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Abstract 

We offer a framework for automatically and accurately segmenting breast lesions from Dynamic Contrast Enhanced 
(DCE) MRI in this paper. The framework is built using max flow and min cut problems in the continuous domain over 
phase preserved denoised images. Three stages are required to complete the proposed approach. First, post-contrast 
and pre-contrast images are subtracted, followed by image registrations that benefit to enhancing lesion areas. Sec-
ond, a phase preserved denoising and pixel-wise adaptive Wiener filtering technique is used, followed by max flow 
and min cut problems in a continuous domain. A denoising mechanism clears the noise in the images by preserving 
useful and detailed features such as edges. Then, lesion detection is performed using continuous max flow. Finally, 
a morphological operation is used as a post-processing step to further delineate the obtained results. A series of quali-
tative and quantitative trials employing nine performance metrics on 21 cases with two different MR image resolu-
tions were used to verify the effectiveness of the proposed method. Performance results demonstrate the quality of 
segmentation obtained from the proposed method.
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Introduction
Among a broad range of medical conditions [1–3], cancer 
is the most common and dangerous illness on the planet. 
Cancer is one of the leading causes of mortality among 
women across the world. Cancer develops when aberrant 
body cells begin to split and come into touch with healthy 
cells, causing them to become malignant. Accord-
ing to the World Health Organization’s (WHO) cancer 
research organizations (International Agency for Cancer 
Research (IARC) and American Cancer Society), 17.1 
million new cancer cases were reported globally in 2018 
[4]. Furthermore, breast cancer is said to be the world’s 
most frequent and fastest-growing cancer, affecting pri-
marily women and caused by aberrant cell development 
around the breast lobules or ducts [5]. It is the second 
most frequent cancer in women that leads to mortality, 
after lung cancer [6]. The importance of early identifica-
tion and therapy in improving the survival rate cannot 

be overstated. Mammography [7], ultrasound [8], biopsy 
CT scan [9] and MRI scan [10] are some medical imaging 
modalities used to diagnose breast cancer. Dynamic con-
trast-enhanced magnetic resonance imaging (DCE-MRI) 
is a type of imaging that produces three-dimensional 
high-resolution images with correct anatomical informa-
tion that is not available with the other two commonly 
utilized imaging techniques, mammography and ultra-
sound. As a result, it is the most common and important 
method for diagnosing breast cancer. Due to the vast 
amount of data required, manual segmentation of various 
imaging techniques for suspected breast lesions is a tedi-
ous and time-consuming task [11, 12].

Many of the available segmentation algorithms 
are classified as supervised or unsupervised learning 
approaches [13–15]. The purpose of supervised learning 
is to create a trained model that can differentiate between 
distinct object labels [16–18]. Some popular super-
vised approaches in the literature are K-Nearest Neigh-
bors (KNN) [19, 20], random forests (RF) [21], SVM 
[22], Bayesian, and deep learning, which is an advanced 
supervised technique [23–25], are some of the popular 
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supervised approaches in the literature. Because super-
vised methods necessitate huge labelled datasets, they 
are a time-consuming and computationally expensive 
method of attaining an efficient outcome [26, 27]. Fur-
thermore, supervised learning algorithms have limita-
tions in terms of dataset quantity and quality, as well as 
the risk of overfitting.Due to limited patient numbers and 
time constraints, obtaining sufficient labelled data for 
practical clinical applications is difficult [28–30]. It is also 
likely that neighboring pixels take the same label or have 
a low number of connected components.

Unsupervised methods, on the other hand, require 
prior knowledge of required segmentation labels and 
rely on features like region, boundary texture, and image 
edges [31, 32]. Patterns (feature vectors) related to 
the same object are used in unsupervised approaches. 
These characteristics can be investigated and defined 
in accordance with needs. Moreover, unsupervised 
machine learning models learn from unlabeled data 
without human interaction. Once the desired outcomes 
have been obtained, they can be used as labelled data to 
train supervised learning models that create more dura-
ble outcomes. Unsupervised segmentation approaches 
are thought to be useful in dealing with more complex 
scenarios [33, 34]. Some important unsupervised seg-
mentation techniques include: (1) clustering-based seg-
mentation, such as fuzzy Cmeans and Kmeans [35, 36]; 
(2) edge-based segmentation, which relies on the fact that 
pixels in the background and foreground are distinct [37]; 
(3) region-based segmentation, such as region growing 
and region splitting-merging [38]. In these techniques, a 
seed selection is considered an important step. Energy-
based segmentation is another essential and common 
segmentation technique, in which a result is generated by 
minimizing a constructed energy function [39]. Basbes 
[40] presents a chest wall delineation technique based on 
content analysis and Dijkstra for axial breast DCE-MRI. 
The authors want to simplify things by processing an on-
risk zone that is better suited to optimisation and then 
segmenting lesions using a clustering technique. Live 
wire [41], active contour [42], level sets [43] and graph-
based [44] are some of the various approaches that use 
the energy function. The energy function is constructed 
using boundary information in active contour and level 
set approaches, and the performance is dependent on the 
original curve. Graph is another major unsupervised seg-
mentation technique [45, 46]. To develop a globally opti-
mal solution, graph-based segmentation uses region and 
boundary information [47, 48]. Also, discrete optimiza-
tion graph-based methods have become popular because 
of their performance in medical image segmentation [25, 
49, 50]. Images are partitioned into numerous sub-graphs 
in this method, each of which represents a relevant object 

