 37°C to obtain
M2 macrophages. Similarly, PMA-induced THP-1 cells
(macrophages) were incubated with lipopolysaccharide
(100 ng/ml; cat. no. L2880; MilliporeSigma) and IFN-y
(20 ng/ml; cat. no. 285-1F; R&D Systems, Inc.) for 48 h at 37°C
to obtain M1 macrophages. The supernatant of 769-P and
786-0 cells (400 ul) was added to the lower compartment of 6
Transwell inserts (pore size, 3 ym; cat. no. 3414; Corning, Inc.).
M1 or M2 macrophages (4x10* cells/well) were then overlaid
onto the upper chamber. After 16 h at 37°C, the migrated
cells were counted using a hemocytometer (cat. no. Z359629;
MilliporeSigma).

RNA isolation and reverse transcription-quantitative PCR
(RT-gPCR). Total RNA was extracted from the cells using
TRIzol® (cat. no. 15596026; Invitrogen; Thermo Fisher
Scientific, Inc.) according to the manufacturer's instructions.
RNA purity (OD,/OD,5, nm, 1.8-2.2) was assessed using
NanoDrop 2000 (NanoDrop; Thermo Fisher Scientific, Inc.).
RT was performed with 1 ug total RNA as the template using
the PrimeScript™ RT reagent Kit (cat. no. RR037Q; Takara

Bio, Inc.) according to the manufacturer's instructions. The
relative mRNA expression levels were determined using RT2
SYBR® Green qPCR Mastermixes (cat. no. 330509; Qiagen
GmbH) on the LightCycler 480 system (Roche Diagnostics).
The reaction conditions included an initial single cycle
at 95°C for 10 min, followed by 45 cycles at 95°C for 15 sec
and 95°C for 1 min. The following primer sets were used for
qPCR: ELF4 forward (F), 5'-CATCATAACAGACGGGAC
CTTG-3', reverse (R), 5'-GCTGGGAGACTCCATATTGAG
TA-3'; GAPDH F, 5-GAATGGGCAGCCGTTAGGAA-3',
R, 5~AAAAGCATCACCCGGAGGAG-3'; IL-6 F, 5'-CCT
GAACCTTCCAAAGATGGC-3, R, 5-CACCAGGCAAGT
CTCCTCATT-3"; CXCLI10 F, 5“TGAATCCAGAATCGA
AGGCCA-3, R, 5"-TGCATCGATTTTGCTCCCCT-3'; CD80
F, 5~ACGCCCTGTATAACAGTGTCC-3, R, 5-GAGGAA
GTTCCCAGAAGAGGTC-3; CD206 F, 5-GCTAAACCT
ACTCATGAATT-3, R, 5-GGCAAGGCCAGCACCCGT
TA-3'; fibronectin F, 5-CCATCGCAAACCGCTGCCAT-3,
R, 5"AACACTTCTCAGCTATGGGCTT-3'; CCL22 F,
5'-GAGATCTGTGCCGATCCCAG-3', R, 5-"AGGGAATGC
AGAGAGTTGGC-3; RPS9 F, 5-CTGGATGAGGGCAAG
ATGAAG-3, R, 5-GTCTGCAGGCGTCTCTCTAAGAA-3".
The relative mRNA expression levels were normalized to the
average Cq values of GAPDH plus RPS9, and were quantified
using the 2"44%4 cycle threshold method (26).

Cell counting Kit-8 (CCK-8) assay. Cell proliferation was
assessed using the CCK-8 assay. Cancer cells were seeded
in 96-well plates at 5x10° cells/well density. According to
the manufacturer's instructions, the cells were assessed
at 0, 24, 48, 72 and 96 h using the CCK-8 Kit (10 pl/well;
cat. no. ab228554; Abcam). The plates were incubated in the
dark for 1 h at 37°C. Cell proliferation was measured using
a microplate reader (cat. no. 168-1130; Bio-Rad Laboratories,
Inc.) at 450 nm.

