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Genome-wide association studies (GWAS) have identified numerous common genetic variants associated
with complex human traits and diseases. However, the translation of GWAS discoveries into biological
and clinical insights is highly challenging. In this study, we present a novel bioinformatics approach
for enhancing the functional interpretation of GWAS signals, based on their integration with single-cell
(sc)RNA-seq datasets that examine developmental processes. Our approach performs three tasks: (1)
Identification of links between cell differentiation trajectories and traits; (2) Elucidation of biological pro-
cesses and molecular pathways that underlie such trajectory-trait links; and (3) Prioritization of target
genes that carry the links between trajectories, pathways and traits. We applied our method to a set of
11 traits of various pathologies, and 12 scRNA-seq datasets of diverse developmental processes, and it
readily detected well-established biological connections, including those between the maturation of cor-
tical inhibitory interneurons and schizophrenia, hepatocytes and cholesterol levels, and pancreatic beta-
islet cells and type-2 diabetes. For each of these associations, our method pinpointed top candidate genes
that are strongly associated with both the kinetics of the differentiation trajectory and the disease’s
genetic risk. By the identification of trajectory-disease links, molecular pathways that underlie them
and prioritizing candidate risk genes, our method improves the understanding of the etiology of complex
diseases, and thus holds promise for enhancing rational drug development that is aimed at targeting
specific biological processes that mediate the genetic predisposition to diseases.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Over more than a decade, genome-wide association studies
(GWAS) are used to systematically identify common genetic vari-
ants, mostly single nucleotide polymorphisms (SNPs), that are
associated with complex human traits and diseases [1]. At present
(Feb. 2021), the GWAS catalog already documents more than 245 k
associations from more than 4,800 studies [2]. These discoveries
herald the initial fulfillment of the great expectations that were
set with the completion of the Human Genome Project for the
impact of genomics on the diagnosis, treatment, and prevention
of complex diseases [3], such as cancer, heart diseases, mental ill-
nesses and age-related maladies as Alzheimer and Parkinson,
which are the leading cause of morbidity and mortality in the
developed world. A prerequisite for translating GWAS discoveries
into improved disease treatment and prevention is elucidation of
the molecular mechanisms by which these risk variants and their
target genes affect disease pathogenesis. However, the translation
of GWAS discoveries into biological and clinical insights is a daunt-
ing task, which poses one of the major challenges of current human
genetics research [1].

The great challenges in the functional interpretation of GWAS
results stem from two main reasons. First, most common diseases
are highly polygenic; that is, their genetic predisposition is affected
by hundreds or even thousands of genetic variants, with each one
individually exerting only a very weak effect [4]. Thus, understand-
ing the impact of numerous parallel weak effects on the cell’s and
organ’s functionality calls for network-based bioinformatics analy-
ses [5]. Second, unlike mutations causing Mendelian diseases,
which mainly disrupt protein-coding sequences, the vast majority
(greater than 90%) of genetic variants that affect our susceptibility
to common diseases map to the noncoding part of the human gen-
ome [6]. Multiple studies showed that these noncoding risk
variants are mainly located within genomic regulatory elements
that control the expression of their target genes [7]. Thus, disrup-
tion of enhancer and promoter activity, leading to mis-regulation

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.05.055&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2021.05.055
http://creativecommons.org/licenses/by/4.0/
mailto:eldadshulman@mail.tau.ac.il
mailto:ranel@tauex.tau.ac.il
mailto:ranel@tauex.tau.ac.il
https://doi.org/10.1016/j.csbj.2021.05.055
http://www.elsevier.com/locate/csbj


Eldad David Shulman and R. Elkon Computational and Structural Biotechnology Journal 19 (2021) 3458–3469
of gene expression, emerges as a principal mode of action for risk
variants discovered by GWAS.

One avenue where marked advances in functional interpreta-
tion of GWAS results are being made is the illumination of the
pathogenesis’ cellular architecture - that is, systematic identifica-
tion of the specific organs and cell types in which the predisposing
genetic variants exert their impact, as well as the genes and path-
ways that mediate this effect. This goal is bioinformatically pur-
sued by integrated analyses of GWAS results and transcriptomic
and epigenomics data, recorded over large panels of tissues and
cell types. Following the derivation of cell-type- or tissue- speci-
ficity scores for gene expression levels or epigenetic signals, the
next goal is to detect particular cell types/tissues that are signifi-
cantly enriched for GWAS signals of the examined trait. While
some studies restrict such integrative analyses to GWAS SNPs that
passed a stringent genome-wide statistical significance threshold
(e.g., [7]), many others apply methodologies that build on the fact
that ample genetic information is also carried by a multitude of
additional genetic variants that are truly associated with the exam-
ined trait, but fail reaching significance threshold due to their mild
effect (and current GWAS sample sizes) [8]. Accordingly, such
bioinformatics methods for integrative analysis of genetic and
omics data, use GWAS summary statistics that record the associa-
tion signals for all the SNPs (typically, in the order of a million)
examined by GWAS. Prominent computational tools that imple-
ment such approaches include LDSC [9], MAGMA [10], and
RolyPoly [11].

