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Abstract

Background

Vitamin A and D deficiency is prevalent in pregnant women worldwide. Both vitamins are

involved in fetal skeletal development. A positive association between maternal vitamin D

levels and offspring bone mineral density (BMD) at adulthood has been observed. The

impact of maternal vitamin A status in pregnancy on offspring peak bone mass remains

unclear.

Method and findings

Forty-one mother-child pairs were recruited from a population-based prospective cohort

study in Trondheim, Norway, where pregnant women were followed from gestational week

17. Their term-born infants were followed from birth (1986–88). Regression analyses were

performed for vitamin A (retinol), 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin

D [1,25(OH)2D] in maternal serum (gestational weeks 17, 33, 37) and cord blood. Offspring

BMD and spine trabecular bone score (TBS), a measure of bone quality, were analyzed by

dual x-ray absorptiometry at 26 years. Average levels during pregnancy of retinol, 25(OH)D

and 1,25(OH)2D were 1.66 (0.32) μmol/L, 59.0 (20.6) nmol/L, and 251.3 (62.4) pmol/L,

respectively. 1,25(OH)2D levels were similar in those with 25(OH)D levels <30 and >75

nmol/L. After adjustment for maternal age, BMI, smoking, and education, and offspring birth

weight, maternal serum retinol was positively associated with offspring spine BMD [mean
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change 30.8 (CI 7.6, 54.0) mg/cm2 per 0.2 μmol/L retinol], and with offspring TBS, although

non-significant (p = 0.08). No associations were found between maternal 25(OH)D and 1,25

(OH)2D levels and offspring bone parameters. Vitamin levels in cord blood were not associ-

ated with offspring BMD or TBS.

Conclusions

This is the first study to show an association between maternal vitamin A status and off-

spring peak bone mass. Our findings may imply increase future risk for osteoporotic fracture

in offspring of mothers with suboptimal vitamin A level. No associations were observed

between 25(OH)D and 1,25(OH)2D and offspring BMD.

Introduction

Increasing evidence suggests that the in-utero environment plays an important role in the

development of future osteoporosis [1, 2]. Vitamin A and D are both important for bone

health, and antenatal levels of these vitamins may exert critical influence on this process. Glob-

ally, about 20 million pregnant women are considered to be vitamin A deficient [3, 4]. Mater-

nal vitamin D deficiency during pregnancy is a worldwide epidemic with a reported

prevalence from 18–84% [5–7].

In the diet, vitamin A is obtained as retinyl ester or β-carotene, which are metabolized to

retinol in the intestine [8]. In the circulation, retinol is incorporated in chylomicrons or bound

to retinol binding protein and transthyretin. The liver is the main storage site for vitamin A,

but a substantial amount is also transported to other tissues by chylomicrons, bone being the

second most important organ for clearance of chylomicron remnants [8, 9]. All-trans retinoic

acid, the biologically active form, binds to retinoic acid receptors (RARs) which heterodimer-

ize with retinoid X receptors (RXRs) [8, 10, 11]. Vitamin A has been shown to promote bone

formation and to inhibit generation of osteoclast progenitors [11]. The effects are, however,

dependent on dose, and both hypo- and hypervitaminosis A may be harmful for the skeleton.

Studies in rats show that vitamin A is essential for growth and normal skeletal development in

the fetus, whereas excess retinol may have negative skeletal effects [12]. An inverse association

between maternal serum retinol in late pregnancy and offspring total bone mineral content

(BMC) was reported in neonates within 2 weeks after birth, whereas β-carotene was positively

associated [13]. The association between maternal serum retinol during pregnancy and off-

spring bone health in adulthood has not been addressed.