in the image. The image is first turned into a graph, with 
pixels, regions, or voxels representing the graph’s organ-
ized grid. Grid bias, which penalizes spatial directions 
and has a negative influence on computing, is one of the 
major downsides of such a system.

Traditional max flow algorithms use a graph-based for-
mulation of max flow to provide a method for discrete 
optimization of an energy function. A discrete graph-
based max flow problem can be directly mapped to the 
continuous optimization formulation of the continuous 
max flow model, yielding more accurate results [51, 52]. 
Continuous max-flow algorithms, on the other hand, 
have no stopping criteria and require a lot more repeti-
tion to reach convergence [53]. Unsupervised segmenta-
tion algorithms, on the other hand, encounter a number 
of challenges, particularly in MRIs [54, 55]. The existence 
of unavoidable noise during the acquisition of breast 
DCE-MRI has a significant impact on the accuracy of 
segmentation. Geometric aberrations and non-uniform 
light in tissues make segmentation even more difficult. 
Furthermore, during acquisition, patient movement may 
blur or even wipe away the border between the lesion and 
the background tissue. Without a multigrid and parallel 
implementation, employing a continuous max flow min 
cut algorithm on MRI images will provide a less efficient 
result due to existing noise and slow down convergence 
[56].

We present a fully automatic and unsupervised 
approach for accurate lesion segmentation to address the 
aforementioned problems. The framework incorporates a 
graph method (solved by formulating max flow and min 
cut problems in the continuous domain) with denois-
ing methods and morphological operations. Although 
the continuous max flow (CMF) technique can reduce 
iterations while reducing computational load, the seg-
mentation quality is shown to be highly dependent on 
the denoising step prior to execution. As a result, a good 
denoising technique is required prior to the segmentation 
process in order to remove noise while maintaining rel-
evant information and structure. The first stage in lesion 
segmentation is to remove common background signals 
and improve the contrast of breast lesions. This phase is 
completed by registering the images and subtracting the 
pre- and post-contrast images. Following that, we employ 
phase preserved denoising and adaptive Weiner filtering 
to reduce noise and undesired artefacts while keeping 
crucial segmentation features like edge and boundary. To 
acquire the segmentation, this step is followed by a CMF 
algorithm. Finally, we delete the undesirable region from 
the generated image using a morphological technique to 
get the final result.

The rest of the paper is organized as follows. In Sect. 2, 
we go over the various ways for segmenting breast lesions 
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in depth. The proposed lesion segmentation method is 
explained in Sect.  3. Section  4 analyses the experimental 
results and provides a detailed discussion, with the final 
section providing a concluding remark.

Materials and methods
Image subtraction after registration
The subtraction between pre- and post-contrast images is a 
critical and primary stage in our algorithm [57]. By remov-
ing common background signals, this method makes it eas-
ier to characterize lesions. With enhanced contrast in the 
breast lesion, the resulting image is acquired. The perfor-
mance of subtraction, on the other hand, is dependent on 
the image pre and post images acquisition. A patient should 
not relocate from one imaging session to the next, which is 
not always possible. These unintentional movements cause 
a misalignment of image sequence [58]. As a result, image 
registration is required prior to image removal. Image reg-
istration is the geometrical transformation of one image to 
another. The normalized image is obtained from the sub-
traction of the pre contrast image from the post-contrast 
image after the registration.

where Ipost and Ipre are the post and pre contrast image 
sequence. Isub labels the image obtained from the sub-
traction of Ipre from the Ipost after registration.

Let Ireg is the registered image. With respect to the pre-
contrast image, the post-contrast image is registered. The 
registration algorithm “imregtform” function in Matlab 
is used to correct the misalignment between the pre and 
post contrast images. The similarity metric and optimisa-
tion approach are also defined by “imregconfig”. The affine 
transformation and bicubic interpolation are used in the 
registration process.

Affine transformation model
Let us consider pre- and post-contrast DCE-MRI image 
as Ipre and Ipost that are generated from the same imag-
ing technique. Ireg is the registered image. In our case, pre 
contrast image Ipre is considered as the fixed image and the 
post-contrast image Ipost is the moving image. Also, p and q 
are coordinates for fixed and moving image. The relation-
ship between Ireg (p) and Ipost(p) is given as shown in Eq. 4

(1)Isub = Ipost − Ipre

(2)Ireg = registration(Ipost)

(3)Isub = Ireg − Ipre

(4)
Ireg (p) = Ipost(A(q)) ⇐⇒ Ipost(q) = Ireg (A

−1(p))

where A is the affine transformation. As demonstrated 
in the first, second, third, and fourth matrices, the affine 
transformation is the product of four geometric transfor-
mations: translation, rotation, scaling, and skew.