Most studies that carried out such integrated analyses used
transcriptomic and epigenomics data obtained from bulk tissues.
For example, introducing the LDSC-SEG approach, Finucane et al.
integrated GWAS summary statistics for 48 diseases and traits
and GTEx RNA-seq data from 53 tissues or cell types [12] and gene
expression array data from 152 tissues and cell types [13], and
recapitulated known biological connections, e.g., between Lupus
and immune cells, type-2 diabetes and pancreas, and LDL and liver
cells. However, the precision in determining specific cell types that
can be obtained by bulk analysis of heterogeneous tissues is lim-
ited. Therefore, recent single-cell transcriptomic techniques
(scRNA-seq), which have transformed the resolution by which
the profile of distinct cell types that constitute composite organs
can be determined [14], are now harnessed to this bioinformatics
task of prioritizing cell types that are most relevant to the patho-
genesis of complex diseases. For example, Skene et al. [15] sought
brain cell types that underlie Schizophrenia (SCZ) etiology. To this
goal, they calculated cell-type specificity scores per gene using
single-cell transcriptomic datasets from human and murine brains,
and SCZ-association gene scores using SCZ GWAS summary statis-
tics. Given these two scores, they searched for cell types whose
expression-specificity gene scores are highly correlated with SCZ-
association gene scores. Notably, a clear connection with SCZ risk
signal was detected for only 4 of the 24 main brain cell types (Med-
ium spiny neurons, pyramidal cells in hippocampal CA1, pyramidal
cells in the somatosensory cortex and cortical interneurons). Sim-
ilarly, Watanabe et al. [16], adapting the popular MAGMA tool [10]
for this task, analyzed 43 publicly available scRNA-seq datasets and
GWAS summary statistics for 26 traits, and pinpointed highly
specific cell types as connected with the etiology of the analyzed
conditions.

Previous studies that integrated GWAS results and scRNA-seq
data mostly considered cells as static entities. However, cells
dynamically change their state, most drastically during differenti-
ation. Recently, several algorithms were developed to infer, from
single-cell transcriptomic data, the organization of cells by tempo-
ral or developmental stage in an abstract regulation space
[14,17,18]. Prominent among them is Monocle, which reconstructs
a trajectory along which the cells profiled in the experiment are
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presumed to travel during the differentiation process, and then
projects each cell onto this trajectory at the proper position (’pseu-
dotime’). Each cell’s pseudotime value is measured as the distance
along the trajectory from its position back to the track’s start point.
To describe complex differentiation processes in which cells make
fate decisions, Monocle allows these trajectories to have a
branched structure with multiple possible outcomes or ‘‘lineages”
[19,20].

In this study, we go beyond previous studies that sought con-
nections between traits and cell types, to search for connections
between traits and developmental trajectories. Analyzing GWAS
summary statistics of 11 traits and diseases and 12 scRNA-seq
datasets that examined differentiation of a multitude of organs,
we pinpointed specific developmental trajectories that are linked
to disease pathogenesis, and elucidated biological processes and
target genes that underlie these connections.
2. Results

In this study, we implemented a novel bioinformatics approach
for identifying associations between complex human traits and
developmental trajectories, and biological processes and genes
that underlie these associations. Our approach is based on an inte-
grated analysis of GWAS summary statistics and scRNA-seq data,

and performs three main tasks: Task 1. Identification of connec-
tions between developmental trajectories and traits. In this task
we seek trait-trajectory links by identifying trajectories in which
the transcriptomic programs of the differentiating cells shift
towards expressing genes that are associated with the trait. To this
goal, we first convert GWAS variant scores into gene-trait associ-
ation scores (Fig. 1A). This is done using a statistical test imple-
mented by MAGMA [10], which considers, per gene, the scores of
the SNPs that overlap the gene body or its flanks (10 kbp), while
controlling for the correlations between SNPs due to linkage dise-
quilibrium (LD) patterns. Second, considering a scRNA-seq dataset,
we calculate, per individual cell, a cell-trait association score,
which measures, using a regression model, the cell’s propensity
to express trait-associated genes (Fig. 1B, Methods). Focusing our
analysis on scRNA-seq datasets that examined differentiation pro-
cesses, we next used trajectory analysis to infer developmental tra-
jectories in each dataset, and assign each cell with a pseudotime
that reflects its differentiation state along a maturation pathway
(Fig. 1C). Last, to identify differentiation trajectories that are linked
to the analyzed trait, we examined the association between the
cells’ pseudotime and the cell-trait association scores (Fig. 1D).