Serum 25-hydroxyvitamin D [25(OH)D] is a measure of vitamin D status, and a precursor

of the active form 1,25-dihydroxyvitamin D3 [1,25(OH)2D] which binds to the vitamin D

receptor (VDR). Like RAR, VDR is dependent on heterodimerizing with RXR [14]. The pri-

mary action of vitamin D is to facilitate intestinal calcium absorption [15]. Severe vitamin D

deficiency leads to rickets in children and osteomalacia in adults [15]. During pregnancy, a

2–3 time rise in 1,25(OH)2D concentration occurs to optimize calcium absorption and miner-

alization of the fetal skeleton [16, 17].

Data on the association between maternal 25(OH)D concentrations during pregnancy and

offspring bone health are conflicting. Zhu et al. reported a positive association between mater-

nal serum vitamin D level and offspring peak bone mass [18]. This was supported by a study

showing that maternal 25(OH)D associated positively to offspring BMC at 9 years of age [19].

In contrast, two larger studies found no relationship between maternal serum 25(OH)D and
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offspring bone health at 6 and 9 years [20, 21]. No studies have evaluated the relation between

maternal 1,25(OH)2D concentrations and adult offspring bone health.

Antagonizing effects of vitamin A and D have been reported in several studies [11, 22].

High levels of vitamin D seem to protect against vitamin A toxicity, whereas high vitamin A

levels reduce the adverse effects of hypervitaminosis D [23]. High intake of vitamin A and con-

comitant low intake of vitamin D may enhance bone fragility [23–25]. It has been postulated

that these opposing effects may be attributed to that both RAR and VDR heterodimerize with

the RXR receptor [11, 26]. Thus, high levels of retinol could attenuate binding of the heterodi-

merized receptors VDR RXR to responsive elements of DNA, thereby impairing the actions of

vitamin D.

We aimed to examine the association between maternal serum levels of retinol, 25(OH)D,

and 1,25(OH)2D during second and third trimester and offspring BMD and trabecular bone

score (TBS) at the age of peak bone mass (26 years).

Methods

Study design and participants

Mother-child pairs were recruited from a Caucasian-population-based prospective cohort

study in Trondheim, Norway [27]. Pregnant women were followed from gestational week 17.

Their term-born infants were followed up from birth. Mother-child pairs were included based

on the access to maternal serum samples and offspring dual x-ray absorptiometry (DXA)

scans. At inclusion, offspring age was 26 years. Exclusion criteria were cerebral palsy and preg-

nancy. The study was approved by the Regional Committee for Medical and Health Research

Ethics in Central Norway (No: 2013/636/REK Mid-Norway). We obtained informed written

consent from all participants.

Procedures

Information on maternal sociodemographics, anthropometrics, and lifestyle factors were

retrieved from the cohort data collected from 1986–1988. Maternal serum samples were col-

lected at gestational weeks 17, 33, and 37, and in cord blood at delivery and stored at -80˚C for

later analyses. Analyses of all-trans retinol, hereafter referred to as retinol, and 25(OH)D were

performed at BEVITAL Laboratory in Bergen, Norway using isotope-dilution liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS). The reference range for serum retinol was

1.5–2.8 μmol/L. Analysis of 1,25(OH)2D was performed at the Hormone Laboratory, Oslo

University Hospital by an enzyme immunoassay (IDS Nordic A/S immunodiagnosticsystems).

The reference range was 39–193 pmol/l (CV% 13 at 82 pmol/l).

At the age of 26 years, the offspring completed a questionnaire addressing calcium (from

milk) and vitamin D intake, smoking and physical activity. Blood samples were collected after

overnight fast and stored at -80˚ C until analyses. Analysis of 25(OH)D was performed at

St. Olavs Hospital, Trondheim University Hospital, Norway. Offspring retinol was analyzed at

the same laboratory and with the same method as the maternal samples.

BMD at lumbar spine (L1-L4), femoral neck, total hip and whole body, and spine TBS were

measured with DXA applying Hologic Discovery A S/N 83817c (Hologic Bedford, MA, soft-

ware version 13.4.2). The BMD results are presented in mg/cm2 and Z-score.

