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Simple Summary: Glioblastoma is the most prevalent and lethal brain tumor. Temozolomide is
usually used for the treatment of glioblastoma. The poor prognosis of the tumor is due to drug
resistance and tumor heterogeneity. The mechanism of the resistance to temozolomide is various
within the same tumor. The aim of the study was to clarify the mechanism of temozolomide resistance
and find methods to overcome temozolomide resistance in glioma. Inhibition of DNA repair (homol-
ogous recombination or base excision repair) resensitized resistant cells harboring different resistance
mechanism to temozolomide. Additionally, a bifunctional DNA-targeting agent, dianhydrogalactiol,
showed anti-tumor effect independent of MGMT and mismatch repair status. Further, inhibition
of checkpoint or homologous recombination enhanced dianhydrogalactiol-induced cytotoxicity in
temozolomide-resistant glioma cells. Although resistance to temozolomide is clinically important
issue, selecting suitable treatments for resistance mechanism can improve the prognosis of glioma.

Abstract: Resistance to temozolomide and intratumoral heterogeneity contribute to the poor progno-
sis of glioma. The mechanisms of temozolomide resistance can vary within a heterogeneous tumor.
Temozolomide adds a methyl group to DNA. The primary cytotoxic lesion, O6-methylguanine,
mispairs with thymine, leading to a futile DNA mismatch repair cycle, formation of double-strand
breaks, and eventual cell death when O6-methylguanine DNA methyltransferase (MGMT) is absent.
N7-methylguanine and N3-methyladenine are repaired by base excision repair (BER). The study
aim was to elucidate temozolomide resistance mechanisms and identify methods to overcome temo-
zolomide resistance in glioma. Several temozolomide-resistant clones were analyzed. Increased
homologous recombination and mismatch repair system deficiencies contributed to temozolomide
resistance. Inhibition of homologous recombination resensitized resistant cells with high homologous
recombination efficiency. For the mismatch repair-deficient cells, inhibition of BER by PARP inhibitor
potentiated temozolomide-induced cytotoxicity. Dianhydrogalactiol is a bifunctional DNA-targeting
agent that forms N7-alkylguanine and inter-strand DNA crosslinks. Dianhydrogalactiol reduced
the proliferation of cells independent of MGMT and mismatch repair, inducing DNA double-strand
breaks and apoptosis in temozolomide-resistant cells. Further, inhibition of chk1 or homologous
recombination enhanced dianhydrogalactiol-induced cytotoxicity in the cells. Selecting treatments
most appropriate to the types of resistance mechanisms can potentially improve the prognosis
of glioma.

Keywords: dianhydrogalactiol; drug resistance; glioma; PAPR inhibitor; temozolomide

1. Introduction

Glioblastoma is one of the most aggressive brain tumors, with a median survival of
about 1.5 years [1]. The standard treatment for glioblastomas is maximal safety resection,
followed by radiation therapy and temozolomide (TMZ) [2]. TMZ is an alkylating agent
that adds a methyl group to DNA. TMZ-induced DNA methylation of 5%, 60% to 70%,
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and 10% to 20% occur at the O6 position of guanine, N7 position of guanine, and N3
position of adenine, respectively [3]. O6 methylguanine is repaired by O6-methylguanine
DNA methyltransferase (MGMT), whereas N7 methylguanine and N3 methyladenine are
repaired by base excision repair (BER) [4]. TMZ-induced cytotoxicity is mainly derived
from O6-methylguanine. O6-methylguanine mispairs with thymine, and this mispair is
repaired by the mismatch repair (MMR) system. The futile cycles of MMR have been
shown to induce DNA double-strand breaks (DSBs) and eventually cell death [5].

TMZ-induced N7-methylguanine and N3-methyladenine are sensed by the BER path-
way [6]. DNA glycosylases recognize and excise damaged bases and initiate the repair
process. The poly (ADP-ribose) polymerase (PARP) family of enzymes coordinates DNA
damage responses and binding to strand breaks in DNA. After binding, PARP becomes
catalytically activated and synthesizes PAR polymers attached to itself and other repair
factors. The BER complex is recruited more efficiently to sites of DNA damage [7,8].