The dot product of these matrices is obtained as shown 
below:

where tx and ty are the shift of positive value towards left 
and up. θ is defined as the rotation which is measured in 
clockwise direction. k is a shear factor and sx, sy  are the 
change of scale in x and y direction respectively.

Local phase‑preserved denoising of DCE‑MRI
Denoising DCE-MR images is a crucial step in the lesion 
segmentation process [59]. Denoising is a technique for 
transforming an image into a domain where the noise 
component may be easily identified. After that, the noise is 
removed and the image is turned into a noise-free image. 
Wavelet transformation is one of several denoising tech-
niques that is thought to be particularly effective at distin-
guishing between signal and noise in an image. In addition, 
the image contains two critical pieces of information: mag-
nitude and phase. It can be seen that the prior denoising 
process on breast DCE-MR images did not take this key 
information into account, namely phase information [60–
62]. Not only for perception, but also for image improve-
ment, phase information is critical.

A log Gabor wavelet filter is used in the phase preserved 
denoising approach. In DCE-MRI, the image is first decon-
structed into amplitude and phase information at each 
point of slice. The observation reveals that the majority 
of the amplitude information is concentrated in the mid-
dle of the image, while the phase information is scattered 
throughout. It’s clear that amplitude or phase informa-
tion alone isn’t enough to rebuild a noise-free image while 
keeping crucial visual properties. As a result, we develop 
a phase-preserved approach for DCE-MRI images of the 
breast that shrinks the amplitude information in various 
scaling factors and orientations.

Consider an image as a signal vector, I(x,  y). (5) is the 
response vector for even symmetric (Mne) and odd sym-
metric (Mno) wavelets at scale n. At a wavelet scale n, the 
amplitude An(x) and phase phin are determined as (6) and 
(7), respectively.
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where Ren(x, y),Imn(x, y) is real and imaginary part of 
complex valued frequency component.

During denoising, a noise threshold is calculated at 
each wavelet scale, and the size of the filtered vector is 
decreased while the phase remains unchanged. As a 
result, the complex-valued wavelet response is used, in 
which the phase is kept while the amplitude is reduced 
across various wavelet sizes and orientations. Estima-
tion of a signal can be reconstructed by summing the 
remaining even-symmetric filter response over all scales 
and orientations. The mean and variance of the Rayleigh 
distribution are used to estimate the noise threshold. The 
mean and variance of the Rayleigh distribution R is given 
by µR and σ 2

R
 in (9).

where σ 2 is the scale parameter of the Rayleigh distribu-
tion. The noise threshold is calculated as,

where c is the standard deviation of the noise to be 
rejected. It has something to do with the perfect wave 
shape. The smaller the value of c, the more optimal the 
wave shape will be. The value of c was set to be fixed and 
equal to one.

To make a robust estimation, mean ( µR ) is replaced with 
the median ( M ) response of Rayleigh distribution,

where M labels median response. In each scale and ori-
entation, the noise threshold is calculated and processed. 
Finally, the reconstructed image is obtained as I2.

Adaptive wiener filtering
Because edges are key features during lesion segmentation, 
the edge-preserving denoising technique should be used. 
To smooth the image while keeping the edges, we use an 
adaptive Wiener filtering approach [63].

The adaptive Wiener filter is given by Eq. (12) [64]:

(5)
[Ren(x, y), Imn(x, y)] = [I(x, y)×Me

n, I(x, y)×Mo
n]

(6)An(x, y) =

√

Ren(x, y)2 + Imn(x, y)2

(7)φn(x, y) = atan2 (Imn(x, y)/Ren(x, y))

(8)R(x, y) = (x, y)/σ 2e−(x,y)2/2σ 2

(9)µR = σ
√

π/2, σ 2
R
=

4 − π

2
σ 2

(10)τ1 = µR + c σR

(11)M = σ
√

−2 ln (1/2)

where mf and σ 2
f  is the local mean and variance. v2 is 

the average value of σ 2
f  across noisy image i.e. Inoisy . The 

computation of local mean and mf and variance σ 2
f  is pro-

vided in Eq. (13):

where X and Y are the horizontal and vertical arrays of 
pixels in the window mask.

CMF based lesion segmentation
The Continuous Max Flow (CMF) [65] method is a graph-
based methodology that has been demonstrated to be 
extremely effective in labelling key parts in an image. 
Consider the task of partitioning the � continuous image 
domain into two regions or labels: foreground and back-
ground. Source and sink are the two terminals.