Task 2. Elucidate molecular pathways that underlie trajectory-
trait links. This is done by searching for biological processes, whose
genes, as a set, are both linked to the trajectory pseudotime and
enriched for trait-association signals. In this task, to identify pro-
cesses that are linked to the trajectory, we scored genes by the cor-
relation between their expression and pseudotime (Fig. 1E), and
then used GSEA tests [21] to identify functionally annotated
gene-sets that are significantly associated with the trajectory’s
kinetics (Fig. 1F). Then, considering the leading edge of gene sets
that passed the GSEA test (that is, the subset of genes in the gene
set that carry the link with pseudotime), we used MAGMA’s
gene-set analysis to test for enrichment of this subset for the trait’s

GWAS signals (Fig. 1G). Task 3. Prioritize genes that contribute to
the link between the pathway, trait and trajectory. In this final
step, we examined the genes contained in the core enrichment of
the gene sets detected in Task 2 and prioritize them according to
their trait-association scores.

We applied our bioinformatics method on a set of 11 traits of
various pathologies, and 12 scRNA-seq datasets that examined var-
ious differentiation processes (Table S1). We first focused on the



Fig. 1. Our method for identification of links between developmental trajectories and traits, and biological processes and genes that underlie these links. A. Gene-trait
association scores are derived from GWAS summary statistics. B. Each cell from the scRNA-seq dataset is assigned a cell-trait association score, based on the correlation
between its gene expression profile and gene-trait association scores. Cells A and B exemplify cells with low and high cell-trait association scores, respectively. In Cell B,
which is located towards the end of the trajectory, trait-associated genes tend to be highly expressed. C. Trajectory analysis of scRNA-seq datasets is used to infer individual
cells’ maturation states (pseudotime). D. Correlation between cells’ pseudotime and cell-trait association scores indicate a link between the differentiation trajectory and the
trait. In trajectories linked to the trait, cell-trait association scores increase along pseudotime. E. To identify biological processes that underlie the association between
trajectory and trait, we first identified, using GSEA, gene sets associated with the trajectory pseudotime. For this analysis, the pseudotime effect on each gene (that is, the
incremental change in expression along the trajectory) was inferred. F. Pseudotime effects were used to rank the genes in a list, such that genes whose expression decreases
with pseudotime (Gene A in the illustration) are at the beginning of the list, and genes whose expression increases (Gene B) are at the end of the list. GSEA is used to identify
gene sets whose members are overrepresented at the end of the list. G. The leading-edge subset (defined by GSEA) of each gene set that is linked with the trajectory, is
examined for association with the trait. Gene B and C are members of a gene set that is both linked to the trajectory and associated with the trait. Moreover, these genes
themselves are both strongly associated with the trait and highly induced along the trajectory (F), suggesting that they contribute to the connection between the trait,
trajectory, and biological process.
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developmental scRNA-seq datasets in which pseudotime analysis
delineated a single unbranched differentiation trajectory. As a first
showcase, we present the analysis of a scRNA-seq dataset that
probed cortical ganglionic eminence of embryonic mice (ages
E13.5-E14.5) [22]. Pseudotime analysis of this dataset (including
9,669 cells) delineated a single maturation trajectory of cortical
inhibitory interneurons (Fig. 2A). Notably, our method discovered
that this trajectory is strongly associated with schizophrenia
(Fig. 2B). Such association was not detected, for example, for Alz-
heimer’s or kidney disease (Fig. 2C, D). Examination of all 11 traits
included in our analysis showed that schizophrenia was, by far, the
trait most significantly associated with this trajectory (Fig. 2E,
3460
Table S2), in line with recent evidence linking this trajectory to
the pathogenesis of schizophrenia [23].

Our second showcase analysis of an unbranched differentiation
trajectory was done on a scRNA-seq dataset that examined liver
development [24]. Pseudotime analysis ordered the hepatoblasts,
hepatocytes, and cholangiocytes cells (a total of 563 cells),
extracted from mouse embryos (E10.5 to E17.5), along a develop-
mental trajectory in which hepatoblasts differentiate into hepato-
cytes. Our method found that this trajectory is significantly
associated with high density lipoprotein (HDL) and low density
lipoprotein (LDL) cholesterol levels (Fig. 2F), two prominent traits
controlled by the liver. Similarly, our method detected biologically



Fig. 2. Developmental trajectories associated with traits. A. Pseudotime analysis of scRNA-seq of cells from the ganglionic eminences of embryonic mice (E13.5-E14.5),
ordered the cells along a maturation trajectory of cortical inhibitory interneurons. Cells are colored according to their assigned pseudotime. B. The trajectory from A, with cells
colored according to their association with schizophrenia risk (cell-trait association score). C. The trajectory from A, with cells colored according to their association scores
with Alzheimer’s (left) and chronic kidney disease (right). D. Regression analysis shows that cell-trait scores for schizophrenia significantly increase along the trajectory. In
contrast, cell-trait scores for Alzheimer’s and chronic kidney disease do not show such pattern. E. Bar plot showing the significance level (log10) of the association between
the inhibitory-interneurons differentiation trajectory and multiple traits. The association of this developmental trajectory with schizophrenia is by far the most significant. F.
Maturation trajectory in which hepatoblasts differentiate into liver hepatocytes (mice E7.5 - E15.5). Panels are as in A-E. This trajectory was highly associated with HDL and
LDL levels.
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highly relevant trait-trajectory connections for the other
unbranched differentiation trajectories we analyzed, including
links between Alzheimer’s disease and microglia development
[25] (Fig. S2A), adipogenesis [26] and extreme BMI (Fig. S2B), and
kidney nephrons development [27] and kidney disease (Fig. S2C).