Colony formation assay. Approximately 48 h post-transfection,
ccRCC cells were cultured in 6-well plates at 2x10° cells/well
and the medium was changed every 3 days. The medium
was aspirated once cell colonies became visible to the naked
eye. The cells were then washed twice with 1xPBS and fixed
with 4% paraformaldehyde (cat. no. 158127; MilliporeSigma)
for 15 min at room temperature. Following the removal of
paraformaldehyde, cells were stained with 0.25% crystal
violet (cat. no. C6158; MilliporeSigma) at room temperature
for 25 min. Finally, the cells were washed with sterile water,
dried and images were captured under a light microscope. The
numbers of colonies with >50 cells were counted manually
under a light microscope.

Transwell assay. The Transwell assay was performed as previ-
ously described (27). Briefly, cells were suspended in FBS-free
medium and 200 ul cell suspension (1x10° cells/well) was
inoculated into the upper layer of 24 Transwell inserts (pore
size, 8 ym; cat. no. 3422; Corning, Inc.). The lower layer was
filled with 600 pl complete medium containing 10% FBS. For
the invasion assay, Matrigel (cat. no. 356234; Corning, Inc.) was
diluted to a concentration of 1 mg/ml using FBS-free medium
and was then added to the upper chamber of the Transwell
inserts and incubated at 37°C for 1 h. After 36 h of incubation
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Figure 1. Differential expression analysis of ELF3-5 between ccRCC and normal tissues in multiple databases. mnRNA expression levels of (A) ELF3, (B) ELF4
and (C) ELFS5 in ccRCC and normal tissues in the Gene Expression Profiling Interactive Analysis database. mRNA expression levels of (D) ELF3, (E) ELF4
and (F) ELFS5 in ccRCC and normal tissues in the Gene Expression Omnibus database. mRNA expression levels of (G) ELF3, (H) ELF4 and (I) ELFS5 in ccRCC
and normal tissues in UALCAN database. "P<0.05, *"P<0.001. ELF, E47-like factor; ccRCC, clear cell renal cell carcinoma.

at 37°C, non-penetrating cells on the membrane were removed
using cotton swabs. The cells that passed through the membrane
were fixed with 4% paraformaldehyde for 30 min and stained
with 0.1% crystal violet for 20 min at room temperature.
Subsequently, cell counting was performed under a light micro-
scope (Olympus Corporation) at a magnification of x100.

Statistical analysis. The experimental data are presented as
the mean + standard deviation. Unpaired Student's t-test was
used for two-group comparisons. Statistical analyses involving
multiple group comparisons were performed using one-way
ANOVA followed by Tukey's post hoc test. Data analyses were
conducted using GraphPad Prism 8 (Dotmatics). The normality
of data distribution was assessed using the Shapiro-Wilk or

Kolmogorov-Smirnov normality test. Macrophage polarization,
macrophage chemotaxis, RT-qPCR, CCK-8, colony formation
and Transwell assays were repeated three times. P<0.05 was
considered to indicate a statistically significant difference.

Results

Expression levels of ELF3-5 between tumor and normal
tissues. The present study investigated the function of five
key ELFs from the ETS family in ccRCC development.
Differential analysis was performed using GEPIA, GEO and
UALCAN databases. All three databases showed significantly
higher expression levels of ELF4 in ccRCC tissues compared
with those in normal tissues (Fig. 1B, E and H). Conversely,
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Figure 2. Clinical significance of ELF3-5 in ccRCC. Promoter methylation levels of (A) ELF3, (B) ELF4 and (C) ELFS5 in normal tissues and primary ccRCC
tissues in the UALCAN database. Expression levels of (D) ELF3, (E) ELF4 and (F) ELF5 in ccRCC cancer tissues of various tumor stages. Expression levels
of (G) ELF3, (H) ELF4 and (I) ELF5 in ccRCC cancer tissues of various tumor grades. Expression levels of (J) ELF3, (K) ELF4 and (L) ELF5 in ccRCC
cancer tissues of ccA and ccB subtypes. ns, no significance; "P<0.05, ““P<0.001. ELF, E47-like factor; ccRCC, clear cell renal cell carcinoma; ccA, clear cell

type A; ccB, clear cell type B.

