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The stress system in the brain plays a pivotal role in keeping humans and animals
from harmful stimuli. However, excessive stress will cause maladaptive changes to the
stress system and lead to depression. Despite the high prevalence of depression, the
treatment remains limited. PKMζ, an atypical PKC isoform, has been demonstrated to
play a crucial role in maintaining long-term potentiation and memory. Recent evidence
shows that PKMζ is also involved in stress response and depressive-like behavior. In
particular, it was demonstrated that stress that resulted in depressive-like behavior could
decrease the expression of PKMζ in the prefrontal cortex, which could be reversed by
antidepressants. Importantly, modulation of PKMζ expression could regulate depressive-
like behaviors and the actions of antidepressants. These data suggested that PKMζ

could be a molecular target for developing novel antidepressants. Here, I review the
advance on the role of PKMζ in mediating stress response and its involvement in the
development of depression.
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INTRODUCTION

Stress is a common life experience that we may come across almost daily. Humans and animals rely
on the stress system in the brain to react and adapt to various stressful events and make responses.
Appropriate responses to stress are essential for survival when facing life-threatening conditions
(Godoy et al., 2018). However, if particular stress causes an overwhelming burden that a subject
could bear, it results in maladaptive changes to the stress system in the brain, which then leads to
or triggers the occurrence of many psychiatric disorders, such as depression, also known as major
depressive disorder (de Kloet et al., 2005; Wohleb et al., 2016; Godoy et al., 2018). According to
the 2020 National Survey on Drug Use and Health (NSDUH), about 6.7% of the adults in the
United States age 18 and older suffer from depression. Despite the high prevalence, the treatment
for depression remains limited.

The treatment strategy for depression includes pharmacological intervention, psychotherapy,
and a combination of these two. Pharmacological intervention, such as selective serotonin reuptake
inhibitors (SSRIs), is usually required for patients with moderate and severe symptoms (Davidson,
2010). Generally, pharmacological intervention is more acceptable and widely used, especially
in countries and regions where psychotherapy is unavailable. However, current antidepressants
have many limitations. Most currently available antidepressants require weeks of treatment before
providing clinical benefits (Insel and Wang, 2009). Furthermore, depressive symptoms usually
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last for a long-term, even life-long for many patients, for
whom daily treatment is generally required. In the past decades,
emerging studies have investigated new systems and molecular
targets that do not belong to the traditionally focused monoamine
systems, such as serotoninergic and norepinephrinergic systems,
in the hope of developing novel antidepressants (Lener et al.,
2017; Shinohara et al., 2021). Recent evidence shows that
PKMζ, an atypical PKC isoform that plays a pivotal role in
the maintenance of LTP, may participate in the development of
depression and might be one of the critical targets that mediate
actions of antidepressants, suggesting that PKMζ might be a
potential target for the treatment of depression. Here, I review
the advance on the role of PKMζ in regulating brain function and
its involvement in the pathology of depression.

PKMζ MAINTAINS LONG-TERM
POTENTIATION AND STRESS-RELATED
MEMORY

PKMζ is an isoform of the protein kinase C (PKC), which is an
enzyme that has the ability to phosphorylate serine/threonine
residues (Osten et al., 1996). There are various isoforms of
PKC, including conventional isoforms (α, βI, βII, and γ), novel
isoforms (δ, ε, η, and θ), and atypical isoforms (ζ and ι). PKMζ