As cells progress through differentiation, they typically undergo
substantial alterations in their identities driven by massive
changes in cellular transcriptional programs. The above showcase
analyses investigated for such examples of differentiation in the
brain, liver, and adipose tissue. We next turned to examine if our
methodology could be applied to more subtle cellular processes
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that are also associated with a genetic predisposition to complex
diseases. As a test case, we analyzed a scRNA-seq dataset that pro-
filed microglia cells upon viral infection [28]. Our method finds
that this cell activation trajectory is strongly associated with mul-
tiple sclerosis (Fig. S2D) (This is in contrast to the link we detected
between microglia development and Alzheimer’s (Fig. S2A)). Our
results are in line with a recent study that indicated that microglia
affect the risk for multiple sclerosis via autoimmune processes in
the central nervous system [29].

Next, we moved to analyze scRNA-seq datasets that showed
branched differentiation trajectories; that is, developmental
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trajectories that include a single or multiple branching points,
where cells that followed the same route continue their develop-
ment along mutually exclusive paths, leading to distinct terminal
states (Fig. S1A). A canonical branched differentiation trajectory
is the one of the pancreatic islet cells development, where after
the branching point, progenitor cells differentiate mainly to alpha
or beta islet cells. We analyzed two scRNA-seq datasets that
explored this differentiation process in embryonic mice at E14.5
[30] (Fig. 3A-B), and at E13.5-E15.5 [31] (Fig. S3A-B). As expected,
analysis of both datasets showed that this trajectory, considered as
a whole, was most strongly associated with type-2 diabetes (T2D)
(Fig. 3C-D, Fig. S3C-D). Further examination demonstrated that
association with T2D shows branch dependency, being signifi-
cantly more pronounced for the trajectory that leads to the
formation of beta cells (Fig. 3E, Fig. 3SE), in line with the well-
established role for beta cells dysfunction in the pathophysiology
of T2D [32]. Reassuringly, in both datasets, T2D was the trait most
strongly associated with the beta-cells trajectory (Fig. 3F, Fig. 3SF).
Fig. 3. Associations between human traits and specific branches of developmental traject
developmental branching point, where progenitors make the decision towards alpha- or
type-2 diabetes. D. Bar plots showing association of the pancreas trajectory with each trai
significant branch dependency (p-value for branch dependency was calculated using like
Asterisks indicate that the association is significantly branch dependent (FDR q-value of l
the cardiogenic regions of mice embryos (E7.75, E8.25, E9.25). H. Pseudotime analysis d
different anatomical areas within the heart: the atria, ventricles, and outflow tract (OFT). I
atrial fibrillation is significantly stronger in the atrial branch.
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Additional single-branched trajectories that we analyzed included
differentiation of neuronal progenitors from the cortical lob and
pons of human embryos and fetuses [33] and maturation of blood
B cells [34]. In the neuronal differentiation trajectory, progenitors
develop into either intermediate progenitor cells (IPC), or radial
glial (RG) cells (Fig. S3G). The top scoring trait associated with this
trajectory was schizophrenia, and this link was significantly stron-
ger with the RG branch (Fig. S3H-I). In the B cell maturation trajec-
tory, we detected a strong association between systemic lupus
erythematosus (SLE) and multiple sclerosis and the branch termi-
nating in native and memory B cells (Fig. S3J-K).