the expression levels of ELF3 and ELF5 showed an opposite
pattern (Fig. 1A, C, D, F, G and I). Furthermore, GEPIA and
UALCAN databases indicated no significant difference in
the expression levels of ELF1 and 2 between ccRCC cancer
tissues and normal tissues (Fig. S1A, B, E and F). Additionally,
the expression profiles of ELF1-5 were analyzed in various
cancer types using Oncomine, revealing differential expres-
sion across multiple types of cancer, including breast cancer,
cholangiocarcinoma, chromophobe RCC, thyroid cancer and
endometrial cancer (Fig. S2). Specifically, ELF3 and ELF5
exhibited lower expression levels in ccRCC compared with

those in normal tissues (Fig. S2C and E). ELF4 exhibited
higher expression levels in ccRCC compared with in normal
tissues (Fig. S2D). Consequently, ELF3-5 were identified as
key genes in the present study and further investigated for their
functional relevance in subsequent investigations.

Clinical significance of ELF3-5 in ccRCC. DNA promoter
methylation levels of ELF3 and ELF5 were significantly
higher in ccRCC tissues compared with those in normal tissues
(Fig. 2A and C). DNA promoter methylation level of ELF4
did not show a significant difference (Fig. 2B). There was no
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Biological process

Cellular component

Molecular function

Figure 3. Gene Ontology functional enrichment analysis of ELF3-5. (A) Biological process, (B) cellular component and (C) molecular function enrichment
analysis of ELF3-5. Blue represents normalized enrichment score <0. Orange represents normalized enrichment score >0. Dark blue and dark orange represent
FDR =<0.05. Light blue and light orange represent FDR >0.05. ELF, E47-like factor; FDR, false-discovery rate.

significant difference in the expression of ELF3-5 in patient
tissues at different cancer stages (Fig. 2D-F). By contrast, ELF3
and ELF4 expression exhibited differences depending on tumor
grade (Fig. 2G and H). There was no significant difference in the
expression of ELF5 in patient tissues at different tumor grades
(Fig. 2I). Additionally, ELF3-5 exhibited different expression
levels in clear cell type A (ccA) and B (ccB) subtypes (Fig. 2J-L).
Moreover, genetic variations of ELF3-5 were analyzed using
the cBioPortal database, revealing mutations, amplifications
and deep deletions in these three genes in some types of cancer
(Fig. S3A-C). Amplification variation existed in all three genes;
however, only ELF4 showed a high amplification variation in
ccRCC, exhibiting 1.27 and 0.02% incidence rates of amplifi-
cation and mutation, respectively (Fig. S3B). Furthermore, the

prognostic significance of ELF3-5 was investigated in patients
with ccRCC by assessing OS and DFS. The results indicated no
significant association between ELF3-5 expression and patient
survival (Fig. S4).

Enrichment analysis of ELF3-5 in ccRCC. GO and KEGG
enrichment analyses were performed to investigate the
potential functions and pathways associated with the differ-
ential expression of ELF3-5. Among the enrichment functions
showing the strongest association with genes co-expressed
with ELF3, ‘mitochondrial respiratory chain complex’,
‘chromosome segregation’, ‘oxidoreductase activity, acting on
NAD(P)H’ and ‘histone binding’ were associated with tumori-
genesis and tumor progression (Fig. 3A-C). The ELF4-related
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Figure 4. KEGG enrichment analysis of ELF3-5. KEGG enrichment analysis of (A) ELF3, (B) ELF4 and (C) ELF5. Blue represents normalized enrichment
score <0. Orange represents normalized enrichment score >0. Dark blue and dark orange represent FDR <0.05. Light blue and light orange represent FDR
>0.05. ELF, E47-like factor; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false-discovery rate.