is the constitutively activated form of PKCζ, which only has
the ζ catalytic domain but not a regulatory domain (Hernandez
et al., 2003). PKMζ was widely expressed in many brain regions,
including the hippocampus, prefrontal cortex (PFC), thalamus,
striatum, and so forth (Naik et al., 2000). A pioneering study
by Sacktor et al. (1993) found that PKMζ was increased in
the maintenance of long-term potentiation (LTP), which first
linked PKMζ to the LTP. It was further shown that protein
synthesis inhibitors anisomycin and cycloheximide reversed the
maintenance of hippocampal LTP and prevented the increase in
PKMζ (Osten et al., 1996), which suggested that PKMζ could
be newly synthesized during LTP (Figure 1). The following
study indicated that the de novo synthesis of PKMζ during
LTP required many protein kinases, including phosphoinositide
3-kinase (PI3K), Ca2+/calmodulin-dependent protein kinase II
(CaMKII), mitogen-activated protein kinase (MAPK), protein
kinase A (PKA), mammalian target of rapamycin (mTOR), and
preexisting PKMζ (Kelly et al., 2007). To determine the causal
role of PKMζ in the maintenance of LTP, the Sacktor group
synthesized the selective ζ-pseudosubstrate inhibitory peptide
(ZIP) and showed that ZIP selectively prevented the maintenance
of LTP without affecting baseline EPSP in vitro (Ling et al., 2002;
Serrano et al., 2005). Thus, these data strongly suggest that PKMζ

is essential for the maintenance of LTP.
Since the publication of the landmark report on hippocampal

LTP by Bliss and Lomo in 1973, extensive studies have
investigated this particular form of synaptic plasticity (Bliss and
Lomo, 1973; Nicoll, 2017). Although many molecules had been
reported to participate in LTP induction, such as CaMKII and
PKA, as mentioned above, little was known about the mechanism
underlying the maintenance of LTP (Lisman et al., 2012; Herring
and Nicoll, 2016). Thus, when the selective involvement of

FIGURE 1 | PKMζ maintains long-term potentiation. Long-term potentiation
(LTP), once triggered, could last for hours or even weeks. Many protein
kinases such as CaMKII, mTOR, PKA, MAPK, and preexisting PKMζ are
required for the early LTP. Reactivation of these protein kinases then induced
translation of PKMζ from the mRNA. The newly synthesized PKMζ then
maintains the membrane expression of GluR2, which is essential for the
maintenance of LTP. CaMKII, calcium/calmodulin-dependent protein kinase II;
GluR2, ionotropic glutamate receptor AMPA type subunit 2; MAPK,
mitogen-activated protein kinase; mTOR, mammalian target of rapamycin;
PKA, protein kinase A; PKMζ, protein kinase Mζ; ZIP, ζ-inhibitory peptide.

PKMζ in LTP maintenance was revealed, it soon attracted
much attention from many researchers, especially those who
were studying the mechanism underlying learning and memory
since LTP has been widely accepted as one of the primary
cellular mechanisms underlying learning and memory (Lynch,
2004). In the last two decades, a large number of studies have
reported the critical role of PKMζ in the storage of memory. For
example, it was shown that the PKMζ inhibitor ZIP disrupted the
maintenance of hippocampal LTP in vivo as well as abolished
long-term memory in an active place avoidance task in rats
(Pastalkova et al., 2006). Following studies indicated that the
disruptive effects of ZIP on memory seem to be consistent across
many memory tasks, including spatial memory, recognition
memory, aversive and appetitive memories, which suggested that
PKMζ could be a common mechanism underlying the storage of
long-term memories (Pastalkova et al., 2006; Serrano et al., 2008;
Migues et al., 2010).

Notably, PKMζ was demonstrated to maintain stress-related
memory. This is primarily supported by numerous studies shown
that PKMζ is essential for the maintenance of fear memory
induced by footshock stress (Serrano et al., 2008; Kwapis et al.,
2009, 2012; Migues et al., 2010; Parsons and Davis, 2011; Xue
et al., 2015; Oliver et al., 2016; Schuette et al., 2016; Marcondes
et al., 2021). It was shown that microinjection of the PKMζ