Outcomes

Main outcomes were offspring BMD and TBS at the age of 26 years.
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Statistical analyses

Continuous variables are presented as mean and standard deviation (SD) or median and inter-

quartile range (IQR) dependent on the data distribution. The student’s t-test or nonparametric

test were applied. Differences in frequencies of categorical variables were analyzed by the Pear-

son chi-square test. Multivariate linear regression was used to examine associations between

maternal serum retinol, 25(OH)D and 1,25(OH)2D, and offspring bone parameters. Retinol,

25(OH)D, and 1,25(OH)2D were treated as continuous exposure variables. A composite expo-

sure variable was generated for each maternal serum parameter by averaging the concentration

across three gestational time-points (weeks 17, 33 and 37). Adjustments were made for mater-

nal age, preconception BMI, smoking and education, and offspring birth weight. These poten-

tial confounders were chosen based on previous studies [18–20], and as they were assumed to

be associated both with exposure and outcome. Additional adjustment for offspring covariates

(sex, BMI, smoking, physical activity and retinol and 25(OH)D levels) did not affect the results

and were therefore not included in the analyses. Statistical analyses were conducted using

SPSS statistics version 22�0 (IBM, Chicago, IL).

Results

Forty-one mother-child pairs were included. Maternal data are presented in Tables 1 and 2.

Mean age at delivery was 29.6 (4.3) years and mean pre-conception BMI 21.3 (3.1) kg/m2.

Seventy-three % of the women smoked at conception, and 51% smoked during pregnancy.

The average retinol concentration across the three gestational time-points (week 17, 33 and

37) was 1.66 (0.32) μmol/L. Retinol levels declined significantly during pregnancy 1.82 (0.34)

at 17 wk vs 1.63 (0.42) μmol/L at 33 wk, (CI -0.37, -0.01), p = 0.04, and 1.54 (0.35) μmol/L at 37

wk, (CI -0.44, -0.12), p = 0.001. Retinol inadequacy (< 1.05 μmol/L) was observed in one

Table 1. Anthropometric and sociodemographic characteristics of the mothers.

Maternal characteristics (n = 41)

Age at delivery, yrs 29.6 (4.3)

Height, m 1.66 (0.07)

Weight, kg—preconception 58 (52–64)

- at 17-week gestation 59 (54–66)

BMI pre-conception, kg/m2 21.3 (3.1)

Smoking habits

At conception (no/yes)

Non-smoker 11 (27)

Smoker 30 (73)

At 17 week gestation

Non-smoker 18 (44)

< 10 cigarettes per day 7 (17)

10–20 cigarettes per day 14 (34)

Unknown 2 (5)

Educational level

Completed middle school only 4 (9.8)

Completed middle school plus 1–2 yrs 13 (31.7)

Completed high school 8 (19.5)

Higher education, non-university 13 (31.7)

University degree 3 (7.3)

Values are given as mean (standard deviation) or median (interquartile range) or number (%).

https://doi.org/10.1371/journal.pone.0222712.t001
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mother at week 33 and in five (12%) at week 37, 16 (39%) had levels below the reference level

at week 37. Average 25(OH)D level during pregnancy was 59.0 (20.6) nmol/L. The levels

remained relatively stable from second to third trimester. At week 17, 47.2% of the mothers

had vitamin D insufficiency (25(OH)D < 50 nmol/L). The corresponding numbers at week 33

and 37 were 48.6 and 47.5%, respectively. Vitamin D deficiency (25(OH)D < 30 nmol/L) was

observed in 11.1, 16.2 and 17.5% at week 17, 33 and 37, respectively.

Average 1,25(OH)2D concentration was 251.3 (62.4) pmol/L. A non-significant rise

occurred between the trimesters. In week 37, mean level of 1,25(OH)2D in those with 25(OH)

D levels < 30, between 30–50, between 50–75, and> 75 nmol/L did not differ (209, 253, 263

and 255 pmol/L, respectively, p = 0.726).