Next, we moved to analyze differentiation trajectories that con-
tain more than one branching point. As a first example, the differ-
entiation trajectory of myocardium cells from the cardiogenic
regions of mice embryos (E7.75, E8.25, E9.25) contains two branch-
ing points (Fig. 3G). The first branching point splits the progenitor
cells into those that develop to atrial cells and those that continue
to develop along a second path containing another branching point
ories. A-B. Analysis of pancreatic cells from embryonic mice (E14.5) depicts the main
beta- islet cell fates. C. Cells are colored according to their association with risk for
t. Diabetes is the most strongly associated trait. E. The risk for type-2 diabetes shows
lihood ratio test, see Methods). F. Bar plot showing trait association for each branch.
ikelihood ratio test < 0.05). G. A developmental trajectory of myocardium cells from
elineates a three-branch trajectory. These branches terminate in cells that populate
. Cells are colored according to atrial fibrillation risk score. J. Association with risk for
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where cells follow tracks leading to the formation of either ventri-
cles or outflow tract (OFT) cells (Fig. 3H). Our analysis found that
atrial fibrillation is most strongly connected with the atrial branch
(Fig. 3I-J). A similar branching pattern is displayed by a develop-
mental process in the human fetal kidney. The first branching point
splits the cells into those that proceed along a path which termi-
nates in the formation of distal tubule/loop of Henle cells (DTLH),
and cells that continue towards a second fate-decision point. This
second branching leads to the formation of either early proximal
tubule (ErPrT) or podocyte (Pod) cells (Fig. S3L). Notably, the top
scoring trait associated with these differentiation trajectories was
Albuminuria, which is a kidney malady. It was significantly associ-
ated with all the three branches, with strongest link to the one that
leads to Pod cells (Fig. S3M). This developmental process was also
linked to HDL levels, that showed an association specifically with
the Pod branch (Fig. S3M).

The analyses described above implemented the first task of our
approach - identification of connections between developmental
trajectories and traits. Following the identification of such links,
we performed the second task – elucidation of molecular pathways
and biological processes that underlie the trajectory-trait connec-
tions. To this end, we first score genes by the incremental change
in their expression along the trajectory (Methods), use these scores
to sort the genes, and then apply GSEA tests to identify functionally
annotated gene sets that are significantly associated with the tra-
jectory’s kinetics. (GSEA tests seek gene sets whose genes are sig-
nificantly over-represented towards the end of the sorted gene
list). Following this method, GSEA analysis of the beta-islet cells’
branch in the pancreatic dataset (E13.5–15.5) revealed enrichment
for ’regulation of insulin secretion’, pinpointing this process as a
main biological end-point that is executed by this cell fate
(Fig. 4A). The leading-edge genes, defined by GSEA for the ’regula-
tion of insulin secretion’ gene set, contains a subset of 43 genes
that carry the link between this biological process and this devel-
opmental trajectory (Fig. 4B). Importantly, this subset of genes is
also significantly associated with T2D (Fig. 4C). Thus, collectively,
this analysis defines a core set of genes that function in secretion
of insulin, are up-regulated specifically along the beta-cell trajec-
tory and are associated with T2D risk. We identified additional
gene sets, including ’abnormal insulin levels’ and ’regulation of
hormone secretion’, which were both linked to the beta-cells tra-
jectory and enriched for T2D risk signal (Fig. 4D, Table S3). Apply-
ing this analysis to the connection detected in the heart
development dataset between atrial fibrillation and the atrial dif-
ferentiation branch, pinpointed numerous gene sets, including
’cardiac muscle contraction’ and ’cardiocyte differentiation’
(Fig. 4E, Table S3). Similarly, we detected the biological processes
’calcium ion transmembrane transporter activity’ and ’abnormal
nervous system electrophysiology’ as molecular pathways that
underlie the connection between the radial glial differentiation tra-
jectory and schizophrenia (Fig. 4F, Table S3). Results on molecular
pathways and biological processes that underlie trajectory-trait
connections detected in the other datasets we analyzed are shown
in Fig. S4. In addition to detecting (without using any a priori bio-
logical knowledge) well-established links between traits, develop-
mental trajectories and biological processes, our results also point
to novel connections, such as possible interplays between kidney
development and lipoprotein traits (nephrogenesis and LDL
Fig. S2C; PTA cells development into podocytes and HDL
Fig. S3M). The link between kidney function and lipoprotein levels
has been previously speculated [35]. Interestingly, our analysis
suggests that liver and kidney developmental trajectories may
impact cholesterol levels through different biological processes
(Fig S5, Table S3).

The last task in our analysis pipeline is aimed at prioritizing
genes that carry the links we revealed between molecular
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pathways, traits and trajectories. This is done by pinpointing genes
contained in the leading edge detected by GSEA in task 2 (which
indicate that their expression is induced along the trajectory) and
are themselves significantly associated with the trait (according
to their gene-trait score). As few examples, this analysis singled
out 104 genes that are likely playing a key role in linking risk for
T2D and the differentiation of beta cells (Table S4), among them
SLC30A8 [36–39], WFS1 [40] and SLC2A2 (GLUT2) [41] that were
previously implicated as T2D risk genes (Fig. 5A). Among the top
candidate genes pinpointed by the analysis of the link between
neuronal RG differentiation and schizophrenia are ZDHHC8 [42],
NCOR2 [43] and CACNA1A [44], which were previously implicated
as SCZ risk genes (Fig. 5B). Analysis of the link between atrial cell
differentiation and atrial fibrillation singled out known risk genes,
such as MYH6 [45] and FBXO32 [46] (Fig. 5C). Top candidate genes
identified for the liver development – HDL link include APOH [47],
ITIH3 [48], and APOE [49] (Fig. 5D). Candidate genes detected in
the other datasets analyzed in our study are shown in Fig. S6.
3. Discussion

