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a b s t r a c t 

The potential existence of spatial clusters in childhood can- 

cer incidence is a debated topic. Identification of rare disease 

clusters in general may help to better understand disease eti- 

ology and develop preventive strategies against such entities. 

The incidence of newly diagnosed childhood malignancies 

under 15 years of age is 140/1,0 0 0,0 0 0. In this context, the 

subgroup of nephroblastoma represents an extremely rare 

entity with an annual incidence of 7/1,0 0 0,0 0 0. We evaluated 
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widely used statistical approaches for spatial cluster de- 

tection in childhood cancer (Ref. Schündeln et al., 2021, 

Cancer Epidemiology ). For the simulation study, random 

high risk clusters of 1 to 50 adjacent districts (NUTS-level 

3, nomenclature des unités territoriales statistiques) were 

generated on the basis of the 402 German administrative 

districts. Each cluster was simulated with different relative 

risk levels (1 to 100). For each combination of cluster size 

and risk level 20 0 0 iterations were performed. Simulated 

data was then analyzed by three local clustering tests: 

Besag-Newell method, spatial scan statistic and the Bayesian 

Besag-York-Mollié approach (fit by Integrated Nested Laplace 

Approximation). The performance characteristics of all 

three methods were systematically documented (sensitivity, 

specificity, positive/negative predictive values, exact- and 

minimum power, correct classification, positive/negative 

diagnostic likelihood and false positive/negative rate). 

This data article links to a Mendeley online repository which 

includes the raw data of simulated high-risk clusters and 

simulated cases on the district level for an all-childhood- 

malignancy scenario as well as for cases of nephroblastoma. 

These data was used for the evaluation of the three cluster 

detection methods. The R code for simulation and analysis 

are available from GitHub. 

The article also includes analyzed data summarizing the per- 

formance of the cluster detection tests in very rare dis- 

ease entities, using the example of simulated nephroblas- 

toma cases. 

The raw data from the study can be used for benchmarking 

analyses applying different spatial statistical methods sys- 

tematically and evaluating their performance characteristics 

comparatively. The analyzed data from the nephroblastoma 

example can be useful to interpret the performance of the 

three applied local cluster detection tests in the setting of ex- 

tremely rare disease entities. As a practical application, data 

and R code can be used for performance analyses when plan- 

ning to establish surveillance systems for rare disease enti- 

ties. 

© 2020 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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bbreviations 

N Besag-Newell 

YM Bayesian Besag-York-Mollié

C Correct classification 

P Correct proportion 

P Exact power 

NR False negative rate 

PR False positive rate 

NLA Integrated Nested Laplace Approximation 

CB Monte Carlo Bias 

P Minimum power 

DL Negative diagnostic likelihood 

http://creativecommons.org/licenses/by/4.0/
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NPV Negative predictive value 

NUTS Nomenclature des unités territoriales statistiques 

PDL Positive diagnostic likelihood 

PPV Positive predictive value 

Sens Sensitivity 

Spec Specificity 

SSS Spatial scan statistics 

Specifications Table 

Subject Epidemiology 

Specific subject area Cancer Epidemiology, Childhood Cancer, Detection of Spatial Clusters, Statistical 

Epidemiology 

Type of data Downloadable Table: Complete analyzed results from simulation study 

Downloadable RData files: Complete raw data of simulation Table: Summary of 

analyzed results from simulation study 

Graph: Summary of analyzed results from simulation study 

How data were acquired Baseline data: 

Database of Global Administrative Areas, GADM, Version 3.6. [1] 

German Feral Statistical Office (German population data) [2] 

Simulated data: 

R environment for statistical computing, version 3.5.3 [3] 

RStudio platform, version 1.1.456 [4] 

R package SpatialEpi, version 1.2.3 [5] 

R package R-INLA, version 18.07.12 [6] 

Computational implementation of the simulation study are provided online at 

https://github.com/Pediatrics/Childhood- Cancer- Study 

Data format Raw data: RData file 

Analyzed data: Excel file 

Parameters for data collection High-risk clusters of defined size (1 to 50 adjacent districts) were randomly 

assembled on the district level in Germany. At baseline relative risk of 1 

(RR = 1), the incidence of nephroblastoma was set as 7/1,0 0 0,0 0 0 for all 

pediatric cancer cases as 140/1,0 0 0,0 0 0 [7] . Each high-risk cluster was 

simulated with 10 different RR-levels (1 to 100). For each combination 2000 

iterations were done. 