Offspring (n = 41) data are given in Table 3.

Among the offspring, 16 had birth weight below the 10th percentile, and 25 above the 10th

percentile. Mean birth weight was 3410 (542) g. The age at inclusion was 26.1 (0.6) years; 61%

(n = 25) were males. Mean BMI was 25.2 (5.0) kg/m2. None had vitamin A insufficiency, three

had levels above the upper reference level (>2.8 μmol/L). Vitamin D insufficiency (25(OH)D

<50 nmol/L) was observed in 51% (n = 21). The data collected on vitamin D intake were

incomplete and did not allow estimation of daily intake. The median calcium intake from milk

was 85 (52.5–184.0) mg/day.

Mean BMD Z-scores were -0.505 (1.02), -0.071 (0.98), 0.066 (0.87), and -0.420 (0.94), at the

lumbar spine, femoral neck, total hip and whole body, respectively. Spine TBS was 1.42 (0.10).

BMD and TBS did not differ significantly between participants with birth weight below and

above the 10th percentile (spine BMD: 1100 (70) and 1130 (90) mg/cm2, respectively, p = 0.28;

TBS 1.40 (0.11) vs 1.43 (0.10), respectively, p = 0.40). Offspring spine BMD was significantly

higher in those with maternal retinol levels above 1.54 μmol/L (mean level in week 37) com-

pared to those with levels below [1040 (120) vs 960 (80) mg/cm2, p = 0.023]

Table 2. Mean retinol, 25(OH)D and 1,25(OH)2D levels in maternal serum at different gestational weeks and in

cord blood (n = 41).

Gestational week Serum levels

Retinol, μmol/L

wk 17 1.82 (0.34)

wk 33 1.63 (0.42)

wk 37 1.54 (0.35)

Average 1.66 (0.32)

Cord blood 0.87 (0.24)

25(OH)D, nmol/L

wk 17 57.8 (25.4)

wk 33 58.1 (27.8)

wk 37 57.6 (28.6)

Average 59.0 (20.6)

Cord blood 31.4 (18.6)

1,25(OH)2D, pmol/L

wk 17 226.2 (71.2)

wk 33 273.6 (90.4)

wk 37 261.0 (69.5)

Average 251.3 (62.4)

Cord blood 116.5 (37.7)

Values are given as mean (standard deviation). 25(OH)D = 25-hydroxyvitamin D, 1,25

(OH)2D = 1,25-hydroxyvitamin D.

https://doi.org/10.1371/journal.pone.0222712.t002
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Five subjects reported allergy, and three of them used antihistamine drugs; one had asthma

and used glucocorticoid inhalation. Three had depression, of whom two were treated with

antidepressants (escitalopram and sertraline). One participant had hypothyroidism and was

adequately treated with levothyroxine. One subject with a history of eating disorder had nor-

mal BMI and BMD at inclusion. Another subject successfully treated for lymphoma also dis-

played satisfactory BMD. Additionally, four reported to have migraine and one chronic pain.

Nine were currently using hormonal contraceptives and six were former users.

Associations between maternal vitamin A and D levels and offspring bone

parameters

After adjustment for maternal confounders and birth weight, offspring spine BMD and Z-

score were positively associated with average retinol level across three gestational time-points,

and increased by 30.8 (CI 7.6, 54.0) mg/cm2 and 0.24 (CI 0.03, 0.46) SD, respectively per

0.2 μmol/L increment in maternal retinol (Table 4).

Table 3. Anthropometric, lifestyle and densitometry characteristics of offspring at age 26 years.