inhibitory peptide ZIP into the basolateral amygdala (BLA)
reduced the retention of cued fear memory (Serrano et al., 2008;
Zhang et al., 2019), indicating that PKMζ in the BLA was a
key molecule for maintaining fear memory. Consistent with this,
intra-BLA injection of ZIP also disrupted the footshock-derived
inhibitory avoidance memory (Serrano et al., 2008). Another
study showed that the virus-mediated expression of PKMζ in
the prelimbic cortex of PFC enhanced fear memory, suggesting
that PKMζ in the PFC is also involved in fear memory (Xue
et al., 2015). Furthermore, not only a newly formed memory
but PKMζ has also been demonstrated to regulate remote fear
memory (Sacco and Sacchetti, 2010). Since fear memory has
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been widely taken as an animal model of post-traumatic stress
disorder (PTSD) (Bienvenu et al., 2021), approaches that affect
the expression of PKMζ might be promising strategies to treat
traumatic stress-related diseases. Nevertheless, the role of PKMζ

in maintaining memory has been critically questioned in the
last decade. In 2012, two independent groups reported no
memory loss or LTP disruption in PKMζ knockout animals,
which provided direct evidence that PKMζ might not be essential
for memory or LTP (Lee et al., 2013; Volk et al., 2013). In
addition, some studies showed that ZIP, which was widely used
as the selective PKMζ inhibitory peptide, was not specific at all
(see discussion below). Up to this point, the role of PKMζ in
stress-related memory remains in debate, which needs further
investigation to be fully understood.

PKMζ PARTICIPATES IN STRESS
RESPONSE, ANXIETY, AND
DEPRESSION

Extensive studies have demonstrated that stress, a crucial
factor affecting synaptic plasticity, has dramatic influences on
LTP (Peters et al., 2018). Stress could cause impairment or
enhancement of LTP, which depends on various paradigms of
the experienced stress, including controllability, severity, and
duration (Kim et al., 2006; Abush and Akirav, 2013; Peters
et al., 2018). Generally, long-lasting and uncontrollable stress is
thought to impair LTP (Kim et al., 2006). Given the importance
of PKMζ in LTP maintenance, it could be inferred that PKMζ

might be involved in stress response. Consistently, several studies
have shown that stress could affect PKMζ expression in the
hippocampus and medial prefrontal cortex (mPFC), two critical
brain areas that mediates stress response and depression, and
PKMζ in these brain regions might meditate stress-related
behaviors in some conditions. However, the related reports are
controversial, and the particular role of PKMζ in mediating stress
response and related disorders remain in debate.

Effects of Stress on Hippocampal PKMζ

Expression
The findings on the effects of stress on PKMζ expression in the
hippocampus are mixed through the literature. One study found
that in the isolated rat embryonic hippocampal neural stem cells,
dexamethasone, a pharmacological treatment mimicking stress-
induced glucocorticoid secretion, decreased the expression of
PKMζ mRNA, and protein. This regulation was specific since
dexamethasone did not affect the expression of PKCι, the other
atypical PKC isoform expressed in isolated hippocampal neural
stem cells (Wang et al., 2014). A recent study showed that non-
human primates who experienced stress in early life showed a
lifelong reduction of PKMζ in the ventral hippocampus (Fulton
et al., 2021). In contrast, chronic stress enhanced the cytosolic
but not synaptic expression of PKMζ in the hippocampus (Zanca
et al., 2015). Consistent with these, our recent study showed
that CUS caused a reduction of PKMζ in the hippocampus (Yan
et al., 2018). However, the inhibitory effect of stress on PKMζ