In this study we presented a three-tier bioinformatics approach
for identifying connections between developmental trajectories
and genetic predisposition for complex traits, and characterizing
molecular pathways and prioritizing candidate genes that underlie
these links. Our method is based on an integrative analysis of
scRNA-seq data exploring differentiation processes and GWAS
summary statistics. Applying it to a set of 11 GWAS datasets and
12 scRNA-seq datasets, we demonstrated its capacity to detect
well-established associations, such as maturation of hepatocytes
and HDL and LDL levels; inhibitory neurons and schizophrenia;
and pancreatic beta-islet cells and type-2 diabetes. In the second
tier, our approach detects specific gene sets, each representing a
particular biological process or molecular pathway, which underlie
the identified trait-trajectory links. In the last tier, our method pin-
points highly scoring genes from the gene sets detected in the 2nd
tier, prioritizing them for further examination.

Our approach has several limitations. First, the step in task 1 to
derive gene-level risk scores based on SNP scores requires SNP-to-
gene maps. Mapping SNPs to their genuine target genes is a key
genomic challenge, considering the fact that risk variants are
enriched at enhancer regions and that enhancers frequently con-
trol distal genes rather than the closest ones [50–52]. Given that
the task of improving SNP-to-gene mapping is still under intensive
investigation, which is out of the scope of our current study, in our
analyses we opted to use MAGMA’s default mapping (gene
bodies + 10 kbp flanks). This suboptimal SNP-to-gene mapping
neglects the impact of many distal risk SNPs and is occasionally
expected to suffer from mapping of SNPs to the wrong target genes
(e.g., in case an intronic risk SNP is located within an enhancer that
regulates a gene different from its host gene).

A second limitation of our approach is that it seeks differentia-
tion trajectories that are positively correlated with the trait (that is,
the expression level of risk genes tends to increase along the trajec-
tory). We focused on positive correlation as we found that it is the
most common pattern. The adaptation of our method to cases of
negative correlation (that is, cases in which the activity of
disease-related molecular pathways decrease along the develop-
mental trajectory) is straightforward. More challenging are cases
in which the expression of genes associated with the trait shows
a temporal non-monotonous pattern, which peaks at a certain
intermediate cell state along the trajectory. For example, Cuomo
et al. recently showed that during the induced differentiation of
pluripotent stem cells (iPSCs), the impact of specific SNPs on the
expression of their target genes is strongest in particular interme-
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Fig. 5. Candidate genes affecting the trajectory-trait associations. Shown are examples of genes that are included in the GSEA leading-edge subset of biological processes tha
are associated with the trajectory kinetics and are themselves enriched for trait-association signal. Expression levels are normalized and scaled. Shown are selected top
candidate genes for the link between (A) beta cells trajectory and type 2 diabetes; (B) radial glial branch and schizophrenia, (C) heart development and atrial fibrillation and
(D) liver differentiation and HDL levels.

3
Fig. 4. Characterization of molecular pathways underlying trajectory-trait associations. A. GSEA was applied to a list of genes ranked according to the incremental change o
their expression along the branch of beta-islet cells in the pancreas developmental trajectory. The GO gene set ‘Regulation of Insulin Secretion’ was significantly over-
represented at the end of the list (corresponding to genes whose expression is induced towards the end of the trajectory). Genes to the right of the dashed vertical red line (43
genes) constitute the leading-edge subset of the ’Regulation of Insulin Secretion’ gene set. B. A Heatmap of the leading-edge genes. Rows correspond to cells, arranged
according to pseudotime (bottom to top), and columns correspond to genes. Color indicates scaled normalized expression levels. C. The subset of 43 leading-edge genes was
associated with risk for type 2 diabetes. The boxplot shows the distribution of gene-T2D association scores for the leading edge (Target) and all other genes (BG); p-value
calculated using MAGMA’s gene-set analysis. D. Biological processes (GO terms) that were associated with both the beta cells branch and type-2 diabetes. Color indicates the
significance of the trait association. Shown are the ten gene sets whose leading-edge genes were most strongly associated with T2D. The same analysis was carried to the
atrial branch – atrial fibrillation association (E) and the neurons progenitors – schizophrenia association (F). (For interpretation of the references to color in this figure legend
the reader is referred to the web version of this article.)
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diate states [53]. To detect such trajectory-trait links, the linear
model for inference of cell-trait associations used in our method
(task 1; Fig. 1D) should be replaced by a more flexible one, such
as natural splines regression. In most of the datasets analyzed in
our study, the trajectory-trait links were modeled well by the lin-
ear framework, and no benefit was obtained by using the more
flexible spline-based model (Fig. S7A-D). An exceptional case was
the link between B cell maturation and SLE, where the strongest
cell-trait association scores were obtained in an intermediate state
(Fig. S7F), and thus it was modeled better by spline. To properly
handle such non-linear cases, the method we apply in the second
task - inferring biological processes linked with the trajectory
(Fig. 1E-F) - should be adjusted as well. By default, for the GSEA
tests we rank the genes according to the correlation of their
expression with pseudotime. To account for non-linear associa-
tions between a trait and a trajectory, genes can be ranked by
the fit of their expression pattern to the spline curve of the trait-
trajectory association (Fig. S7G-H, Tables S3-4).