There are three concerning flows: Fs , Ft and F are the 
source, sink and spatial flow as shown in the Fig. 1. Let x be 
the image position and each image position x ∈ �.

and the flows are conserved as

As a result, for the total flow from source to sink for two 
labels, the max flow problem is given by

(12)Idenoised(i, j) = mf +
σ 2
f − v2

σ 2
f

(Inoisy(i, j)−mf)

(13)

mf = (XY )−1
∑

i,j∈M

Inoisy(i, j)

σ 2
f = (XY )−1

∑

i,j∈M

(I2noisy(i, j)−m2
f )

(14)
Fs(x) ≤ Cs(x), Ft(x) ≤ Ct(x), |F(x)| ≤ C(x); ∀x ∈ �

(15)Ft − Fs + divF = 0; ∀x ∈ �

Fig. 1 Continuous Max flow with two labels
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Consider the task of dividing the continuous image 
domain � into regions or labels with i = 1 . . . n . The 
source, sink, and spatial flow are represented by 
Fs(x), Fi(x)andri(x) , respectively, as illustrated in Fig.  2. 
Let x be the image position, and x ∈ � be the image posi-
tion. The n label max flow model of �i is given in parallel, 
with i = 1 . . . n.

At each position x ∈ � , Fs(x) stream from s to x for each 
label i = 1 . . . n Hence, the source field is identical and 
there is no constraint for the source flow Fs(x) for n label 
partition.
Fi(x) and ri(x) are constrained by the capacities ρ(Li, x) 

and Ci(x) , i = 1 . . . n.
The flow are conserved as

Hence, the max flow problem for the total flow from 
source to sink for n labels is given by

The Potts model is regarded as a powerful image segmen-
tation method. The mathematical expression for multi-
region segmentation using the Potts model is provided as 
in the equation.

(16)

(17)(divri − Fs + Fi)(x) = 0, i = 1 . . . n

(18)

where |∂�i| is the perimeter of each disjoint sub domain 
�i , i = 1 . . . n . Ci(x) , i = 1 . . . n is the cost of assigning the 
specified position x ∈ � to the region �i . The segmenta-
tion problem can be solved using convex relaxation potts 
model derived from Eq. 19 as shown in Eq. 20

where ui(x) , i = 1 . . . n defines the function of the seg-
mented region �i . S is the convex constrained set of 
u(x) = (u1(x), . . .un(x))

Morphological operation
Morphological operators use a set function known as the 
structuring element to extract required structures from a 
image (SE) [66]. SE is selected according to the set of pix-
els of interest on the image. Erosion and Dilation are the 
two fundamental morphological operators used in this 
research. To eliminate all related components except the 
largest one, a combination of erosion and dilation is per-
formed, and the lesion is then restored within the great-
est achieved region.

Assume that IMRimg is a set of pixels from the original 
image, ISE is the structuring element, and ( ˆISE)S is the 

(19)

(20)

Fig. 2 Continuous Max flow with n labels
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reflection of ISE about its origin, followed by the shift of S 
[67]. Equation 21 shows how to get the dilation and ero-
sion procedure.

Proposed lesion segmentation method
The proposed segmentation approach consists of three 
steps: (1) image pre-processing, (2) lesion detection and 
(3) image post-processing as shown in Fig. 3.

Image pre‑processing
This procedure is utilized to provide a more enhanced 
normalized image, which makes it easier to notice the 
lesion. It’s done by subtracting the pre-contrast image 
from the post-contrast image obtained after the con-
trast agent is injected. Image registration should be done 
before the image subtraction. Image registration corrects 
the pre- and post-contrast image misalignment caused by 
inadvertent movement during imaging. Figure  4 shows 
the pre-contrast and post-contrast images.

The subtraction operation removes native T1 signal 
and hence the remaining enhancement is effective to 
accurately detect the lesion. This process is seen compe-
tent to the image where enhancement is critical to detect 
the complicated cysts. The figure illustrates the effec-
tiveness of image subtraction. Figure  5a, d are the pre-
contrast, (b), (e) are the post-contrast and (c), (f ) are the 
resultant image after the image subtraction respectively.

(21)
Dilation, IMRimg ⊕ ISE = {S|( ˆISE)S ∩ IMRimg}

Erosion, IMRimg ⊖ ISE = {S|( ˆISE)S ⊆ IMRimg}

Lesion segmentation
DCE-MRI contains noise due to the fluctuations in the 
receiver coil and from the electrically conducting tissue. 
The presence of noise in the DCE-MRI image increases 
the complexity and leads towards the misinterpretation. 
It is necessary to remove this noise, minimize the new 
artifacts and preserve kinetic enhancement information 
and fine structural details. Therefore, following the pre-
processing step, the phase preserved denoising method 
is applied. During lesion segmentation, it is also neces-
sary to smooth the image while sharpening the edges. As 
a result, we use an adaptive Wiener filtering strategy fol-
lowing phase preserved denoising.