Description of data collection Simulated raw data, consisting of randomly assembled clusters and simulated 

cases, was stored in RData files. Subsequently the simulated data was analyzed 

by Besag-Newell method, spatial scan statistic and Bayesian Besag-York-Mollié

approach fit by Integrated Nested Laplace Approximation. 

Data source location Pediatric Hematology and Oncology 

Department of Pediatrics III 

University of Duisburg-Essen 

Essen, Germany 

Data accessibility 1 Complete raw data of the simulation in the Mendeley repository: 

Schündeln, Michael (2020), “Childhood Cancer Cluster Simulation”, 

Mendeley Data, V4, https://data.mendeley.com/datasets/3hrg9tpsx9/4 

2 Summary of analyzed data with the article 

3 Complete analyzed data in the Mendeley Repository (see above) 

Related research article M.M. Schündeln, T. Lange, M. Knoll, C. Spix, H. Brenner, K. Bozorgmehr, C. 

Stock, Statistical Methods for Spatial Cluster Detection in Childhood Cancer 

Incidence: A Simulation Study, Cancer Epidemiol. 2020. 

Value of the Data 

• The raw data from this study can be used for benchmarking analyses when applying other

statistical methods and evaluating their performance characteristics systematically. 

• The data is of benefit for researchers investigating the spatial epidemiology of extremely rare

disease entities. 

https://github.com/Pediatrics/Childhood-Cancer-Study
https://data.mendeley.com/datasets/3hrg9tpsx9/4
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• The analyzed data from the nephroblastoma example can be useful to interpret the com-

parative performance of local cluster detection tests in the setting of extremely rare disease

entities. 

• Data and R code can be used for performance analyses when planning to establish surveil-

lance systems for various disease entities. 

ata Description 

aw data 

The aim of the study was to evaluate three local clustering tests: Besag Newell (BN), spa-

ial scan statistics ( SSS ) and the Bayesian Besag-York-Mollié approach (fit by Integrated Nested

aplace Approximation). To measure their performance, the tests were conducted with simulated

ata: Randomly assembled high-risk clusters of adjacent districts, increasing in size ( Cluster ) and

n various risk levels ( RR ) were generated. The simulation process is described in detail in para-

raph 2.3. 

The raw data, generated by the simulation is presented online in the Mendeley repository

 https://data.mendeley.com/datasets/3hrg9tpsx9/4 ). In the online repository, the raw data for

he nephroblastoma incidence simulation is documented in the file "NephroblastomaSimula-

ion.RData". The file for the simulation of the all-childhood-malignancies scenario is in the file

AllMalignancies.RData". Both files can be loaded into the statistical software R. Each file con-

ains six lists for the different cluster sizes ("Cluster Size X"). Within each of these lists 20 0 0

imulations for clusters in 10 different risk levels ("RR Y Cluster"). Corresponding to each run of

imulation, the simulated cases for each of the respective scenario ("RR Y SimCases") are found.

he files also contain the population of children under 15 years for each district (“District Popu-

ation”) as published by the German Federal Statistical Office[2]. In addition the expected cases

or the entities, all malignancies or nephroblastoma, (“Expected Cases”) per district, based on

he expected incidence rates are given within the files. 