Current scRNA-seq data are characterized by high prevalence of
’drop-outs’, referring to the fact that in each individual cell, only a
subset of the expressed genes (typically 10–20%) is detected (also
referred to as ’zero-inflation’)[54]. To overcome this suboptimal
measurement, previous studies that integrated scRNA-seq and
GWAS data relied on averaging gene expression levels over multi-
ple cells. Specifically, considering cell states as a static property
and aiming to identify specific cell types that are enriched for
trait-association signals [12,13], previous methods are based on
an initial definition of the cell types detected in a dataset (e.g.,
by clustering), followed by the calculation of expression level of
each gene in each cell type (by averaging its expression overall
individual cells assigned to each cell type). In contrast, our method
considers the expression levels detected in each individual cell.
Our results demonstrate that despite immense drop-out, individ-
ual cell measurements allow robust calculation of (individual)
cell-trait association scores, enabling reliable detection of
trajectory-trait connections. In the analyses presented in this
study, for each dataset, we considered all genes that were detected
in at least 10 cells. Of note, our results were grossly non-sensitive
to the choice of filtering cutoff (Fig. S8). However, selecting genes
based on variability of expression across cells, which is a common
selection practice for cell clustering in single-cell analyses (highly
variable genes), showed a much greater impact on the results
(Fig. S8).

Our approach relies on a proper inference of the topology of the
trajectory (e.g., correctly identifying the branching points along a
trajectory), which often requires prior knowledge of the underlying
biology for choosing the appropriate method and its parameters
[55]. Therefore, in this study, we opted to follow, in all datasets,
the trajectory inference method that was used in the original pub-
lications. Yet, our approach can be applied using many different
trajectory inference tools that capture the topology of the dataset
considered. Applying six different computational methods, we
found that our results were robust to the choice of the trajectory
algorithms (Fig. S9).

scRNA-seq data are accumulating at an unprecedented pace. As
more and more differentiation processes are explored, our method
will be able to reveal novel links between specific fate-
determination trajectories and complex diseases and elucidate
molecular pathways that are related to the disease etiology. By pri-
oritizing top-scoring candidate genes, such analyses hold promise
for enhancing rational drug development that is aimed at targeting
biological processes that mediate the genetic predisposition to
developing the disease. Furthermore, from this perspective, detect-
ing an association between a disease and a dynamic trajectory has
a conceptual advantage over an association with a static cell
cluster: there is an ‘‘opportunity window” for preventive and
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therapeutic interventions to be effective. The kinetic pattern of
the disease-trajectory associations can guide us to better defini-
tions of such opportunity intervals for different diseases.

4. Methods

4.1. Analyzed datasets

We analyzed 12 publicly available scRNA-seq datasets that
examined differentiation processes in different tissues in humans
and mouse, and GWAS data of 11 human complex traits (Table S1).

4.2. scRNA-seq trajectory analysis

For each scRNA-seq dataset, we performed a pseudotime analy-
sis (Fig. 1C) according to the procedure described in the original
publication (we followed the code, which was either published or
obtained from the authors). In the adipogenesis dataset (Fig. S2B),
pseudotime was not inferred in the original publication. Therefore
we used Monocle 2 [56], setting dimensional reduction to two
components, and used the highly variable genes called by the orig-
inal publication as the ordering genes.

4.3. Identification of associations between traits and trajectories

Gene-trait association scores. Gene-trait association scores
were calculated using MAGMA’s (v1.07) gene analysis [10]
(Fig. 1A). This analysis takes as input GWAS summary statistics
and a reference file to estimate LD between SNPs, which was
inferred from the European samples in the 1000 Genome project
[57]. Following MAGMA’s default setting, for each gene, we consid-
ered the SNPs that either overlap the gene body or located within
its 10 kbp flanking region.

Cell-trait association scores. For mouse datasets, we converted
mousegenestotheirhumanorthologuesusingbiomaRt[58]andkept
only geneswith one-to-oneHs-Mmorthologmapping.Weexcluded
genes thatwere expressed in<10 cells. Gene countswerenormalized
using Seurat v3 [59] default normalization (log normalization). This
normalization divides gene counts for each cell by the total counts
for that cell, multiplies by 10,000, and last, values are transformed
using a natural log (adding a pseudo count of 1).