Dianhydrogalactiol (DAG) is a bifunctional DNA-targeting agent forming N7-alkylguanine
and inter-strand DNA crosslinks [9]. DAG is a small water-soluble molecule that can cross
the blood–brain barrier (BBB) [10]. DAG has been approved for the treatment of chronic
myeloid leukemia and lung cancer in China [11].

Because there have been no additional effective treatment for recurrent tumors after
treatment of TMZ, it is very important to investigate potential methods to overcome
resistance in gliomas. On the other hand, because glioblastoma is a heterogeneous tumor,
the mechanisms of resistance to TMZ are considered to be different. The study aim was to
investigate the mechanisms of resistance to TMZ by using clones of resistant glioma cells,
and find the appropriate treatment for each resistant cell.

2. Materials and Methods
2.1. Cell Culture, Creation of TMZ-Resistant Cells, and Reagents

U251, U87, and SF767 cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37 ◦C in
a 5% CO2 atmosphere. TMZ-resistant clones (U251, U87) were derived from the TMZ-
sensitive U251 or U87 cells by culturing them with increasing doses of TMZ, as described
previously [12].

Cells were treated with each reagent: TMZ (LKT Laboratories, St. Paul, MN, USA),
VAL-083 (MedChemExpress, Shanghai, China), talazoparib, veliparib, MK-8776 (Selleck
Chemicals, Houston, TX, USA), and Olaparib (ChemScene, Monmouth Junction, NJ, USA).

2.2. Genetic Suppression of RAD51, or MSH6

U251-derived TMZ-resistant cells were plated at 105/mL in 6-well plates in DMEM
media without antibiotics. Twenty-four hours later, the cells were transfected with an
optimized amount (5 nmol/L) of siRNA targeting human RAD51 (Dharmacon, Lafayette,
CO, USA) or non-targeting siRNAs using DharmaFECT reagent (Dharmacon) according to
the manufacturer’s protocol as described previously [13].

2.3. Protein Extraction and Immunoblot Analyses

Cells were lysed in RIPA Lysis and Extraction Buffer (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 1× PhosStop and protease inhibitor cocktail
(Roche, Basel, Switzerland). Protein (30 µg) was used for western blot analysis using each
primary antibody and appropriate horseradish peroxidase-conjugated secondary antibody.

2.4. Cell Cycle Studies

At each time point, attached and floating cells were collected, fixed, and stained with
PI (Sigma-Aldrich, St. Louis, MO, USA) as described [14]. Cells were subjected to flow
cytometry and analysis using a Gallios (Beckman Coulter Life Sciences, Brea, CA, USA)
and Kaluza analysis software version 2.1 (Beckman Coulter Life Sciences, Brea, CA, USA).
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2.5. Immunofluorescence Studies

For immunofluorescence studies, cells were seeded onto four-well glass coverslips, in-
cubated with TMZ and/or talazoparib or MK-8776 and/or VAL-083, washed in phosphate-
buffered saline (PBS), fixed with 4% paraformaldehyde in PBS (15 min, room temperature),
rinsed with PBS, and blocked in PBS containing 0.1% Triton-X and 10% FBS (1 h, room
temperature). The cells were stained with anti-Ser-139-phosphorylated H2AX antibody
(Cell Signaling Technology, Danvers, MA, USA) at 1:1000 dilution or anti RAD51 antibody
at 1:500 dilution followed by Alexa 488 (Cell Signaling Technology) or Alexa 594 (Thermo
Fisher Scientific, Waltham, MA, USA) conjugated secondary antibody (30 min, room tem-
perature). Cells were washed, counterstained with 4′,6′ diamidino-2-phenylindole, and
mounted with fluorescence mounting medium (Dako, Santa Clara, CA, USA). Quantitative
analysis was performed by using the number of cells with nuclei containing >5 γ-H2AX or
RAD51 foci determined by fluorescence microscopy [13].