expression was inconsistent in the literature. For example, it was
shown that acute stress increased the synaptic but not cytosolic
expression of PKMζ in the hippocampus (Zanca et al., 2015).
Single-prolonged stress (SPS), a behavioral paradigm mimicking
the development of PTSD, also increased PKMζ expression in
the hippocampus of rats 7 and 14 days after experiencing the
stress treatment (Ji et al., 2014). Ji et al. (2014) further showed
that intra-hippocampus microinjection of ZIP reduced SPS-
induced depressive-like behavior in the forced swimming task
and anxiety-like behavior in the open field tests and elevated
plus-maze. In contrast, another study showed that the synaptic
PKMζ level in the hippocampus was not altered in rats after
social defeat stress, a behavioral model of depression based on
social motivation (Iniguez et al., 2016). Since different types of
stress were used in these studies, the discrepancy among these
studies might suggest that stress type could be an essential factor
determine the effects of stress on hippocampal PKMζ expression.
Furthermore, it should be noted that some studies examined
the cytosolic expression of PKMζ, whereas others examined the
synaptic PKMζ, which might be another factor that caused the
discrepancy (Iniguez et al., 2016). Therefore, these studies suggest
that stress could affect hippocampal PKMζ expression, however,
the effects could be influenced by many factors, such as stress
paradigm and subcellular expression (cytosolic vs. synaptic).

PKMζ in the Medial Prefrontal Cortex Is
Negatively Associated With
Depressive-Like Behaviors
So far, there is only one study investigated the role of PKMζ in
the medial prefrontal cortex (mPFC) in mediating depressive-like
behaviors (Yan et al., 2018). The study showed that PKMζ in the
mPFC was decreased in two behavioral models of depression, i.e.,
chronic mild unpredictable stress (CUS) and learned helplessness
(Figure 2; Yan et al., 2018). CUS did not change PKMζ expression
in the orbitofrontal cortex, an adjacent brain region to the PFC,
indicating that the PFC was the particular brain site where
CUS affected PKMζ expression. Notably, SUS did not alter the
expression of other PKC isoforms, including PKCα, β, θ, or λ

in the PFC, suggesting that PKMζ is a unique PKC isoform
influenced by CUS (Yan et al., 2018).

The causal role of PKMζ in the mPFC in depression has
been implicated by studies using selective PKMζ inhibitory
peptide ZIP and viruses that overexpress PKMζ or express
dominant-negative mutant PKMζ (Yan et al., 2018). Intra-mPFC
microinjection of ZIP enhanced stress-induced depressive-like
behavior in both chronic stress and learned helplessness models
(Yan et al., 2018). Because of the non-specific inhibition of
ZIP on PKMζ (see details discussed below), it is hard to
conclude whether PKMζ in the mPFC regulated depressive-
like behaviors only based on the effects of ZIP. To confirm
the role of PKMζ, Yan et al. (2018) further showed that virus-
mediated expression of PKMζ in the mPFC reversed CUS- and
learned helplessness-induced depressive-like behaviors as well as
CUS-induced reduction in spine density and mEPCS frequency.
In contrast, virus-mediated dominant-negative mutant PKMζ,
which could competitively inhibit the function of endogenous
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FIGURE 2 | PKMζ in the mPFC participates in stress-induced depressive-like
behaviors. Excessive stress, such as chronic unpredictable stress and learned
helplessness, could lead to a reduction in PKMζ and membrane GluR2
expression in the medial prefrontal cortex (mPFC) as well as depressive-like
behavior. Antidepressants or virus-mediated expression of PKMζ in the mPFC
could relieve the depressive-like behavior. In contrast, virus-mediated
expression of dominant-negative mutant PKMζ facilitated subthreshold
CUS-induced depressive-like behavior.

PKMζ, facilitated subthreshold CUS- and learned helplessness-
induced depressive-like behaviors (Figure 2; Yan et al., 2018).
Unlike ZIP, virus-mediated expression of PKMζ or the dominant-
negative mutant PKMζ could specifically regulate PKMζ

expression or activity; thus, this study provided solid evidence
that PKMζ in the mPFC mediated the development of depression.