functions included ‘adaptive immune response’, ‘T cell acti-
vation’, ‘mitochondrial respiratory chain complex assembly’,
‘mitochondrial protein complex’, and ‘cytokine receptor
activity’, which are associated with immune response and
malignant progression (Fig. 3A-C). The ELF5-related func-
tions included ‘proton transmembrane transport’, ‘regulation
of small GTPase-mediated signal transduction’, ‘mitochondrial
inner membrane’, and ‘nuclear speck’ (Fig. 3A-C). KEGG
pathway analysis revealed that ELF3 was mainly enriched
in ‘Oxidative phosphorylation’, ‘Cell cycle’, ‘Phospholipase
D signaling pathway’ and ‘cGMP-PKG signaling pathway’
(Fig. 4A). KEGG pathway analysis revealed that ELF5 was
mainly enriched in ‘Oxidative phosphorylation’, ‘Collecting
duct acid secretion’ and ‘“TNF signaling pathway’ (Fig. 4C).

These pathways were closely related to ccRCC development.
By contrast, ELF4 was associated with more immune-related
signaling pathways, including ‘Th17 cell differentiation’,
‘Primary immunodeficiency’, ‘T cell receptor signaling
pathway’, ‘Natural killer cell mediated cytotoxicity’, and ‘Thl
and Th2 cell differentiation’ (Fig. 4B). These results indi-
cated that the ELF4 expression network was closely related
to immune response and the immune microenvironment in
ccRCC.

Correlation analysis between ELF3-5 expression and immune
infiltrate. The TIMER database was used to investigate the
relationship between ELF3-5 expression and immune infil-
trate. The expression levels of ELF3 and ELF5 showed no
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significant association with most immune cell infiltration
levels (Fig. 5A and C). However, ELF4 exhibited a notable
correlation with various immune cells, including B cells, CD4*
T cells, macrophages, neutrophils and dendritic cells (Fig. 5B).
These findings suggested a specific role for ELF4 in immune
infiltration in ccRCC. Therefore, the present study further
investigated the effects of ELF4 on the proliferation, migra-
tion, invasion and immune escape of ccRCC cells.

ELF4 promotes ccRCC cell proliferation, migration and
invasion. ELF4 expression was detected in HK-2 and ccRCC
cells to validate its potential function. ELF4 exhibited high
expression levels in 769-P and 786-0 cells compared with
those in HK-2 cells (Fig. 6A). Subsequently, ELF4 expression
was knocked down in the two ccRCC cell lines (Fig. 6B). A
decrease in 769-P and 786-0 cell proliferation was detected
upon ELF4 knockdown compared with that in the si-NC
group (Fig. 6C and D). The colony formation assay results also
revealed that knockdown of ELF4 expression could reduce
the colony formation of ccRCC cells compared with that
in the si-NC group (Fig. 6E). Furthermore, Transwell assay
results indicated a reduction in cell migration and invasion in
the si-ELF4 group compared with those in the si-NC group
(Fig. 7A and B). These findings suggested that activating ELF4
may promote ccRCC cell proliferation, migration and invasion.

ELIF4 regulates M2 macrophage polarization and chemo-
taxis of M2 macrophages to ccRCC cells. M1 and M2
macrophage marker expression levels were detected in ccRCC
and macrophage co-culture experiments. In 769-P cells, higher
transcription levels of the M1 macrophage marker CXCL10
were detected in the si-ELF4 group compared with that in the
si-NC group (Fig. 8A). Conversely, the expression levels of the

M2 macrophage markers CD206 and CCL22 were lower in
the si-ELF4 group compared with those in the si-NC group
(Fig. 8B). Knockdown of ELF4 expression had no impact
on M1 marker expression in the 786-O cell and macrophage
co-culture system (Fig. 8C); however, it did decrease the expres-
sion levels of M2 markers (Fig. 8D). Regarding macrophage
chemotaxis, the present findings revealed that knockdown
of ELF4 in ccRCC cells did not regulate the migration rate
of M1 macrophages towards cancer cells (Fig. 8E); however,
it did inhibit the migration rate of M2 macrophages towards
cancer cells (Fig. 8F). These results suggested that ELF4 could
promote M2 macrophage polarization and chemotaxis of M2
macrophages to ccRCC cells.