2.6. Colony Formation Efficiency

The colony formation efficiencies of the control and drug-treated cells were determined
by performing a colony formation assay, as previously described [14]. Briefly, the cells were
plated at a concentration of 100 cells/well into 6-well culture plates 2 days prior to drug
treatment. After incubation with each drug, the cells were incubated in a drug-free medium
and allowed to form colonies. The cells were stained with methylene blue (Sigma-Aldrich,
St. Louis, MO, USA), and colonies with >50 cells were counted 14 days after drug exposure.

2.7. Measurement of HR Efficiency

An HR efficiency assay was performed by using a quantitative polymerase chain
reaction-based HR assay kit (Norgen Biotek Corp, Thorold, ON, Canada), as described
previously [13]. Briefly, the system contains two plasmids with a different mutation in
its lacZ coding region. After cotransfection, the total cellular DNA was isolated. A set
of universal primers that amplify all plasmid DNA or a set of primers that only amplify
plasmid DNA generated by HR of the transfected plasmids were used in qPCR reactions.
The amount of recombinant product for each reaction was calculated by comparing the
cycle number at the point of inflection of the amplification curve generated using the
HR-specific primers to that using universal primers, and converting the difference in cycle
number to a DNA amount by comparison with a standard curve generated using universal
primers and different amounts of input DNA.

2.8. Statistical Analyses

Data are reported as the mean ± standard error of at least three experiments. When
two groups were compared, the unpaired Student’s t-test was applied. When multiple
groups were evaluated, the one-way ANOVA test with post hoc Turkey–Kramer multiple
comparisons test was used, or Dunnett’s test was used, comparing to the value of untreated
cells. Values of p < 0.05 were considered to be indicative of statistical significance.

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. TMZ-Resistant U251 Clones Showed Different Response to TMZ

To start the experiments, the characteristics of TMZ-resistant U251 clones were evalu-
ated. The colony formation efficiency assay revealed that each clone showed resistance to
TMZ (Figure 1A). After exposure to TMZ, different patterns of cell cycle phase distributions
were observed (Figure 1B). Because several mechanisms are associated with resistance
to TMZ, such as MMR deficiency and high expression of MGMT [15,16], the expression
of MMR-associated proteins and MGMT were measured. The clones showed different
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patterns of MLH1, MSH2, MSH6, and PMS2 expression, but did not show the expression
of MGMT (Figure 1C, Figure S1).
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Figure 1. TMZ-resistant U251 clones had different characters. (A) Colony formation efficiency
of U251 and U251-derived TMZ-resistant clones following TMZ exposure (0–100 µM, 3 h). (B)
Fluorescence-activated cell sorting (FACS) analysis of cell cycle distribution in U251 (parental)
and U251-derived TMZ-resistant clones 3 days after TMZ (100 µM, 3 h) exposure. Each clone
showed different patterns of cell cycle phase distributions. (C) Western blot analysis of MMR-
related proteins (MLH1, MS2H, MSH6, and PMS2), ABCG2, MGMT, and β-actin levels in U251
parental, U251TMZR#3, and U251TMZR#8 cells. SF767 cells were used as positive control for
MGMT expression. (D) FACS analysis of cell cycle distribution in U251 (parental), U251TMZR#3,
and U251TMZR#8 cells 3–7 days after TMZ (100 µM, 3 h) exposure. TMZ-induced G2/M arrest
rmained at least by day 7 in U251 (parental) cells. TMZ-induced G2/M arrest recovered sooner in
U251TMZR#3, whereas TMZ did not induce G2/M arrest in U251TMZR#8. (E) Quantitative data
from immunofluorescence analysis of γ-H2AX foci in U251, U251TMZR#3, and U251TMZR#8 cells 3
and 7 days after TMZ exposure (100 µM, 3 h)., * p < 0.05.
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TMZ-resistant U251 #3 (U251TMZR#3) clone, which showed the largest G2/M pop-
ulation, and TMZ-resistant U251 #8 (U251TMZR#8) clone, which showed the smallest
G2/M population (Figure 1B), were used in further experiments. Expression of MSH6
was not suppressed in #3 clone but was in #8 clone (Figure 1C). In U251TMZR#3 clone
TMZ-induced G2/M arrest recovered sooner than in parental cells, whereas TMZ did not
induce G2/M arrest in #8 clone (Figure 1D). Consistent with these findings, TMZ-induced
γ-H2AX foci disappeared more rapidly in U251TMZR#3 clone than in parental cells, and
the foci did not show as great of a change between with and without TMZ in U251TMZR#8
(Figure 1E).