Antidepressants Increases PKMζ in Both
the Hippocampus and Medial Prefrontal
Cortex
Some evidence has shown the involvement of PKMζ in
the actions of antidepressants. The selective 5-HT reuptake
inhibitor fluoxetine could increase PKMζ expression and prevent
dexamethasone-induced downregulation of PKMζ in isolated
hippocampal neural stem cells (Wang et al., 2014). Importantly,
PKMζ mediated fluoxetine-induced neurogenesis and signaling
activation (Wang et al., 2014). These in vitro findings are
consistent with our recent in vivo study, in which we showed
that both fluoxetine and desipramine, a tricyclic antidepressant,
reversed CUS-induced reduction in PKMζ expression in
the mPFC. As mentioned before, antidepressants, including
fluoxetine and desipramine, require several weeks of treatment to
exert their antidepressant actions. Recent studies have indicated
that the NMDA receptor antagonist ketamine has been shown
to exert fast-acting and long-lasting antidepressant action. It
has been demonstrated that ketamine could rescue chronic
stress-induced molecular changes, morphological alterations of
neurons, and microcircuit dysfunction in the prefrontal cortex
(PFC) (Li et al., 2010, 2011; Moda-Sava et al., 2019). Intriguingly,
ketamine could prevent the CUS-induced downregulation of
PKMζ in the PFC; PKMζ was necessary for the antidepressant

action of ketamine in the learned helplessness model. These
findings insofar demonstrated that PKMζ is a critical and
common target that mediates the actions of slow-acting and
fast-acting antidepressants.

PKMζ Positively Mediates Anxiety-Like
Behaviors
Generally, anxiety is characterized by a persistent feeling of
apprehension or dread, a specific reaction to stress. A great
variety of behavioral models has been developed to mimic anxiety
disorders (Kumar et al., 2013). It is not uncommon that patients
with depression may also suffer from anxiety disorders (Kaiser
et al., 2021). Besides fear conditioning as described above, PKMζ

is also involved in other anxiety-like behaviors. Microinjection
of ZIP into the hippocampus alleviated the anxiety-like behavior
in rats after single prolonged stress (SPS), a paradigm used
to trigger PTSD-like symptoms in animals (Ji et al., 2014). In
another animal model of PSTD, it was shown that PKMζ in
different brain regions exerts a time-dependent role in storing
traumatic memory and mediating anxiety-like behaviors in rats
exposed to predator scent stress. The study showed that injection
of ZIP into the dorsal hippocampus 1 h after predator scent
stress exposure disrupted anxiety-like behavior and trauma cue
response 8 days later, whereas intra-insular cortex injection of
ZIP 10 days after predator scent exposure showed a similar
effect (Cohen et al., 2010). This suggested that PKMζ in dorsal
hippocampus and insular cortex might regulate different stages of
anxiety disorders. In a valproic acid model of autism, mice with
valproic acid injection showed a higher level of PKMζ in the BLA.
Injection of ZIP into the BLA decreased anxiety-like behavior
in the VPA-injected mice (Gao et al., 2019). In another study,
microinjection of ZIP into the anterior cingulate cortex reversed
pain-induced anxiety-like behavior (Du et al., 2017). These
studies suggested that PKMζ in many brain regions could be a
common molecule that maintains different traumatic memories
and mediates anxiety-like behaviors. In addition, the anxiolytic
effects of ZIP are not dependent on the types of stress used to
trigger anxiety-like behavior.

Consistent with the role of PKMζ in mediating stress-induced
anxiety-like behaviors, PKMζ has been demonstrated to regulate
the basal level of anxiety. Genetically modified mice that lack both
PKCζ and PKMζ showed reduced anxiety behavior (Lee et al.,
2013). In contrast, virus-mediated overexpression of PKMζ in
the BLA of wild-type mice increased anxiety-like behavior (Gao
et al., 2019). However, although virus-mediated overexpression
of PKMζ in the prelimbic cortex enhanced fear memory, this
intervention showed no effect on basal anxiety-like behavior
evaluated by open field test and elevated plus-maze task (Xue
et al., 2015). These studies might suggest that BLA but not the
prelimbic cortex might be crucial for basal anxiety behavior.