The orientation and wavelet scaling factor are two cru-
cial factors to consider when using the phase maintained 
denoising approach. Filter responsiveness to noise is 
high when the scaling factor is low. The filter response 
to noise will eventually be reduced as the scaling fac-
tor is increased. The scaling factor should be carefully 
chosen because a low scaling factor may treat beneficial 
information as noise and eliminate it. In addition, a high 
scaling filter may be poor at removing noise. We chose 
the scaling factor of 8 after multiple experiments and 
optimizations, which preserves fine structural details 
while increasing the contrast between the lesion and the 
background. The filter response of a DCE-MRI image via 
phase preserved denoising with different scaling factors 
is shown in Fig. 6.

The generation of Gabor features with wavelet filters 
is the first step in the denoising process. The produced 
Gabor features are then involved with the DCE-MRI 
slices. As a result, a feature vector response is achieved. 
For example, if 2 scales and 15 orientations are consid-
ered, it generates 15 different feature vector responses of 
slices as shown in Fig. 7. As a result, summing responses 
across all sizes and orientations yields the final denoised 
image.

Although the image has been denoised to some 
amount, smoothing is essential before using CMF to 
obtain correct segmentation. Smoothing is required at 
this stage while maintaining edges and the border. Bilat-
eral filtering is effective in removing noise from edges 
and boundaries, which are high-frequency zones. As a 
result, we used bilateral filtering to smooth the images 
while preserving edges and boundaries.

Figure  8 show the image with or without using phase 
preserved denoising and bilateral filtering.

On the denoised MRI image acquired by phase pre-
serving denoising, the continuous max-flow technique 
is applied. In the DCE-MRI, each pixel of each slice 
is coupled to the source S and sink T in the continu-
ous plane at first. We also take into account that each 
pixel is linked to three different flows: source, sink, 

Preprocessing

Lesion Detection

Post Processing

Morphological Operation
Resultant Image

CMF based segmentation

Final Result

Phase preservation denoising

Pixel wise adaptive wiener filtering

Image Registration

Image Subtraction

Fig. 3 The proposed functional diagram of retinal vessel segmenta-
tion
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and spatial flow. The source flow is directed towards 
sink T from source S. The amount of interaction with 
its neighbouring pixels determines the spatial flow. For 
a noisy image with low SNR, the capacity values of all 
pixels would constrain solutions to a local minimum, 
preventing the global optimum from being determined. 
As a result, before applying the CMF approach, phase 
maintained denoise is employed to clear the image’s 
noise while preserving the image’s significant features. 

In addition, using bilateral filtering on a phase-pre-
served image will smooth it down while keeping the 
edges.

Image post‑processing
Based on the observed result from the earlier section, 
post-processing of the image is required. Morphologi-
cal erosion and dilation operation are used to remove 
the boundary of edges. secondly, the nearby components 

Fig. 4 Illustration of image registration algorithm in DCE-MRI. (a) Pre-contrast image (b) Post contrast image
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Fig. 5 Subtraction of the pre-contrast from the post-contrast image. a, d pre-contrast image. b, e Post-contrast image. c, f The resultant image after 
subtraction of the pre-contrast image from Post-contrast image

Fig. 6 Filter responses of the DCE-MR images obtained according to different scaling factors. a Scaling factor of 1. b Scaling factor of 3. c Scaling 
factor of 8
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are connected together and the biggest area among the 
connected component are searched and preserved. Rest 
of the areas are considered as noise and removed. The 
obtained segmented image are compared with manually 
drawn available ground truth image from the expert. Fig-
ures 10, 11, 12 show resultant images obtained after the 
post-processing. It is observed that post-processing plays 
a vital role to further precisely segment lesions.

Data availability
The data acquired for this work was obtained from 
Zhongshan Hospital of Dalian University http:// en. dlhos 
pital. com/ index- subje ct- detail- id- 11. html. The datasets 
analyzed in this article are not publicly available, as the 
data contain potentially identifying or sensitive patient 
information. All the data has got ethical clearance. Upon 
request, the request for data should be sent to Dsqshen-
jing2002@163.com, Jing Shen, Affiliated Zhongshan 
hospital of Dalian University. Doctor Jing Shen assisted 
collecting the breast MRI data and drawing the tumour 
patterns manually. The detail on data acquisition tech-
nique is explained in the “Performance evaluation and 
results” section.

Performance evaluation and results
Data acquisition and evaluation criteria
The experiment is conducted on Windows 10 ( ×64), with 
Intel Core i5 CPU, 2.9GHZ and 8GB RAM. We validate 
the proposed algorithm on the image generated from 
1.5T scanner. The imaging parameters for DCE-MRI 
were: TR/TE = 4.5/1.8 ms, a matrix size = 512 × 512, 
with the number of signal averages set to 1, a field of view 
of 30 cm, and a slice thickness of 1.5 mm. The gray-level 
range of MRIs is 0–255. There are total 23 cases in which 
19 cases with the size of 512 × 512 × 96 and 4 cases with 
the size of 480 × 480 × 160. All cases have one pre-con-
trast and 4 post-contrast imaging frames were acquired. 
Ground truth images are available for all the cases, which 
are manually labeled by qualified doctors. The result for 
the lesion segmentation is acquired from, 2464 scans of 
23 cases. For the experiment, we have divided the images 
into two groups : G1 and G2. G1 includes images with 
resolution of 512 × 512 × 96 and G2 with resolution of 
480 × 480 × 160.