3.2. Inhibition of HR Resensitized U251TMZR#3 Clone, But Not #8 Clone, to TMZ

TMZ-induced DNA DSBs are repaired in human cells by the HR process [17,18]. HR re-
quires a variety of proteins, including Rad51 accumulating at the sites of DSBs [13]. Parental
and resistant U251 cells exhibited a similar pattern of Rad51 foci after TMZ exposure to the
results of γ-H2AX foci (Figure 2A), suggesting that an HR-related event was activated in
U251TMZR#3 clone. We used a plasmid recombination-based method [13] to determine
whether HR was increased in #3 clone. Compared with parental cells, U251TMZR#3 clone
showed higher HR ability (Figure 2B). To confirm that the increased HR was responsible
for the resistance to TMZ in the #3 clone, further studies using a genetic inhibitor of RAD51
were performed. Introduction of RAD51 siRNA inhibited the ability of the #3 clone to
shorten TMZ-induced G2/M arrest, induced apoptosis, and resensitized U251TMZR#3
clone to TMZ (Figure 2C–F).

3.3. PARP Inhibitor Resensitized U251TMZR#8 Clone to TMZ

Because MMR-related proteins were suppressed in U251TMZR#8 clone (Figure 1C),
the ability of MMR was considered to be inhibited. To confirm that loss of MSH6 was
associated with TMZ-resistance, U251 cells were treated with siRNA targeting MSH6. Intro-
duction of MSH6 siRNA inhibited TMZ-induced cytotoxicity (Figure 3A,B). Because MMR
was abolished in U251TMZR#8 clone, the effect of the TMZ-induced O6 methylguanine-
associated pathway was not expected. Therefore, we investigated another pathway via
BER. Talazoparib, a PARP inhibitor, suppressed the clonogenicity of U251TMZR#8 clone in
a dose-dependent manner (Figure 3C). Talazoparib resensitized the clone to TMZ at a low
concentration that had a lesser effect on colony formation efficiency with talazoparib alone
(Figure 3D). The combination treatment of talazoparib and TMZ induced G2/M arrest,
DNA DSBs, and apoptosis in the clone (Figure 3E–G). To check that the effect of talazoparib
on TMZ-induced cytotoxicity was not specific to the clone #8, other U251-derived resis-
tant clones with suppressed expression of MMR-related proteins were used in the same
experiments. The synergistic effect of talazoparib and TMZ was demonstrated in these
clones (Figure 3H). The effects of talazoparib on cell cycle distribution and on expression of
apoptosis-associated proteins were similar to those on #8 clone (Figure S2A,B). To confirm
that the effect was not specific to resistant clones derived from U251, other resistant clones
from U87 were used. These resistant clones showed suppressed MSH6 expression and no
expression of MGMT (Figure S3A). Talazoparib resensitized TMZ-resistant U87 clones to
TMZ, too (Figure 3I). The combination treatment of talazoparib and TMZ induced G2/M
arrest and apoptosis in U87-derived resistant cells (Figure S3B,C). To determine if this
resensitization was specific to talazoparib or was due to inhibition of PARP, other PARP
inhibitors, veliparib or olaparib was used. The synergistic effect of TMZ and veliparib
or olaparib was also observed, showing that inhibition of PARP contributed to the effect
(Figure 3J).
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Figure 2. Inhibition of HR resensitized the TMZ-resistant U251 cells harboring high HR to TMZ.
(A) Quantitative data from immunofluorescence analysis of Rad51 foci in U251, U251TMZR#3, and
U251TMZR#8 cells 3 and 7 days after TMZ exposure (100 µM, 3 h). (B) Homologous recombination