POTENTIAL MECHANISMS OF PKMζ IN
REGULATING DEPRESSION

Evidence has illustrated the molecular mechanism underlying
the role in maintaining LTP (Sacktor, 2011). In hippocampal
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slices, perfusion of PKMζ resulted in a robust potentiation
of AMPAR-mediated excitatory postsynaptic currents
(EPSCs), which could be blocked by non-NMDA glutamate
receptors antagonist CNQX (Ling et al., 2002), suggesting
that PKMζ was sufficient for AMPAR but not NMDAR
currents. Further studies have proposed particular processes
of LTP initiation and maintenance (Sacktor, 2011): (1) in
the initiation of LTP, NMDA receptors are activated, which
then result in the reactivation of multiple protein kinases
that are essential for the removal of the translational block
of PKMζ synthesis; (2) the de novo synthesized PKMζ is then
converted into a conformation with constitutive activity after
phosphorylation by phosphoinositide-dependent protein kinase
1 (PDK1); (3) the constitutively activated PKMζ increases
N-ethylmaleimide-sensitive factor (NSF)/the glutamate receptor
2 (GluR2)-dependent trafficking of AMPAR and maintains
the AMPAR expression at postsynaptic sites to potentiate
synaptic transmission.

PKMζ was shown to be able to phosphorylate and inhibit
PIN1 (protein interacting with NIMA1), a prolyl isomerase,
which has the capacity for suppressing the translation of PKMζ

from mRNA (Westmark et al., 2010). This self-perpetuating
mechanism of PKMζ translation in synapses thus explained
the maintained high levels of PKMζ and its activity, which
is required for maintaining synaptic plasticity. As a critical
subunit of AMPARs, GluR2 is crucial for AMPAR assembly and
trafficking and determines the property of Ca2+ permeability
and function of AMPAR (Isaac et al., 2007). It is of interest
that the Ca2+ permeable AMPAR, which has been revealed to
play an important role in short-term and long-term synaptic
plasticity, contains unedited GluR2 or lacks GluR2 (Isaac
et al., 2007). As described above, PKMζ regulates synaptic
plasticity and LTP via maintaining the membrane GluR2
expression, presumably increasing the membrane expression
of GluR2-containing AMPAR (Sacktor, 2011). A hypothesis
could be that the GluR2 subunit composition of AMPAR
switches between the initiation and maintenance of the LTP,
and PKMζ might be essential for this switching (Liu and
Cull-Candy, 2000); however, this requires further investigation
to be determined.

Regulation of GluR2 trafficking through the interaction
between PKMζ and NSF/GluR2 might also be the mechanism
underlying the role of PKMζ in the PFC in depression. (Yan
et al. (2018) showed that CUS and learned helplessness stress
reduced PKMζ level and synaptic expression of GluR2 in
the mPFC, which could be reversed by the virus-mediated
expression of PKMζ. Inconsistent, virus-mediated expression
of the dominant-negative PKMζ facilitated a subthreshold
chronic stress-induced decrease in GluR2 in the mPFC (Ling
et al., 2002). These studies may suggest that, even though
different stress affects the expression of PKMζ differently in
distinct brain regions, PKMζ and GluR2 levels were parallel
after particular stress in a certain brain region. However, the
causal role of GluR2 in mediating the function of PKMζ in
stress conditions remains unclear. Elucidation of this issue may
uncover the mechanism of PKMζ in response to stress and
stress-related disorders.

CONSIDERATIONS AND FUTURE
DIRECTIONS

Selectivity of Approaches That Modulate
PKMζ Activity
As described above, most work that supports the fundamental
role of PKMζ in maintaining LTP and related behaviors used
ZIP as a selective inhibitor of PKMζ. However, other studies
have suggested that ZIP might not be an appropriate inhibitor
of PKMζ.