Offspring characteristics (n = 41)

Age, years 26.1 (0.6)

Male 25 (61)

Height, m 1.76 (0.12)

Weight, kg 78.1 (18.3)

BMI, kg/m2 23.9 (21.9–27.4)

Birth weight, g 3410 (542)

Calcium intake (from milk), mg/d 85.0 (52.5–184.0)

Serum 25(OH)D, nmol/L 49.0 (35.0–78.5)

<50 nmol/L 21 (51.2)

�50 nmol/L 20 (48.8)

Serum all-trans retinol, μmol/L 2.02 (0.46)

Daily physical activity, min 28.9 (5.9–32.1)

Smoking status

Never 19 (46)

Former 17 (42)

Current 4 (10)

Unknown 1 (2)

Dual energy x-ray absorptiometry

Bone mineral density, mg/cm2

Lumbar spine 1015 (112)

Femoral neck 881 (123)

Total hip 1002 (124)

Whole body 1120 (83)

Bone mineral density, Z-score

Lumbar spine -0.505 (1.02)

Femoral neck -0.071 (0.98)

Total hip 0.066 (0.87)

Whole body -0.420 (0.94)

Trabecular bone score 1.42 (0.10)

Values are given as mean (standard deviation) or median (inter quartile range) or number (%).

BMI = body mass index, 25(OH)D = 25-hydroxyvitamin D

https://doi.org/10.1371/journal.pone.0222712.t003
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A positive, but non-significant (p = 0.08) association was also seen between maternal retinol

levels and offspring TBS after adjustment (Table 4). Maternal retinol concentration at week 17

was positively associated with spine and whole-body BMD (S1 Table). Positive associations

were also observed between retinol concentration at week 37 and offspring spine and total

hip BMD (S3 Table). No associations were observed between average maternal 25(OH)D and

1,25(OH)2D levels and offspring BMD or TBS (Table 4). Retinol in cord blood was not associ-

ated with offspring BMD or TBS (spine, p = 0.77; femoral neck, p = 0.23; total hip, p = 0.31;

whole body, p = 0.26; TBS, p = 0.47). Similarly, no associations were seen between 25(OH)D

and 1,25(OH)2D levels in cord blood and offspring BMD or TBS (25(OH)D: BMD spine,

p = 0.36; femoral neck, p = 0.99; total hip, p = 0.76; whole body, p = 0.88; TBS, p = 0.79. 1,25

(OH)2D: spine, p = 0.52; femoral neck, p = 0.54; total hip, p = 0.61; whole body, p = 0.95; TBS,

p = 0.57).

Table 4. Associations of maternal serum retinol, 25(OH)D and 1,25(OH)2D during second and third trimester and offspring bone parameters at age 26 years.

Δ Bone mineral density (mg/cm2) (n = 41) Δ Z-score (n = 41) Δ Trabecular bone score (n = 41)

Crude Adjusted Crude Adjusted Crude Adjusted

Lumbar spine

Retinol per 0.2 μmol/L 21.6 (-0.04,

43.6)

30.8 (7.6, 54.0)
�

0.16 (-0.04,

0.36)

0.24 (0.03, 0.46) � 0.012 (-0.008,

0.032)

0.021 (-0.002,

0.044)

25(OH)D per 10 nmol/L -12.1 (-29.3, 5.0) -10.0 (-30.0,

10.0)

-0.11 (-0.26,

0.05)

-0.10 (-0.26, 0.07) 0.003 (-0.013,

0.019)

0.003 (-0.014,

0.020)

1,25(OH)2D per 25

pmol/L

-3.1 (-17.7,

11.5)

-2.3 (-17.4,

12.8)

-0.03 (-0.18,

0.10)

-0.03 (-0.16, 0.11) 0.001 (-0.012,

0.014)

-0.000 (-0.002,

0.015)

Femoral neck

Retinol per 0.2 μmol/L 15.4 (-9.2, 40.0) 18.4 (-11.6,

48.4)

0.08 (-0.12,

0.28)

0.10 (-0.15, 0.34)

25(OH)D per 10 nmol/L 1.7 (-17.5,

20.9)

2.0 (-19.7,

23.7)

0.01 (-0.14,

0.17)

0.20 (-0.16, 0.18)