The adjacency matrix for the 402 German districts is added as a separate RData file (Adja-

ency Matrix.RData). 

nalyzed data from Nephroblastoma example 

In the study, the performance of the three spatial cluster detection tests was systematically

ocumented (details see 2.5). The data in Table 1 summarizes the analyzed results using the ex-

mple of nephroblastoma cases. Selected performance measures are displayed as percentage sen-

itivity ( Sens ), specificity ( Spec ), positive predictive value (PPV), negative predictive value ( NPV ),

xact power ( EP ), minimum power ( MP ) and correct classification ( CC ). 

Fig. 1 gives an overview of results on sensitivity, specificity, PPV and NPV for each of the

hree methods separately, depending on relative risk and cluster size. 

The examples of a small and a large cluster high-risk scenario, 5- and 50-district clusters

espectively, are shown in Fig. 2 . 

The complete analyzed data can be found in the Mendeley repository ( ( https://data.mendeley.

om/datasets/3hrg9tpsx9/4 , file “Analyzed Data.xlsx”). The complete data includes the results of

he nephroblastoma scenario for all simulated RR levels and all simulated cluster sizes. In ad-

ition to the performance measures presented above, the correct proportion (CP), the positive

iagnostic likelihood ( PDL ), negative diagnostic likelihood ( NDL ), false positive ( FPR ) and false

egative rate ( FNR ) are displayed including the respective upper and lower confidence intervals.

Additionally, the file includes the complete analyzed data for the all-childhood-malignancies

cenario (presented in detail in Ref. Cancer Epidemiology ). 

https://data.mendeley.com/datasets/3hrg9tpsx9/4
https://data.mendeley.com/datasets/3hrg9tpsx9/4
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Table 1 

Random clusters of nephroblastoma. Selected performance measures. 

Besag Newell SSS BYM (INLA) 

Cluster RR Sens Spec PPV NPV EP MP CC Sens Spec PPV NPV EP MP CC Sens Spec PPV NPV EP MP CC 

2 1 0.9 99.0 0.7 99.2 0.1 2.1 98.2 3.0 97.5 0.8 99.2 0.0 4.2 96.7 0.0 100.0 0.1 99.2 0.0 0.1 99.2 

2 1.2 1.9 99.0 1.5 99.2 0.1 4.6 98.2 4.8 97.5 1.9 99.2 0.2 7.2 96.7 0.0 100.0 0.1 99.2 0.0 0.1 99.2 

2 1.5 6.1 99.0 4.3 99.2 0.1 13.9 98.3 10.5 97.5 5.2 99.3 0.3 15.1 96.8 0.2 100.0 0.5 99.2 0.0 0.6 99.2 

2 2 17.9 99.0 12.1 99.3 0.2 36.5 98.3 25.0 97.7 16.4 99.4 1.6 34.0 97.2 1.4 100.0 3.9 99.2 0.0 4.1 99.2 

2 5 85.5 98.4 34.3 99.9 1.2 98.8 98.3 83.5 99.4 70.2 99.9 19.1 97.0 99.2 31.0 99.9 37.4 99.4 11.2 41.3 99.4 

2 10 99.1 97.7 29.3 100.0 0.5 100.0 97.7 97.2 99.5 70.6 100.0 26.6 100.0 99.5 87.2 99.7 73.4 99.9 31.7 92.7 99.6 

2 100 100.0 97.8 32.1 100.0 0.9 100.0 97.8 100.0 99.4 67.0 100.0 24.2 100.0 99.4 100.0 99.3 56.9 100.0 6.5 100.0 99.3 

5 1 0.9 99.0 1.4 98.5 0.0 4.1 97.5 3.0 97.5 1.4 98.5 0.0 5.4 96.0 0.0 100.0 0.1 98.5 0.0 0.1 98.4 

5 1.2 2.2 99.0 3.3 98.5 0.0 9.4 97.5 5.6 97.5 3.4 98.5 0.0 9.4 96.0 0.1 100.0 0.1 98.5 0.0 0.2 98.4 

5 1.5 6.6 99.0 9.2 98.5 0.0 25.0 97.6 16.4 97.5 12.0 98.7 0.2 26.1 96.3 0.2 100.0 0.8 98.5 0.0 1.0 98.4 