The performance of a denoised image is first illustrated 
by calculating the peak signal-to-noise ratios before and 
after phase conserved denoising (PSNR). Furthermore, 
the quantitative assessment of the proposed algorithm is 
tested with nine metrics: accuracy (Acc), sensitivity (Se) 

Fig. 7 Illustration of phase preserved DCE-MRI after reconstruction with scaling factor of 2 and 15 orientations using Gabor wavelet filter

http://en.dlhospital.com/index-subject-detail-id-11.html
http://en.dlhospital.com/index-subject-detail-id-11.html
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or Recall, Specificity (Sp), precision (P), the error rate 
(ER), Volumetric Similarity (Vs), DICE coefficient (DSC), 
Jaccard index (Jc) and AUC from receiving operating 
characteristics (ROC) curve. These parameters are deter-
mined using a pixel-based classification technique, in 
which each pixel on a DCE-MRI slice is categorized as a 
lesion or a background. There are four possible combina-
tions in the pixel-based classification technique: two clas-
sifications and two misclassifications. True positive (TP) 
and true negative (TN) pixels are those that have been 
accurately identified during categorization. The term 
misclassification refers to the false positive (FP) and false 

negative (FN) which are incorrectly identified as a lesion. 
SG signifies the segmentation’s obtained from the pro-
posed methods and GT signify the ground truth which 
is manually segmented. These metrics are defined in the 
following equations.

(22)Acc =
TP+ TN

TP+ FP+ TN+ FN

(23)Se =
TP

TP+ FN

Fig. 8 Images obtained with and without phase-preserved denoising and bilateral filtering are shown. Without utilising phase-preserved denoising 
and bilateral filtering, a and c are the final images after subtracting the pre-contrast from the post-contrast image. The resultant image after sub-
tracting the pre-contrast from the post-contrast image with phase-preserved denoising and bilateral filtering is shown in (b) and (d)
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Acc is the ratio of the total number of correctly classi-
fied pixels to the total number of pixels in an image. The 
metrics Se and Sp are obtained from the proportion of 
positively and negatively recognised pixels in the ground 
truth image. The ratio of accurately predicted positive 
observations to total expected positive observations 
is denoted by the letter P. P denotes repeatable meas-
urements, even if the value is outside of the acceptable 
range, distinguishing it from accuracy. The mis-classifica-
tion rate (ER) is a metric error rate that assesses the fre-
quency of incorrect predictions. When the ER is near to 
0 and positive, it is considered outstanding. The volume 
of the segments that suggested similarity is measured 
by volumetric similarity (Vs). It is calculated by dividing 
the absolute difference by the sum of the comparative 
volumes. DSC is the overlap based metric that measures 
the similarity between segmented OD via automatic and 
manual method. To further verify the efficiency of the 
proposed algorithm, we calculated a metric known as JC. 
This metric is the similarity measure related to the Jac-
card index which measures the overlap between auto-
matically and manually segmented OD. We employ the 
AUC metric, which is derived from the receiving oper-
ating characteristics (ROC) curve, to assess the trade-off 
between Se and Sp. The curve is displayed with a false 
positive rate (1-Sp) on the x-axis and a true positive rate 
(Se) on the y-axis using varying threshold values within 
a certain interval to create this non-parametric per-
formance measurement. A result of greater than 90% is 
considered excellent, and the ROC curve is deemed ideal 
when it is closer to the top left corner, which provides a 
perfect value, i.e. 1.

(24)Sp =
TN

TN+ FP

(25)P =
TP

TP+ FP

(26)ER =
FP+FN

TP+ FP+ TN+ FN

(27)Vs = 1−
FN− FP

2× TP+ FP+ FN

(28)DSC =
2(SG ∩ GT)

SG+ GT
× 100%

(29)JC =
(SG ∩ GT)

SG ∪ GT
× 100%

Results and discussion
The DCE-MRI image is noisy in its original form. The 
algorithm’s performance is affected by the segmentation 
of the lesion from the noisy image. As a result, phase 
preserved denoising is employed to remove the image’s 
undesired noise and artefacts. The image enhancement 
is visible in Fig. 8 and can be tested by calculating the 
PSNR value before and after denoising, as shown in 
Table 1. We separated the entire number of images into 
two groups (G1 and G2) and calculated the PSNR value 
acquired before and after denoising because the data 
set contains images with two resolutions. As shown in 
Table  1, the PSNR value in both groups has improved 
significantly.