Some evidence shows that ZIP may not be able to inhibit
PKMζ. In cultured 293T cells expressing PKMζ, ZIP could
not reverse PKMζ overexpression-induced increase in the
phosphorylation of multiple PKC substrates. In COS-7 cells
co-transfected with CKAR and PKM-RFP, ZIP did not affect
the baseline normalized FRET ratio. Furthermore, ZIP did not
affect MAPK2 activity in brain slices transfected with PKMζ.
The authors then concluded that ZIP could not inhibit PKMζ

(Wu-Zhang et al., 2012). However, the protocol used in the study
could lead to a 30-fold increase in PKMζ expression, which
was beyond the inhibitory ability of ZIP. Yao et al. (2013)
demonstrated that ZIP was a competitive inhibitor of PKMζ and
could be ineffective in inhibiting an excessively high level of
PKMζ. In addition, ZIP inhibited PKMζ-induced enhancement
of AMPAR potentiation but not baseline AMPAR-mediated
EPSC mediated by other cellular molecules, suggesting that ZIP
could selectively suppress the function of PKMζ (Yao et al., 2013).

Other studies suggested that ZIP was not selective on PKMζ.
ZIP at a concentration (10 µM) could inhibit the activity of both
PKCa and PKMζ (Bogard and Tavalin, 2015). ZIP also disrupted
the ability of PKC to bind to AKAP79. Since AKAP79 interacts
with PKCa via a pseudosubstrate-like mechanism, suggesting
ZIP might exert its effects through the displacement of PKCa
from targeted sites (Bogard and Tavalin, 2015). In a recent
study, both ZIP and its control peptide scr-ZIP caused GluR1
redistribution in HEK293 cells expressing GluR1 (Bingor et al.,
2020). It is of interest that HEK293 cells did not express PKMζ.
The same study further showed that the effects of ZIP on AMPAR
function were mediated by NOS signaling, which suggested that
NOS signaling rather than PKMζ was the key target of ZIP
(Bingor et al., 2020). In a physiological situation, ZIP and scr-ZIP
could decrease AMPAR EPSCs in the NAc brain slices. Consistent
with this, both ZIP and scr-ZIP disrupted cocaine-induced CPP,
a reward memory task that requires the function of the NAc
(Bingor et al., 2020).

Evidence also suggested that the effects of ZIP could be
attributed to ZIP-induced cellular toxicity. One study showed
that both ZIP and scr-ZIP dose-dependently caused rapid
cell death of cultured hippocampal neurons (Sadeh et al.,
2015). These effects might be due to ZIP and scr-ZIP-induced
spontaneous activity and sustained increase in Ca2+ activity after
application of ZIP and scr-ZIP in cultured hippocampal cells
(Sadeh et al., 2015). The fact that ZIP could lead to detrimental
hyperactivity in cultured hippocampal neurons suggested that
ZIP was excitotoxic to neurons (Sadeh et al., 2015). In contrast,
one study indicated that ZIP could lead to neural silence in
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the hippocampus in vivo (LeBlancq et al., 2016). LeBlancq et al.
(2016) recorded local field potential from the CA1 subarea of
the hippocampus with the infusion of ZIP directly into the
recording area. Astonishingly, they found that ZIP caused a
profound inhibition of LFP comparable to the magnitude of that
induced by lidocaine, a sodium channel blocker. The duration
of LFP inhibition maintained by ZIP was even longer than
lidocaine. Although these two studies reported contradictory
findings that ZIP excited or inhibited neural activity, it is possible
that ZIP-induced inhibition of LFP might be a consequence of
ZIP-induced excitotoxicity (Patel and Zamani, 2021).