activity as determined by an in vivo plasmid-based recombination reporter assay. Value of the
U251 cells was set at 1. (C) Western blot analysis of RAD51 and β-actin levels in U251TMZR#3
and U251TMZR#8 cells three days following exposure to scramble or RAD51-targeting siRNA.
(D) Fluorescence-activated cell sorting analysis of cell cycle distribution in control and RAD51-
suppressed U251TMZR#3 and #8 cells 3 and 5 days after TMZ exposure (100 µM, 3 h). (E) Western blot
analysis of cleaved PARP, C-leaved caspase 3, and β-actin levels in U251 parental, U251TMZR#3, and
U251TMZR#8 cells. (F) Colony formation efficiency of control and RAD51-suppressed U251TMZR#3
and #8 cells following TMZ exposure (0–100 µM, 3 h)., * p < 0.05.
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Figure 3. PARP inhibitor resensitized the TMZ-resistant U251 cells harboring MMR deficiency to TMZ. (A) Western blot
analysis of MSH6 and β-actin levels in U251 cells treated with siRNA targeting MSH6 or non-targeting siRNA. (B) Colony
formation efficiency of control and MSH6-suppressed U251 cells following TMZ exposure (0–100 µM, 3 h). (C) Colony
formation efficiency of U251TMZR#8 cells following talazoparib exposure (0–25 nM, 4 days). (D) Colony formation efficiency
of U251TMZR#8 cells following talazoparib (2.5 nM, 4 days), and/or TMZ (100 µM, 3 h). (E) Fluorescence-activated cell
sorting (FACS) analysis of cell cycle distribution in U251TMZR#8 after talazoparib and/or TMZ exposure. (F) Quantitative
data from immunofluorescence analysis of γ-H2AX foci in U251TMZR#8 cells treated with talazoparib and/or TMZ. (G)
Western blot analysis of cleaved PARP, cleaved caspase 3, and β-actin levels in U251TMZR#8 cells treated with talazoparib
and/or TMZ. (H) Colony formation efficiencies of U251TMZR#4, #5, #7, and #9 cells following talazoparib (2.5 nM, 4 days)
and/or TMZ (100 µM, 3 h). (I) Colony formation efficiency of U87TMZR#11, #14, #17, and #20 cells following talazoparib
(2.5 nM, 4 days) and/or TMZ (100 µM, 3 h). (J) Colony formation efficiency of U251TMZR#8, #5, and U87TMZR#11 cells
following veliparib (1 µM, 4 days) or olaparib (1 µM, 4 days) and/or TMZ (100 µM, 3 h)., * p < 0.05.
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3.4. PARP Inhibitor Resensitized Cells with High Expression of MGMT to TMZ

Because the TMZ-induced methyl group at the O6 position of guanine is removed
by MGMT, cells with high expression of MGMT are resistant to TMZ, although the TMZ-
resistant clones made in this study did not show the increased expression of MGMT. To
confirm that the effect of PARP inhibitor on TMZ in cells with high MGMT expression,
SF767 cells were treated with TMZ and talazoparib. The combination treatment reduced
colony formation efficiency, increased the G2 population, and induced apoptosis in SF767
cells (Figure 4A–D).
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β-actin levels in SF767 cells. U251 was used as negative control for MGMT expression. (B) Colony formation efficiency
of SF767 cells following talazoparib (2.5 nM, 4 days), and/or TMZ (100 µM, 3 h). (C) Fluorescence-activated cell sorting
analysis of cell cycle distribution in SF767 cells after talazoparib and/or TMZ exposure. (D) Western blot analysis of cleaved
PARP and β-actin levels in SF767 cells treated with talazoparib and/or TMZ. *, p < 0.05.
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3.5. DAG Induced Cytotoxicity in TMZ-Resistant Glioma Cells Independent of MMR Deficiency
or MGMT Expression