1,25(OH)2D per 25

pmol/L

-0.7 (-14.7,

16.2)

0.6 (-17.5,

18,8)

0.01 (-0.12,

0.13)

0.00 (-0.14, 0.15)

Total hip

Retinol per 0.2 μmol/L 21.8 (-2.6, 46.4) 25.2 (-4.6, 55.2) 0.10 (-0.06,

0.28)

0.13 (-0.09, 0.35)

25(OH)D per 10 nmol/L -1.3 (-20.8,

18.2)

-1.2 (-23.4,

20.9)

-0.01 (-0.15,

0.12)

-0.01 (-0.17, 0.14)

1,25(OH)2D per 25

pmol/L

0.7 (-15.3,

16.7)

-0.2 (-18.5,

18.3)

0.01 (-0.11,

0.12)

0.00 (-0.13, 0.13)

Whole body

Retinol per 0.2 μmol/L 13.4 (-3.0, 29.6) 18.6 (-0.8, 38.2) 0.08 (-0.10,

0.28)

0.14 (-0.09, 0.37)

25(OH)D per 10 nmol/L 0.4 (-12.6,

13.3)

-0.1 (-14.7,

14.5)

0.00 (-0.14,

0.15)

-0.00 (-0.17, 0.16)

1,25(OH)2D per 25

pmol/L

6.0 (-4.7, 16.9) 5.8 (-6.3, 17.8) 0.08 (-0.05,

0.20)

0.07 (-0.07, 0.21)

Values represent unstandardized linear regression coefficients B (crude and adjusted) and reflect the differences and 95% confidence intervals between increase in

maternal retinol, 25(OH)D = 25-hydroxyvitamin D, and 1,25(OH)2D = 1,25-hydroxyvitamin D concentrations and adult offspring bone parameters. The dependent

variable was adjusted for the following maternal covariates: age at delivery, preconception body mass index, educational level and smoking during pregnancy, and for

offspring birth weight.

�p<0.05.

https://doi.org/10.1371/journal.pone.0222712.t004
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Discussion

This is the first study to demonstrate a relationship between vitamin A status in pregnant

women and offspring peak bone mass. After adjustment for maternal confounders and birth

weight, we observed a significant positive association between average maternal retinol levels

during second and third trimester and offspring spine BMD at 26 years of age. Offspring spine

BMD Z-score increased by 0.24 SD per 0.2 μmol/L increment in maternal retinol. This is of

clinical significance, as a BMD increase of 1 SD translates to a 2–3 times fracture reduction

[28]. Retinol concentration at week 17 was also associated with offspring spine and whole

body BMD and at week 37 with spine and total hip BMD. No associations were found between

maternal 25(OH)D and 1,25(OH)2D levels and offspring bone parameters.

TBS is a measure of microarchitecture and bone quality, which has been shown to predict

occurrence of major fractures independent of BMD [29]. We observed a positive association

between average maternal retinol concentration and offspring TBS, albeit, not significant

(p = 0.08). Impairment of bone quality in addition to lower peak bone mass in offspring of

mothers with insufficient vitamin A status may enhance future fracture risk. In contrast to a

study by Hyde et al.[30], no relation between maternal 25(OH)D concentration and TBS was

found.

We show that low maternal vitamin A status may affect bone adversely and influence

achievement of an optimal peak bone mass. This is of concern, as peak bone mass is regarded

as the most important determinant of future fracture risk [31]. Our findings comply with stud-

ies in rodents demonstrating that retinol is mandatory for normal development of fetal bone