To assign trait-association scores for each individual cell
(Fig. 1B), we used MAGMA’s gene property analysis to fit the fol-
lowing regression model to each cell:

Z ¼ b0 þ Cbc þ AbA þ BbB þ �

where Z is the vector of the genes’ GWAS Z-scores converted
from the p-values obtained from MAGMA’s gene analysis for the
trait. B is a matrix of technical confounders, including gene length
and SNPs’ LDs, calculated by MAGMA. C is the vector of normalized
expression of the genes in the cell, and A is a vector of the average
normalized expression for the genes in the dataset. The t-statistic
of bc was taken as the score for the association between the cell
and trait. This regression model tests for correlation between gene
association with the analyzed trait and the gene expression profile
of the analyzed cell. It is similar to that used by Watanabe et al.
[16]; however, our regression was applied to expression levels
from individual cells rather than the average expression levels of
cell types.

Association between cells’ pseudotime and trait-association
scores. We examined the correlation between cell-trait association
scores and the pseudotime assigned to the cells (Fig. 1D). For single
branch trajectories, we fitted the following linear regression
model:

Cell� Trait score � Pseudotime
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We performed a one-sided test ðPseudotimecoefficient > 0).
Significance indicates that cells’ association with the trait increases
along the trajectory’s pseudotime. For trajectories with more than
one branch (pancreas, neurons, B cells, kidney PTA, and heart data-
sets), to examine if the trait’s association was branch-dependent,
we used a procedure similar to Monocle’s method for identifying
branch-dependent genes (Census) [20]. Briefly, we compared the
goodness of fit of the following two linear regression models:

Cell� Trait score � Pseudotime

Cell� Trait score � Pseudotimeþ Branch : Pseudotime

where the first model assumes that the trait is not branch depen-
dent, and the second model, which contains the interaction term
between branch and pseudotime, assumes branch dependency
(Fig. S1). Likelihood ratio test was carried out using the R package
VGAM [60] (lrtest function). As this approach requires the assign-
ment of branch identity to each cell, including the cells before the
branch point, we followed Monocle’s approach: We divided the
unbranched progenitors into branches by ordering them according
to pseudotime, and alternatingly assigning odd and even ranked
cells to the first and second branches, respectively. We assigned
the first progenitor to both branches. (Similarly, in the case of three
branches, progenitors were split according to ranking, assigning
cells with rankings that follow the arithmetic sequences
1þ 3n;2þ 3n;3þ 3n (n = 0,1,2,3, . . .) to the first, second, and third
branches, respectively).

Furthermore, to examine if there is a positive correlation
between cell-trait association scores and pseudotime within a
branch, we used the following model (Fig. S1C):

Cell� Trait Score � Branch : Pseudotime

Note that this model differs from the interaction model used for
testing branch dependency, which includes both pseudotime and
the interaction term, and therefore, does not have a coefficient that
directly indicates the direction of the correlation.

4.4. Identification of biological processes and genes underlying trait-
trajectory associations

To identify biological processes that underlie the connection
between trait and trajectory, we first created a ranked list for the
genes in the dataset, according to the incremental change in their
expression along the trajectory. We estimated these incremental
changes using Monocle 30s fit_models function [61], which uses
GLM to model the effect of pseudotime on genes’ expression
(Fig. 1E). We used log-normalized gene expression values and a
Gaussian error distribution GLM. The number of genes detected
in each cell was added as a covariate. The t-statistics of the pseu-
dotime coefficients were used as the scores for ranking the genes.
To rank genes according to a certain branch, we replaced the pseu-
dotime term with a term for the interaction between pseudotime
and branch. The genes were sorted from lowest (reflecting declin-
ing expression along the trajectory) to highest (reflecting increas-
ing expression along the trajectory). We then used gene-set
enrichment analysis (GSEA) to identify gene sets whose genes are
over-represented at the end of the list (Fig. 1F). We ran GSEA
implemented in the clusterProfile R package [62], using the ontol-
ogy gene set (GO, C5, 50 < set size < 500) from MSigDB [63]. Gene
sets with FDR q-value < 0.05 and normalized enrichment score
(NES) < 0 (indicating increased expression along the trajectory)
were considered linked with the trajectory.

To identify trajectory-linked gene sets that are associated with a
given trait, we used MAGMA’s gene-set analysis. We used the
leading-edge subset defined by GSEA as the input gene set for
MAGMA’s test (Fig. 1G). We used the leading-edge set rather than
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the whole gene set, to establish that the set of genes contributing
to the link between the biological process and the trajectory was
also associated with the trait. Gene sets with p-value < 0.05 were
considered significant.

To prioritize genes that may carry the trajectory-trait-biological
process associations, we considered the genes from the leading-
edge of trajectory-linked sets that were significantly associated
with the trait (MAGMA’s gene-level p-value < 0.05).

5. Code availability

R scripts and sample input files for this pipeline are available at
https://github.com/ElkonLab/scGWAS.
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