Other drugs having different mechanisms of cytotoxicity from TMZ-induced cyto-
toxicity were expected to be effective in TMZ-resistant glioma cells. The clinical-grade
DAG analog VAL-083 reduced the proliferation of U251TMZR#8, increased the G2/M
population and induced DNA DSBs (Figure 5A–C). Western blot revealed that VAL-083
activated p-chk1 and induced apoptosis (Figure 5D). Because these results were also found
in other TMZ-resistant U251, U87 clones, or glioma cells with MGMT expression, it is
possible that the effect of VAL-083 was independent of the status of p53, MMR, or MGMT
(Figure S4A–C).

Cancers 2021, 13, x  10 of 18 
 

 

3.5. DAG Induced Cytotoxicity in TMZ-Resistant Glioma Cells Independent of MMR 
Deficiency or MGMT Expression 

Other drugs having different mechanisms of cytotoxicity from TMZ-induced cyto-
toxicity were expected to be effective in TMZ-resistant glioma cells. The clinical-grade 
DAG analog VAL-083 reduced the proliferation of U251TMZR#8, increased the G2/M 
population and induced DNA DSBs (Figure 5A–C). Western blot revealed that VAL-083 
activated p-chk1 and induced apoptosis (Figure 5D). Because these results were also found 
in other TMZ-resistant U251, U87 clones, or glioma cells with MGMT expression, it is pos-
sible that the effect of VAL-083 was independent of the status of p53, MMR, or MGMT 
(Figure S4A–C). 

 
Figure 5. DAG induced cytotoxicity in TMZ-resistant glioma cells independent of MMR deficiency 
or MGMT expression. (A) Colony formation efficiency of U251TMZR#8 cells following VAL-083 

Figure 5. DAG induced cytotoxicity in TMZ-resistant glioma cells independent of MMR deficiency or MGMT expression.
(A) Colony formation efficiency of U251TMZR#8 cells following VAL-083 exposure (0–5 µM, 3 days). (B) Fluorescence-
activated cell sorting analysis of cell cycle distribution in U251TMZR#8 after VAL-083 exposure. (C) Quantitative data from
immunofluorescence analysis of γ-H2AX foci in U251TMZR#8 cells treated with VAL-083. (D) Western blot analysis of
cleaved PARP, cleaved caspase 3, phosphor-chk1, phosphor-chk2, and β-actin levels inU251TMZR#8 cells treated with
VAL-083. *, p < 0.05.



Cancers 2021, 13, 2570 10 of 16

3.6. Chk1 Inhibitor Enhanced the Cytotoxicity Induced by DAG in TMZ-Resistant Glioma Cells

Because the expression of p-chk1 was increased in the U251TMZR#8 clone treated
with VAL-083 (Figure 5D), the effect of a chk1 inhibitor on the VAL-08-induced cytotoxicity
was evaluated. A chk1 inhibitor, MK-8776, increased γ-H2AX foci and induced apoptosis
in the U251TMZR#8 clone treated with VAL-083 (Figure 6A,B). A colony formation assay
revealed that MK-8776 enhanced the cytotoxicity effect of VAL-083 on the U251TMZR#8
clone (Figure 6C).
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3.7. Inhibition of HR Enhanced the Cytotoxicity Induced by DAG in TMZ-Resistant Glioma Cells

A fluorescence immunoassay using Rad51 and γ-H2AX revealed that VAL-083 in-
creased the Rad51 and γ-H2AX foci, and these foci were partially colocalized (Figure 7A).
These data suggested that HR was associated with the repair of VAL-083-induced DNA
DSBs. Therefore, to determine if the inhibition of HR affected the cytotoxicity induced by
VAL-083, further experiments using siRNA for Rad51 were performed. The cells treated
with VAL-083 and siRNA for Rad51 showed increased G2/M population cells, γ-H2AX
foci, and apoptotic cells relative to the cells treated with VAL-083 and non-targeted siRNA
(Figure 7B–E). Compared with the introduction of non-targeted siRNA, introduction of
RAD51 siRNA enhanced the cytotoxicity of VAL-083 in the U251TMZR#8 clone (Figure 7F).
These results revealed that VAL-083-induced DNA DSB was repaired by HR, and inhibition
of HR enhanced the VAL-083-induced cytotoxicity in TMZ-resistant glioma cells.
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4. Discussion