[12]. Retinol plays a crucial role at an early stage in embryogenesis in patterning the entire

axial skeleton and for development of other skeletal structures at a later stage [32]. The second

trimester is a critical period for long bone growth [1], where vitamin A is an important actor,

both deficiency and excess vitamin A causing inhibition of longitudinal growth [33]. In line

with this, we observed a significant association between maternal retinol levels in week 17 and

offspring BMD. Vitamin A deficiency in late embryogenic stage has been shown to affect

development of the axial and appendicular skeleton in rats [12]. Accordingly, the significant

association seen in week 37 in the present study, may indicate a role for vitamin A in skeletal

development during the third trimester. As reviewed by Delgado-Calle et al., epidemiological

and experimental studies suggest that epigenetic mechanisms influence skeletal development

and the risk of osteoporosis [34]. Vitamin A is a potent epigenetic modulator that may produce

long-term effects on the phenotype [35]. So far, there are no studies addressing epigenetic

effects of vitamin A on the skeleton. Vitamin A is also involved in post-natal maintenance of

bone [36]. In vitro studies suggest that retinol stimulates osteoblast differentiation and transi-

tion of osteoblasts to osteocytes and inhibits osteoclastogenesis, thus promoting bone forma-

tion [36–38].

Maternal vitamin D inadequacy may impair mineralization and thus affect the fetal skeleton

directly [16, 17]. Moreover, skeletal effects may be attributed to epigenetic mechanisms, as

vitamin D interacts with the epigenome at multiple levels [39, 40]. In contrast to Zhu et al.
[18], we did not observe any association between maternal 25(OH)D and offspring BMD.

There are no reports on the relation between maternal 1,25(OH)2D level and offspring BMD.

In the present study, no association was found. In line with previous studies, maternal 1,25

(OH)2D levels increased from second to third trimester. This rise occurs to facilitate calcium

absorption and ensure mineralization of the fetal skeleton [16, 17]. We found that circulating

1,25(OH)2D was similar across different levels of 25(OH)D, illustrating that compensatory

mechanisms may uphold serum 1,25(OH)2D levels in a state of maternal hypovitaminosis D

[41]. Since vitamin D exerts its actions through 1,25(OH)2D, this could explain the lack of
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association between maternal 25(OH)D and offspring BMD. In a recent study including 855

pregnant women, we observed that 1,25(OH)2D level was significantly lower in women with

25(OH)D level < 30 nmol/L compared to those with level above 75 nmol/L [7]. Hollis et al.
suggested that 25(OH)D levels of 100 nmol/L are necessary to obtain maximal 1,25(OH)2D

concentrations during pregnancy [17]. The fact that none of our participants reached this level

combined with the small sample size, may have attenuated the possibility to show associations.

In line with previous studies [13, 42], we observed a modest decline in retinol levels

throughout pregnancy, which may be attributed to hemodilution, and depletion of maternal

stores due to fetal demands. The fact that the majority of women were smokers could contrib-

ute to the inferior vitamin A status, as smoking seems to attenuate serum levels of beta-caro-

tene [43]. Unfortunately, we do not have data on alterations in smoking status during

pregnancy.

The optimal retinol concentration during pregnancy is not settled. Concentrations below

1.05 μmol/L are regarded as inadequate in the non-pregnant state. According to this criterion,

five (12.5%) women displayed inadequacy in last trimester. In a meta-analysis addressing vita-

min A and fracture risk, retinol levels between 1.99 and 2.31 μmol/L were suggested to be opti-

mal [44]. A U-shaped relationship between serum retinol levels and hip fracture risk was

observed, indicating that both high and low levels may be harmful [44]. Several studies have

reported negative skeletal effects, however, mainly in those with retinol levels > 2.64 μmol/L

[45]. In contrast, in a Norwegian study by Holvik et al.[46], hip fracture risk tended to be

increased at low retinol concentrations, whereas high levels (up to 3 μmol/L) showed no

adverse effect on hip fracture risk. In the present study, most of the women had retinol levels

below 1.99 μmol/L, and about 40% had levels below the reference level. When stratifying off-

spring BMD according to mean maternal retinol level in week 37 (1.54 μmol/L), we observed a

significantly higher spine BMD in offspring whose mothers had concentrations above this

level.