5 2 19.9 99.0 24.2 98.7 0.0 59.4 97.8 42.0 98.0 33.8 99.1 1.8 57.5 97.1 1.6 100.0 6.6 98.5 0.0 7.0 98.5 

5 5 86.6 98.2 47.6 99.8 0.4 100.0 98.1 91.7 99.4 75.8 99.9 13.4 99.8 99.2 61.3 99.7 61.7 99.4 7.9 74.8 99.1 

5 10 99.4 97.4 40.9 100.0 0.4 100.0 97.4 98.5 99.4 76.6 100.0 19.4 100.0 99.4 97.8 99.2 70.6 100.0 12.4 99.7 99.2 

5 100 100.0 97.1 39.8 100.0 1.1 100.0 97.2 100.0 99.3 73.7 100.0 17.3 100.0 99.3 100.0 98.8 59.8 100.0 1.7 100.0 98.8 

20 1 0.9 99.0 4.6 94.9 0.0 12.5 94.0 2.9 97.5 5.6 94.9 0.0 11.8 92.6 0.0 100.0 0.1 94.9 0.0 0.2 94.9 

20 1.2 2.2 99.1 11.7 94.9 0.0 27.6 94.1 10.1 97.6 16.5 95.3 0.0 28.0 93.1 0.1 100.0 0.3 94.9 0.0 0.5 94.9 

20 1.5 6.1 99.1 27.4 95.1 0.0 57.3 94.3 34.8 97.8 44.4 96.6 0.0 64.5 94.6 1.1 100.0 5.3 94.9 0.0 5.9 94.9 

20 2 18.5 99.1 53.8 95.7 0.0 92.4 95.0 69.6 98.2 72.8 98.4 0.1 96.4 96.8 15.8 99.8 35.2 95.6 0.1 38.6 95.5 

20 5 84.0 98.1 72.4 99.1 0.1 100.0 97.4 92.9 98.3 77.5 99.6 0.1 100.0 98.0 97.9 98.8 82.6 99.9 2.1 100.0 98.8 

20 10 98.8 96.5 62.5 99.9 0.0 100.0 96.7 98.8 98.0 75.5 99.9 0.7 100.0 98.1 99.9 98.5 78.7 100.0 0.6 100.0 98.5 

20 100 100.0 95.2 55.4 100.0 0.0 100.0 95.5 100.0 97.5 70.9 100.0 0.6 100.0 97.6 100.0 98.2 76.2 100.0 0.1 100.0 98.3 

50 1 0.9 99.0 12.1 87.3 0.0 28.4 86.6 2.7 97.5 13.9 87.4 0.0 22.2 85.5 0.0 100.0 0.0 87.4 0.0 0.1 87.3 

50 1.2 2.0 99.1 27.2 87.5 0.0 52.7 86.9 11.2 98.3 39.7 88.5 0.0 52.5 87.3 0.4 99.9 2.3 87.4 0.0 2.9 87.4 

50 1.5 5.3 99.3 54.2 87.9 0.0 87.8 87.4 33.4 98.6 77.1 91.2 0.0 94.1 90.4 13.9 99.6 47.3 89.0 0.0 51.3 88.7 

50 2 14.9 99.4 79.3 89.0 0.0 100.0 88.7 58.3 98.3 84.2 94.3 0.0 100.0 93.2 64.3 98.7 89.3 95.1 0.0 98.9 94.4 

50 5 73.0 98.4 87.0 96.2 0.0 100.0 95.2 90.1 97.8 85.8 98.6 0.0 100.0 96.8 98.7 97.7 86.7 99.8 0.3 100.0 97.9 

50 10 95.4 96.6 80.8 99.3 0.0 100.0 96.4 97.2 97.7 86.1 99.6 0.0 100.0 97.6 99.9 97.7 86.4 100.0 0.1 100.0 98.0 