Discussion

Abnormal expression of ELFs has been identified in various
malignant tumors, influencing their biological processes (28);
however, the regulatory mechanisms and clinical significance
of certain ELFs in ccRCC remain unclear. The present study
comprehensively analyzed the clinical significance and key
pathways associated with ELF3-5 in ccRCC using multiple
databases. Moreover, the proliferation-promoting effects of
the core gene ELF4 and its regulation of macrophages were
assessed in vitro.

The present study demonstrated that ELF3 and ELF5
exhibited lower expression levels in ccRCC tissues compared
with those in normal tissues, whereas ELF4 expression was
higher. Furthermore, the clinical significance of these three
key genes were explored in ccRCC. Previous research has
highlighted ELF3 as a methylation-driven gene in lung
adenocarcinoma (29). In addition, DNA methylation levels at
the ELF5 promoter region have been identified as potential
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breast-specific biological clocks foridentifying therisk of breast ~ The present study detected higher methylation levels of ELF3
cancer (30). Demethylation of ELF5 has also been explored and ELF5 in primary tumor tissues compared with those in
as a potential therapeutic strategy in urothelial cancer (31). normal tissues. Notably, ELF4 methylation has previously
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been reported to be significantly upregulated during liver
cell carcinogenesis (32), and hypermethylation of the ELF4
promoter region in colitis preparations has been associated
with disease progression to colorectal cancer (33). However, no
significant difference was observed in the methylation level of
ELF4 between ccRCC tissues and normal tissues in the present
study. Clinical significance serves a crucial role in exploring
the diagnostic value of biomarkers. ELF3 has been shown to
have clinical significance in non-small cell lung cancer, where
the inhibition of ELF3 mediated the synthetic lethality of
PARP inhibitor (34). In epithelial ovarian cancer, the expres-
sion levels of ELF5 were related to pathological surgical stage,
pathological grade and lymph node metastasis (13). Clinical
analysis has also revealed associations between ELF4 expres-
sion and tumor size, pathological grade and clinical stage in
squamous cell carcinoma of the cervix (35). In the present
study, ELF3 and 4 exhibited different expression patterns
across different grades, and ELF3-5 showed differential
expression levels in ccA and ccB subtypes. Regarding genetic
variations, all three genes exhibited amplification variations,
but it was only ELF4 that showed a high amplification varia-
tion in ccRCC. Kafita ez al (36) reported that high amplification
variation of ELF4 in cancer was associated with worse disease
outcomes and increased resistance to anticancer drugs. These
reports and findings highlighted the high clinical significance
of ELF3-5, particularly ELF4, in ccRCC.

ELF3-5, as members of a transcription factor family, have
been implicated in regulating tumor progression through
various signaling pathways. ELF3 can promote resistance in
gallbladder cancer cells via the PKMYT1/CDKI1 signaling
pathway (37), whereas ELF5 can inhibit the p53/p21 pathway,
leading to the induction of acute myeloid leukemia (38). In
glioblastoma, ELF4 controls genes associated with receptor
tyrosine kinase and receptor tyrosine kinase pathways (39).
Therefore, identifying the key regulatory pathways of these
three ELF genes was crucial for understanding the molecular
mechanisms underlying the impact of ETS family genes
on cancer cell development. ELF3-5 were revealed to be
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Figure 8. ELF4 knockdown inhibits M2 macrophage chemotaxis and polar-
ization in clear cell renal cell carcinoma. Effect of ELF4 on the expression
levels of (A) M1 and (B) M2 macrophage markers in macrophages, estimated
through 769-P cell co-culture experiments. Effect of ELF4 on the expression
levels of (C) M1 and (D) M2 macrophage markers in macrophages, estimated
through 786-0 cell co-culture experiments. Effect of ELF4 on the chemo-
taxis of (E) M1 and (F) M2 macrophages to cancer cells. ns, no significance;
“P<0.05, “P<0.01, "“P<0.001. ELF, E47-like factor; NC, negative control; si,
small interfering.