The resistance to TMZ is a serious problem clinically. Because glioblastoma is het-
erogeneous tumor, the mechanisms of resistance to TMZ have been considered to vary.
Corresponding to the heterogeneity of glioblastoma, several monoclonal clones resistant to
TMZ were made, and each mechanism of resistance to TMZ was evaluated in the study
(Figure 8A). Consistent with clinical reports [15], resistance to TMZ in most clones was
associated with deficient MMR. The expression of MGMT was not found in these resis-
tant clones, consistent with previous studies [19,20] although some authors reported that
MGMT activity was increased in recurrent cases relative [21].

Cancers 2021, 13, x  14 of 18 
 

 

4. Discussion 
The resistance to TMZ is a serious problem clinically. Because glioblastoma is heter-

ogeneous tumor, the mechanisms of resistance to TMZ have been considered to vary. Cor-
responding to the heterogeneity of glioblastoma, several monoclonal clones resistant to 
TMZ were made, and each mechanism of resistance to TMZ was evaluated in the study 
(Figure 8A). Consistent with clinical reports [15], resistance to TMZ in most clones was 
associated with deficient MMR. The expression of MGMT was not found in these resistant 
clones, consistent with previous studies [19,20] although some authors reported that 
MGMT activity was increased in recurrent cases relative [21]. 

 Figure 8. Mechanisms of resistance to temozolomide and methods to overcome the resistance. (A)
Mechanisms of TMZ-induced DNA damage and mechanism of resistance to the action (B) The
way to overcome TMZ-resistant cells due to increased homologous recombination. Inhibition of
homologous recombination sensitize the cells to TMZ if MGMT is absent and MMR is intact. (C) The
way to overcome TMZ-resistant cells due to MMR deficiency or high-expressed MGMT. Inhibition of
PARP suppresss base excision repair that restore TMZ-induced N7-meG and N3-meA, which leads
cell death.



Cancers 2021, 13, 2570 13 of 16

TMZ-induced DNA DSBs have been reported to be repaired by HR [22]. Because TMZ-
induced DNA DSBs and the foci of RAD51 disappeared in parallel, HR was considered to
have contributed to the resistance to TMZ in U251TMZR#3 clone. Although there has been
no report showing that increased HR was consequent to the resistance in clinical samples
of glioblastoma, U251TMZR#3 showed high HR ability compared with parental U251 cells.
Importantly, inhibition of HR was found to be useful for resensitizing these types of cells
to TMZ (Figure 8B). Development of inhibitors of HR has been promising.

Inhibition of HR did not enhance TMZ-induced cytotoxicity in U251TMZR#8 where
MMR-related proteins were suppressed. Previously we showed that none of G2 checkpoint
inhibitors resensitized glioma cells with MMR deficiency, suggesting that it was hard to en-
hance TMZ-induced cytotoxicity in MMR-deficient cells by modifying O6-methylguanine-
related pathway [23]. Because TMZ-induced N7-methylguanine and N3-methyladenine
were repaired by BER [4] the combination treatment of a BER inhibitor, such as PARP
inhibitors and TMZ was found to be effective (Figure 8C). The effect of a PARP inhibitor
on enhancement of TMZ-induced cytotoxicity was shown in several resistant clones orig-
inated from U251 (p53 mutant) or U87 (p53 wild type), suggesting that the effect was
independent of the status of p53. The effect was also found in resistant cells originated
from U87 transfected HPV16E6 (U87-E6) [5] (Figure S5), meaning the effect was not related
to p53. Because approximately 40% of primary glioblastomas showed p53 mutations [24],
the p53-independent effect was very encouraging.