The outcomes of the segmentation can be seen graphi-
cally. The proposed method’s subsequent lesion segmen-
tation is shown in Fig. 9. Although the suggested method 
is capable of efficiently segmenting the lesion, some 
undesirable areas are present in the image, necessitat-
ing extra processing. Hence, the post-processing step is 
carried out in the obtained resultant image. Figures  10, 
11 and 12 show how the post-processing procedure can 
remove the majority of the undesired portions from 
the final photos. When compared to the ground-truth 
image, the proposed method shows that it is capable of 
efficiently segmenting the lesion as shown in Fig.  13. A 
skilled radiologist manually segmented the ground truth 
image as shown in Fig.  13a, d and g. The ultimate out-
come of the proposed method is shown in Fig.  13b, e, 
and h. The overlap between the lesion region in the 
original image and the result achieved using the sug-
gested method is shown in Fig. 13c, f and i. The results 
reveal that the suggested method is capable of accurately 
segmenting the lesion region, which is supported by 
quantitative analysis as shown in Table 2. We used nine 
parameters to evaluate the effectiveness of the suggested 
work in this research.

The quantitative result achieved from the suggested 
method when compared to the ground-truth image is 
shown in Table 2. In every situation, we’ve had outstand-
ing outcomes. In both groups, the average result is very 
similar when compared with the ground-truth image. 
The most of the results that we achieved are above 90% 
which shows that the performance of the proposed algo-
rithm is excellent.

The experiments show that the results obtained from 
the proposed methods when compared with the results 
obtained from the recent methods outperform or highly 
comparable, as shown in Table 3. It is observed that Acc, 
Sp, Vs, and AUC obtained from the proposed method 
are above 95%, proving the effectiveness of the pro-
posed algorithm. Also, in terms of overlapping metrics 
(DSC and JC), the obtained result outperforms or highly 
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Fig. 9 Illustration of resultant lesion segmentation obtained by using the proposed method before post-processing. Each row (a)-(b)-(c), (d)-(e)-(f ), 
and (g)-(h)-(i) are the lesion segmented from slices from the same MR images
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comparable with the existing methods with an average of 
91.63% and 85.35% respectively. When comparing with 
the result obtained from the recently proposed method, 
Accuracy was observed to be better than all the other 
methods except Marrone et al. 2013. However, the result 
is highly comparable. The result obtained from the pro-
posed method outperforms all the existing methods in 
terms of DSC and JC with an average value of 91.63% and 
85.35%.

The task of segmenting a lesion from a breast DCE-
MR image is significant and difficult. To obtain the 

previously indicated level of accuracy, we conducted 
multiple experiments before obtaining at the presented 
solution. The lesion appears in varying shapes and 
intensities in distinct DCE-MRI slices. Furthermore, 
due to unattended movement of the object, DCE-MRI 
images are packed with sounds during image collect-
ing. To solve this issue, we came to the conclusion 
that image registration is required as the first step. 
Furthermore, geometric distortion and non-uniform 
lighting in the tissues are reported to complicate the 
segmentation procedure. We used the phase preserved 

Fig. 10 Illustration of resultant lesion segmentation obtained by using the proposed method after post-Processing. First row (a, b, c) represents the 
original image and second row (d, e, f )represents the final result i.e segmented lesions
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denoising technique in the registered image, followed 
by pixel-wise adaptive Wiener filtering to maintain the 
sharp edges, to preserve the majority of the image’s 
relevant information while removing the noise. The 
significant section of the image is then labelled using 
the graph-based technique, i.e. CMF. This strategy has 
been shown to be successful in solving the segmenta-
tion problem while allocating the minimum parameter. 
Also, reducing the iteration time will assist in obtain-
ing the faster segmentation. It is observed that the effi-
ciency of this framework depends upon the denoising 
process prior to the application of the CMF algorithm. 
The CMF algorithm is experimented with or without 

using the pre-processing step. The experiment shows 
that the outcomes of CMF algorithm with the pre-
processing steps are accurate in segmenting the lesion 
region. Without the pre-processing stage, the outcome 
contains a lot of undesirable areas, especially near the 
lesion.

The studies reveal that combining the CMF algorithm 
with phase preserved denoising produced a final image 
that encompassed the majority of the lesion region. 
However, the image still includes some undesired area 
in the image, which is displayed in Fig.  9. As a result, 
we’ve introduced a post-processing step to eliminate 

Fig. 11 Illustration of resultant lesion segmentation obtained by using the proposed method after post-processing. First row (a, b, c) represents the 
original image and second row (d, e, f) represents the final result i.e. segmented lesions
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the undesired component. Initially, morphological dila-
tion with a disc-shaped structuring element with a 5 
pixel radius was used. This technique provides for a 5 
pixel growth in all directions from the edges. The not 
connected lesion will be preserved as a result of this 
procedure, especially in the vicinity of the lesion. The 
procedure is then repeated, with each connected compo-
nent being searched and the largest region being saved. 
To produce the final lesion segmentation, the convolu-
tion procedure is performed with the dilated image and 
the resulting image.