50 100 100.0 93.6 70.4 100.0 0.0 100.0 94.4 100.0 97.5 85.9 100.0 0.0 100.0 97.8 100.0 97.9 87.7 100.0 0.2 100.0 98.2 

The performance measures sensitivity (Sens), specificity (Spec), positive predictive value (PPV), negative predictive value (NPV), exact power (EP), minimum power (MP) and correct 

classification (CC) are displayed as percentage. 
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Fig. 1. Performance, detecting random clusters of nephroblastoma. Sensitivity and specificity of Besag Newell (green), 

SSS (blue) and Besag York Mollié (INLA, red) method (%) as a function of relative risk. B) positive predictive value (PPV), 

negative predictive value (NPV) as a function of RR for three methods. 
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xperimental Design, Materials and Methods 

eneral aspects of simulation study 

For our study, we simulated random spatial clusters of the extremely rare childhood cancer

ubentity of nephroblastoma. The clusters varied in size and magnitude of risk increase. Overall

ncidence, population and spatial structure (districts) reflect conditions in Germany. The simu-

ation was also performed for an all childhood malignancy scenario (see Ref. Schündeln et al.,

020, Cancer Epidemiology 2020). We systematically varied input parameters in the simulation

nd assessed performance of three cluster detection methods. 
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Fig. 2. A) Detection of 5 random districts, B) Detection of 50 random districts. Sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), correct classification (CC), minimum power (MP) in percent as a function. 

 

 

 

The code for the computational implementation of the simulation to reproduce

the analysis of the published study is provided online ( https://github.com/Pediatrics/

Childhood- Cancer- Study ). Here also the GADM shapefiles and the baseline population data can

be found. 

Notation 

Table 2 summarizes the notation for the explanatory remarks in the next paragraphs. 

https://github.com/Pediatrics/Childhood-Cancer-Study
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Table 2 

Notation. 

Variable Definition 

RR i relative risk in district i 

c i number of cases in district i 

u i population size of district i 

e i expected number of cases in district i 

C total number of cases 

N total population size 

H total number of districts 

D j(i) total number of cases in district i and its j closest neighbors 

U j(i) population size in district i and its j closest neighbors 

Table 3 

Performance parameters. 

Measured Parameter Definition 

Minimum Power (MP) Proportion of simulations detecting at least one district of the true cluster 

Exact Power (EP) Proportion of simulations detecting the true cluster without false positives 

Sensitivity (sens) Proportion of correctly detected districts in the true cluster 

Specificity (spec) Percentage of normal risk districts, correctly classified as normal risk 

districts 

Positive predictive value (PPV) Proportion of districts in the detected cluster belonging to the true cluster 

Negative predictive value (NPV) Proportion of districts not labeled as a risk cluster that is not part of the 

true cluster 

Correct classification (CC) Percentage of correctly classified districts of all districts 

Positive diagnostic likelihood (PDL) The ratio of high-risk districts being detected, divided by the probability 

non-high-risk districts being detected (sensitivity / (1-specificity) 

Negative diagnostic likelihood (NDL The ratio of high-risk districts not being detected divided by the 

probability of non-high-risk districts not being detected ((1 – sensitivity) 

/specificity) 

False positive rate (FPR) Incorrectly labeled high-risk districts of all detected high-risk districts 

False negative rate (FNR) Incorrectly labeled normal-risk districts of all detected normal-risk districts 

Monte Carlo Error (MCE) [ 20 , 21 ] standard deviation of the Monte Carlo estimator (RR), taken across 

repetitions (n) 
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imulation and raw data generation 

For the simulation and analysis of spatial data at the district-level (nomenclature des unités

erritoriales statistiques, NUTS-level 3 we used a shapefile obtained from the Database of Global

dministrative Areas [1] . It represents 402 German districts according to the German admin-

strative divisions of mid-2016. Corresponding population sizes, as of 31 December 2017, were

btained from the German Federal Statistical Office (Statistisches Bundesamt) [2] . The German

ediatric population was estimated to be 11,048,523 children under the age of 15 years (13.3%).

he number of children at risk below the age of 15 years for each spatial unit ranged between

,594 and 4 92,44 8. The population density of children under 15 years of age ranged from 4 to

20 per km 

2 . 