In clinical cases, approximately half of glioblastomas express MGMT at the primary
tissues [25], and TMZ is less effective in those cases. The combination treatment of a PARP
inhibitor and TMZ was shown to be effective in cells with MGMT expression (Figure 8C).
On the basis of these results, the combination treatment of a PARP inhibitor and TMZ
appears to be promising for the treatment of glioma harboring several types of resistant
mechanisms. However, in a previous study using an orthotopic tumor model, combined
treatment of talazoparib with TMZ did not increase survival relative to that of TMZ
alone [26]. The researchers explained that lack of the talazoparib effect was due to the
limitation of transportation through the BBB. On the other hand, veliparib, which can
penetrate the BBB, has been shown to sensitize TMZ in TMZ-sensitive cells in vivo [27,28],
but it did not enhance the effect of TMZ on TMZ-resistant cells [27]. Another PARP inhibitor,
olaparib, was reported to penetrate the core and margins of recurrent glioblastoma [29].
Several ongoing clinical trials are using these PARP inhibitors, and several biomarkers for
good responses have been observed [30,31]. Development of a method to deliver PARP
inhibitors to intracranial tumors will contribute to studies on improvement of survival in
gliomas. As other mechanisms affecting the response to TMZ, ABCG2 has been reported to
be associated with the resistance to TMZ [31,32]. However, the expression of ABCG2 was
not changed in our resistant clones compared with parental cells as shown in Figure 1C.

Recently, a new type of DNA alkylating agent, VAL-083, has been used in a clinical
trial for treatment of glioblastoma [33]. Importantly, VAL-083 crosses the BBB and pref-
erentially accumulates in tumor tissue [10]. VAL-083 reduced cellular proliferation in a
dose-dependent manner in a subcutaneous xenograft tumor model [33]. Our study showed
that VAL-083 induced cytotoxicity in cells with several types of resistance mechanisms,
which demonstrated that its activity was independent of the status of MGMT, MMR, and
p53. This universal effect is expected to lead to good antitumor response for treatment of
gliomas.

Finally, we investigated methods to enhance VAL-083-induced cytotoxicity. We
showed that VAL-083 induced p-chk1 activation and G2/M arrest. Because the dam-
age induced by VAL-083 was repaired during the G2/M phase, inhibition of chk1 was
considered to enhance the cytotoxicity induced by VAL-083. Our data suggested that a
chk1 inhibitor suppresses the repair of VAL-083-induced DSBs, which leads to apoptosis
in cells.

Because γ-H2AX foci and Rad51 foci were co-localized in the cells treated with VAL-
083, VAL-083–induced DNA DSBs were suggested to be repaired by HR, which was
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consistent with the previous report using lung cancer [34]. Therefore, inhibition of HR was
supposed to increase the VAL-083–induced DNA damage. Genetic inhibition of Rad51
indeed heightened the effect of VAL-083 on reduction of cell proliferation. By combined
treatment with a chk1 inhibitor or HR inhibitor, the dosage of VAL-083 could be reduced to
avoid its adverse effect. Although VAL-083 has been investigated in clinical trials but not
yet approved for gliomas, it has been approved for chronic myeloid leukemia and lung
cancer in China. After approval, VAL-083 will help to improve the prognosis of recurrent
gliomas already treated with TMZ.

5. Conclusions

This study demonstrated that several mechanisms were associated with resistance
to TMZ even in the same glioma cells, which is similar to the TMZ resistance observed
in real patients with glioma. Additionally, the study identified methods for overcoming
each mechanism of resistance. Selecting treatments appropriate for the various types of
resistance mechanisms potentially could improve the prognosis of patients with gliomas.
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.3390/cancers13112570/s1, Figure S1: The expression of MMR-related proteins in U251 parental and
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with TMZ. Figure S3: Effect of talazoparib on TMZ-resistant U87 cells treated with TMZ. Figure S4:
Effect of VAL-083 on TMZ-resistant glioma cells. Figure S5: Effect of talazoparib on TMZ-resistant
U87-E6 cells treated with TMZ.
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