associated with various functions in the present study, including
biological regulation, metabolic processes, membrane func-
tions, protein binding and nucleic acid binding. Notably,
ELF4 was particularly linked to immune-related signaling
pathways. A previous study highlighted the critical involve-
ment of ELF4 in the cancer immune response (40). It has also
been reported to be associated with immune cell infiltration
and immune-related feature genes (CD14, CD163, CD33) in
cholangiocarcinoma (41). Similarly, the present study revealed
that ELF4 expression in ccRCC was closely related to the infil-
tration levels of multiple immune cell types compared with
ELF3 and ELF5. These results suggested an important role
for ELF4 in regulating cancer cell activity and tumor-related
immune cell infiltration.

Previous cancer studies have indicated that ELF4 functions
as an oncogene. It has been shown to promote neuroblastoma
proliferation and maintain an undifferentiated state (42).
ELF4 has also been implicated in endometrial cancer, where
it acts as an oncogene by binding to the CTNNBI promoter
in cancer cells (43). The present findings in ccRCC cell
lines further support the role of ELF4 in promoting cell
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proliferation, migration and invasion in 769-P and 786-O cell
lines. Moreover, abnormal ELF4 expression was shown to
influence the regulation of M2 polarization and the chemo-
taxis of macrophages to cancer cells. In lung cancer, ELF4
in macrophages has been shown to rescue immunotherapy
efficacy (44). ELF4 also exhibits transcriptional activation of
macrophage colony-stimulating factors in ovarian cancer (45).
These findings underscore the significance of ELF4 in
regulating cancer cell abilities, inducing M2 polarization of
macrophages, and their chemotaxis towards ccRCC cells. This
highlights the crucial role of ELF4 in the tumor microenviron-
ment of ccRCC.

The present study has certain limitations that should be
acknowledged. Firstly, the clinical significance of ELFs was
primarily assessed through bioinformatics analysis using public
databases; therefore, it is crucial to gather larger clinical samples
of ccRCC to further validate the clinical significance of ELFs.
Secondly, although the study uncovered the involvement of
ELF4 in macrophage polarization and chemotaxis, the immune
escape mechanism of ELF4 in ccRCC remains to be elucidated.
Future investigations should explore the regulatory effects
of ELF4 on other immune cell types in ccRCC. Moreover,
inconsistencies in the expression results of certain ELFs across
different databases necessitate additional sequencing data for
further verification. Finally, the specific molecular mechanism
by which ELF4 regulates ccRCC cells and M2 macrophages
warrants in-depth exploration. A number of the findings from
in vitro experiments also require future in vivo validation.

In conclusion, ELF members display varying degrees of
abnormal expression and serve important roles in ccRCC
tumorigenesis and progression. The present study comprehen-
sively analyzed the clinical significance and tumor-immune
interaction of ELF4. The results revealed that ELF4 was
significantly upregulated in ccRCC tumor tissues, indicating
its high clinical significance in ccRCC. The present study
further elucidated the promoting effects of ELF4 on ccRCC
cell proliferation, migration and invasion. Additionally, the
results suggested that ELF4 could regulate macrophage polar-
ization and chemotaxis to ccRCC cells. These findings provide
novel insights into our understanding of the involvement of
ELFs in ccRCC development.
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