Conclusions
We suggested an automatic and quick lesion segmenta-
tion method from breast DCE-MRI data in this work. As 
a pre-processing step, image registration is used before 

image subtraction. In addition, the pre-processed image 
is subjected to phase preserved denoising and adap-
tive Wiener filtering, followed by the CMF algorithm (a 
graph-based approach). Finally, post-processing is used 
to remove any undesired noises that remain, exclud-
ing the lesion. This framework has been tested with 23 
different DCE-MRI cases with resolutions. In terms of 
nine metrics, the quantitative analysis reveals a signifi-
cant improvement in segmentation quality when com-
pared to recent segmentation techniques. Furthermore, 
the suggested unsupervised method requires no prior 
information and may be used with most medical images 
with little parameter changes. We will test the proposed 
framework with a big dataset in the future, and the seg-
mentations that are acquired can be utilized as a label for 
the classification of various types of cancers.

Fig. 12 Illustration of resultant lesion segmentation obtained by using the proposed method after post-Processing. First row (a, b, c) represents the 
original image and second row (d, e, f)represents the final results i.e segmented lesions
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Fig. 13 Results of lesion segmentation on the MRI images with different levels of BD and different breast shapes. The images in the first column 
are the manually segmented ground truth images. Similarly, second and third columns are the automatically segmented results with the proposed 
method and its mask on the original image to visually inspect the accuracy
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Table 1 Comparison of PSNR 
values before and after the 
phase preserved denoising

Dataset Average PSNR

Subtracted image After denoising

G1 21.36± 0.7 32.54± 0.42

G2 20.82± 0.21 34.19± 0.53

Table 2 Quantitative comparison of performance of lesion segmentation using the proposed method with the ground-
truth image

Acc Se Sp P ER Vs DICE JC Auc

Cases (G1)

   1 0.9933 0.9081 0.9968 0.9242 0.0023 0.9912 0.9161 0.8451 0.98

   2 0.9921 0.9152 0.9841 0.9365 0.0069 0.9878 0.909 0.8569 0.97

   3 0.9789 0.9231 0.9799 0.9388 0.0052 0.9921 0.9256 0.8654 0.96

   4 0.9888 0.9012 0.9969 0.9219 0.0042 0.9874 0.9158 0.8475 0.97

   5 0.991 0.897 0.9912 0.9127 0.0035 0.9789 0.92 0.8489 0.97

   6 0.9699 0.8999 0.9879 0.9099 0.0058 0.9856 0.909 0.8585 0.98

   7 0.9956 0.9258 0.9799 0.9123 0.0069 0.9956 0.9158 0.8741 0.99

   8 0.9874 0.9265 0.9936 0.9223 0.0063 0.9961 0.9146 0.8461 0.99

   9 0.9715 0.9241 0.9752 0.9234 0.0042 0.9816 0.9256 0.849 0.96

   10 0.9865 0.9125 0.9858 0.9145 0.0043 0.9777 0.9241 0.851 0.97

   11 0.9784 0.8812 0.9912 0.9156 0.0078 0.9713 0.9174 0.8479 0.98

   12 0.9953 0.8845 0.9873 0.9215 0.0061 0.9782 0.916 0.859 0.99

   13 0.9741 0.9178 0.9932 0.93 0.0039 0.9745 0.9292 0.8513 0.96

   14 0.9799 0.9167 0.9889 0.92 0.004 0.9878 0.902 0.8467 0.97

   15 0.9898 0.909 0.9798 0.912 0.0043 0.9923 0.9088 0.8419 0.98

   16 0.9632 0.8821 0.9712 0.909 0.004 0.9891 0.9087 0.8521 0.98

   17 0.9787 0.8928 0.9912 0.9097 0.0047 0.9858 0.9087 0.8484 0.99

   18 0.9963 0.9181 0.9963 0.9312 0.0068 0.9799 0.9145 0.8546 0.96

   19 0.9879 0.9099 0.9874 0.9012 0.0054 0.9889 0.9191 0.861 0.97

   Avg 0.9845 0.9076 0.9877 0.9195 0.0051 0.9856 0.9158 0.8525 0.975

Cases (G2)

   1 0.9674 0.9191 0.9926 0.909 0.0052 0.9826 0.9193 0.8321 0.97

   2 0.9874 0.9221 0.9874 0.9258 0.0045 0.9948 0.9201 0.8596 0.99

   3 0.9742 0.8989 0.9858 0.9123 0.0054 0.9797 0.9078 0.8679 0.98

   4 0.9931 0.9182 0.9745 0.9097 0.0068 0.9889 0.9183 0.8545 0.97

   Avg 0.9805 0.9145 0.9850 0.9142 0.0054 0.9865 0.9163 0.8535 0.9775
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