Since vitamin A has to be obtained from the diet, it may be challenging to reach satisfactory

levels [35]. Data from clinical trials indicate that a vegetarian diet alone is not sufficient to

achieve an adequate vitamin A status [47]. A Cochrane review concluded that taking vitamin

A supplements during pregnancy reduced the risk of anemia, infection and night blindness in

the mother [47]. However, no reduction in deaths of mothers or newborns were seen [48]. The

recommended intake during pregnancy differs between countries [49], and the adherence to

these recommendations is low [50]. WHO advocates vitamin A supplementation only to preg-

nant women in regions with severe deficiency to prevent night blindness [3]. According to

McCauley et al., the basal requirement during pregnancy is 370 μg/day and the recommended

daily allowance 770 μg/dayhttps://www.ncbi.nlm.nih.gov/pubmed/26027509 [48]. It is not

specified whether vitamin A supplements should be given as retinol ester or beta-carotene. In

a study from rural Nepal, a positive effect on pulmonary function was observed in the offspring

at the age of 9–13 years, in those whose mothers received supplements with preformed vitamin

A during pregnancy. In children whose mothers were supplemented with beta-carotene, no

beneficial effects on pulmonary function were observed [51, 52].

In the present study, almost 50% of the women exhibited vitamin D insufficiency at both

second and third trimester. The occurrence of deficiency increased from 11.1 to 17.5% from

week 17 to week 37. This is in accordance with previous studies showing a high prevalence of

hypovitaminosis D during pregnancy [16, 17]. Infants whose mothers are vitamin D deficient

may be born with hypocalcemia and some develop rickets and craniotabes [53]. The prenatal

recommendations vary between countries, and the adherence seems to be poor [54].

Interference between vitamin A and D at receptor level could also affect fetal bone nega-

tively. High levels of retinol combined with vitamin D deficiency could hinder binding of
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VDR to the heterodimer RAR-RXR and thus block the effects of vitamin D [55]. In the present

study, none of the mothers with vitamin D deficiency had hypervitaminosis A, thus interaction

between these vitamins is not likely to explain the association between maternal levels and off-

spring bone health.

The main limitation to the study is the small sample size, which makes it vulnerable to type

2 error, and to a lesser extent to type 1 error. The offspring comprised individuals born at term

with low or normal birth weight. At the age of 26 years, they did, however, not differ signifi-

cantly in BMI, BMD and TBS. We had access to maternal data that allowed adjustment for sev-

eral confounding factors. However, information on potential confounding factors such as

parity and dietary intake of vitamin A and D were lacking. Moreover, we did not have data on

vitamin A and D intake in the offspring, and the calcium intake was underestimated as only

milk consumption was recorded. The study participants were white, and the findings may thus

not be applicable to other ethnic groups.

The study has several notable strengths, including the long-term follow-up. This enabled

the assessment of offspring bone health at the age of peak bone mass, thus reducing the influ-

ence of factors as growth rate and developmental differences. Application of TBS for assess-

ment of bone quality gave additional information concerning fracture risk. In contrast to most

previous studies, serum levels of vitamin A and D were analyzed at several time-points across

the last two trimesters of pregnancy and in cord blood at delivery, thus allowing assessment of

at which stage of fetal skeletal development these vitamins may have the highest impact. Vita-

min A levels preconception and in first trimester could have added further insight.

Conclusion

Maternal retinol concentration during mid and late pregnancy was positively associated with

offspring peak bone mass and bone quality. This may imply increase future fracture risk in off-

spring of mothers with inadequate vitamin A status. Our study contributes to novel knowledge

on developmental origins of osteoporosis. Given the high prevalence of hypovitaminosis A

worldwide, there is a need for increased attention to ensure sufficient intake during pregnancy.

No associations between maternal 25(OH)D and 1,25(OH)2D concentrations and offspring

bone health were shown. Studies with larger study populations are warranted to confirm our

data.
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