High-risk clusters of different sizes were generated by randomly compiling a number of 1,

, 3, 5, 10, 20 or 50 adjacent districts. A random district was (repeatedly) selected as a starting

oint using a fixed seed. Neighboring districts were identified using the adjacency matrix (eval-

ation of rows and columns) with recursion. The operation was terminated when the desired

luster size was reached. In case “donut-shaped” polygons were selected by the random process,

he enclosed district was included into the generated risk cluster. 

Crude incidence rates of expected pediatric cancer cases were assumed to follow a Poisson

istribution with λnephroblastoma = 7 / 1 0 0 0 0 0 0 (or λall = 140 / 1 0 0 0 0 0 0 for the “all-pediatric-

ancer-scenario”) [ 7 , 8 ]. Generally, RR i was assumed to be 1, while RR i associated with the gen-

rated clusters was varied in 10 steps from 1 to 100 (1, 1.1, 1.2, 1.3, 1.4, 1.5, 2.5, 10, 100), thus
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λ i = λnephroblastomal × R R i . The data was aggregated over a 10-year period, as is regularly done

for spatial epidemiological analysis of childhood cancer using population-based cancer registry

data [7] . Therefore, the case numbers per district during the time period were calculated as fol-

lows: c i, 10 = 

∑ 10 
n = 1 λ × 1 0 0 0 0 0 0 × u i, 10 . The crude incidence rates for each district were

then calculated as follows: ci r i = 

c i 10 
u i 10 

× 1 0 0 0 0 0 0 . Cancer incidence was simulated for all 402

districts 20 0 0 times for each scenario. The simulation estimand was the district cumulative RR

( R R i = 

∑ 10 
y =1 c i 

∑ 10 
y =1 e i 

). 

Cluster detection methods 

Besag and Newell method 

The first approach was introduced by and named after Besag and Newell [9] . Here a test for

each single region i based on the number of neighbors that must be combined to contain a

minimum number of user defined cases k . The cases surrounding district i are ranked accord-

ing to their distance to i to identify the k nearest cases. The area containing those k nearest

cases is then identified ( M i ), in which M i constitutes a possible disease cluster. The follow-

ing explanatory remarks are based on Song and Kulldorff [10] . To test for clustering around i ,

the approach considers whether the total number of cases in M i is large relative to the total

risk population. The test statistic is defined as follows: R = 

∑ H 
k =0 c i I(P ( M i ≤ m i ) < 0 . 05) , where

M i is a random variable denoting the minimum number of districts needed to have at least k

cases in district i and its M i closest neighboring districts, m i is the observed value of Mi that is

m i = min { j : ( D j(i ) + 1 ) ≥ k } . I is the indicator function with value 1 when P ( M i ≤ m i ) < 0 . 05

and 0 when p ≥ 0.05. P ( M i ≤ m i ) is calculated as follows: P ( M i ≤ m i ) = 1 − P ( M i > m i ) =
1 − ∑ k −1 

s =0 e 
− U m i (i ) 

C 
N ( U m i (i ) 

C 
N ) 

s /s ! . 

Under the null hypothesis, every individual person in a given region is equally likely to be a

case, independent of other individuals and the location of residence. The null hypothesis of no

clustering is rejected when the test statistic R is large. The method was applied as implemented

in the R package SpatialEpi, version 1.2.3 [11] . For “nephroblastoma” scenario , k was set to 5 (for

“all malignancies” to 50). These thresholds cover around the 75 th percentile of expected cases

per district for the respective scenarios. 