Given these critical concerns on ZIP, i.e., the ineffectiveness
in some conditions, non-specificity, and neurotoxicity, it should
be cautious when interpreting the results used ZIP. In particular,
ZIP should not be taken as a specific inhibitor of PKMζ. Other
approaches rather than ZIP should be employed to determine
the causal role of PKMζ in regulating brain functions and
related behaviors. These approaches may include virus-mediated
downregulation or expression of PKMζ in particular brain
regions or subtype of cells. For example, previous studies have
used viruses to overexpress PKMζ or the negative-dominant
mutant PKMζ that could competitively inhibit PKMζ activity in
particular brain regions could modulate animal behaviors (Shema
et al., 2011; Xue et al., 2015; Yan et al., 2018).

PKMζ Might Be a Maintenance
Mechanism for Depression
Depression is a brain disorder characterized by persistently
depressed mood and loss of interest. Patients usually need to
take antidepressants to benefit from the treatment continually.
Furthermore, some patients may stop benefiting from particular
antidepressants after long-term treatment (Anderson, 2013). At
least to some extent, these phenomena suggest that currently
available antidepressants only transiently suppress the symptoms
of depression but do not directly affect the maintenance of
depression. Theoretically, a medicine that directly influences the
maintenance of depression may permanently reverse the related
maladaptive changes and cure depression. Since PKMζ has been
implicated in the maintenance of synaptic plasticity and memory
(Sacktor, 2011), it is presumed that stress-induced reduction
in PKMζ in the PFC may result in a persistent dysfunction
of this brain region. This could be a mechanism underlying
the persistence of depressive-like symptoms. However, several
questions should be addressed before concluding the role
of PKMζ in the persistence of depressive-like behaviors. For
example, it remains unknown how long the stress-induced
reduction in PKMζ could last. Another interesting question
would be whether PKMζ is a molecule that mediates the sustained
effects of antidepressants.

Since PKMζ has been long taken as a memory molecule,
it is of great curiosity to examine whether PKMζ could be a
link between depression and memory problems. Patients with
depression usually suffer short-term memory loss and are at risk
of long-term memory loss (Dillon and Pizzagalli, 2018). As PKMζ

in the mPFC is crucial for depressive-like behavior and memory

maintenance. It could be presumed that depressive-like behavior-
associated reduction in PKMζ expression in the PFC might
underlie the memory problems found in patients with depression.
Addressing this issue may shed light on the understanding of the
relationship between stress-induced cognition dysfunction and
the development of depression.

Furthermore, depression is a complicated disease that involves
many brain regions (Nestler, 2015; Hare and Duman, 2020).
As mentioned above, stress increased PKMζ expression in the
hippocampus but decreased it in the mPFC, indicating that
PKMζ in the hippocampus and mPFC may be involved in
stress response and depression distinctively. Future studies are
needed to address the role of PKMζ in different brain regions in
regulating depression and the actions of antidepressants.

Is PKMζ Involved in Stress Resilience?
Since PKMζ in the PFC was negatively associated with depression
symptoms, it could be predicted that pharmacological or
behavioral approaches that could elevate PKMζ expression in
the mPFC might lead to stress resilience and protect subjects
from experiencing detrimental consequences of stress, which
thus prevents the development of stress-induced depression.
Yan et al. (2018) showed that even though antidepressants
prevented CUS- or learned helplessness-induced reduction in
PKMζ expression in the PFC, they did not influence PKMζ

expression in non-stressed animals. Virus-mediated expression
of dominant-negative mutant PKMζ in the PFC did not induce
depressive-like behaviors. These results may suggest that basal
PKMζ activity in the PFC could not be critical for depressive-like
behaviors. However, it would be interesting to examine whether
the virus-medicated expression of PKMζ or its dominant-
negative mutant would influence the resilience or susceptibility
in responding to stress.

CONCLUSION

Recent evidence shows that PKMζ is involved in stress response
and depressive-like behaviors. PKMζ in the PFC could be a
common molecule that mediates the actions of slow-acting
and fast-acting antidepressants. However, the role of PKMζ

in mediating stress response and depression remains largely
unknown, which needs further investigation. Addressing this
issue will determine whether PKMζ could be a therapeutic target
for developing novel antidepressants.
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