Spatial scan statistics 

SSS in this study are represented by a modified approach adapted from Kulldorff [12] . SSS

imposes a circular window on the map and lets the circle centroid move across the study

region. For any given position of the centroid, the radius of the window is changed contin-

uously between zero and an upper limit of radius or a maximum fraction of total popula-

tion. Let L j(i) be the likelihood under the alternate hypothesis that there is a cluster in dis-

trict i and its j closest neighbors, and let L 0 be the likelihood under the null hypothesis. It

can then be shown that 
L j(i ) 

L 0 
= ( 

D j(i ) 

U j(i ) 
C 
N 

) D j(i ) ( 
C− D j(i ) 

C−U j(i ) 
C 
N 

) C−D j(i ) . As this likelihood ratio is maximized

over all circles, it identifies the one that constitutes the most likely cluster. The test statistic is

T = ma x i, j 
L j(i ) 

L 0 
I ( D j(i ) > 

U j(i ) 

N C ) where I is the indicator function with value 1 when D j(i ) > 

U j(i ) 

N C

and 0 otherwise. The null hypothesis of no clustering is rejected when T is large. The method

was applied as implemented in the R package SpatialEpi, version 1.2.3 [11] . The maximum pop-

ulation within the circles was set to 10 % of the total population. 

Besag-York-Mollié method 

In the Bayesian approach, the disease risk is estimated using a hierarchical model, compris-

ing random effects that allow borrowing strength from the respective neighboring observations,

therefore smoothing the spatial variation of relative risk and minimizing the likelihood of risk
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ariation by chance. This makes the approach attractive for application in rare diseases and un-

erpopulated areas. The general form is as follows (see e.g. [ 13 , 14 ]): 

c i | e i , R R i ∼ Poisson ( λi ) for i = 1 , . . . , n 

λi = e i × R R i 

log ( R R i ) = μ + m i + νi , 

here RR i is the relative risk in area i , which is modelled by an intercept term μ, an exchange-

ble area-specific effect νi and another spatially structured area-specific effect m i . The spatially

tructured random effects can be estimated by a number of different models. Commonly, condi-

ional autoregressive (CAR) prior distribution models are used in disease mapping studies. Spa-

ial correlation between the random effects is defined by a binary n x n neighborhood matrix W .

n two neighboring districts denoted by j ∼i , the random effects are correlated. Non-neighboring

istricts are modelled as being conditionally independent, given the remaining elements of m .

he intrinsic autoregressive model includes the simplest CAR prior [15] and is referred to as the

esag, York and Mollié (BYM) model. The full conditional distribution in this model is then given

y: m i | m −i , W , τ 2 
l 

∼ N( 1 n i 

∑ 

j∼i m j , 
τ2 

l 
f i 

) . The conditional expectation of m i is equal to the mean

f the random effects in neighboring areas, while the conditional variance is inversely propor-

ional to the number of neighbors f i . Therefore, in the presence of strong spatial correlation,

ore neighbors yields increased information in the data about the value of the random effect.

he parameter τ 2 
l 

controls the variation between random effects. 

While Inference in this such models is usually based on Markov chain Monte Carlo (MCMC)

imulation, the presented approach applies the Integrated Nested Laplace Approximation (INLA)

16] . INLA has been shown to produce results comparable to MCMC sampling and is nowadays

ften used in spatial applications, see e.g. [ 17 , 18 ]. It was applied as implemented in the R pack-

ge R-INLA, version 18.07.12 [19] . High-risk districts/ clusters were defined as regions where the

stimated RR is larger than 1 as determined by its two-sided equal-tailed 95% credible interval.

inimally informative priors (1, 0.001) on the log-precisions of the unstructured and spatially

tructured effects (based on the log-gamma distribution; as is the default setting in R-INLA)

ere used. 

erformance of cluster detection methods 

The performance of each of the various cluster detection methods and scenarios in this study

s reported according to the quality criteria detailed below. 

Variance estimates: Mean, standard deviation (SD) as well as lower and upper 95% confidence

ntervals (CI = mean ± 1.96 × SE) were calculated for all measured parameters (LCI and UCI). 
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