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Meta‑gene markers predict 
meningioma recurrence with high 
accuracy
Zsolt Zador1,7*, Alexander P. Landry1,7*, Benjamin Haibe‑Kains2,3,4,5,6 & 
Michael D. Cusimano1

Meningiomas, the most common adult brain tumors, recur in up to half of cases. This requires timely 
intervention and therefore accurate risk assessment of recurrence is essential. Our current practice 
relies heavily on histological grade and extent of surgical excision to predict meningioma recurrence. 
However, prediction accuracy can be as poor as 50% for low or intermediate grade tumors which 
constitute the majority of cases. Moreover, attempts to find molecular markers to predict their 
recurrence have been impeded by low or heterogenous genetic signal. We therefore sought to apply 
systems-biology approaches to transcriptomic data to better predict meningioma recurrence. We 
apply gene co-expression networks to a cohort of 252 adult patients from the publicly available 
genetic repository Gene Expression Omnibus. Resultant gene clusters (“modules”) were represented 
by the first principle component of their expression, and their ability to predict recurrence assessed 
with a logistic regression model. External validation was done using two independent samples: one 
merged microarray-based cohort with a total of 108 patients and one RNA-seq-based cohort with 
145 patients, using the same modules. We used the bioinformatics database Enrichr to examine the 
gene ontology associations and driver transcription factors of each module. Using gene co-expression 
analysis, we were able predict tumor recurrence with high accuracy using a single module which 
mapped to cell cycle-related processes (AUC of 0.81 ± 0.09 and 0.77 ± 0.10 in external validation using 
microarray and RNA-seq data, respectively). This module remained predictive when controlling for 
WHO grade in all cohorts, and was associated with several cancer-associated transcription factors 
which may serve as novel therapeutic targets for patients with this disease. With the easy accessibility 
of gene panels in healthcare diagnostics, our results offer a basis for routine molecular testing in 
meningioma management and propose potential therapeutic targets for future research.

Meningiomas constitute approximately 34% of all brain tumors and affect approximately 3% of the adult 
population1, with an incidence rate of 8.36 and 3.61 per 100,000 person years in females and males, respectively2. 
For over half a century, prediction of meningioma recurrence has relied solely upon histological features2 (World 
Health Organization grading from I to III) and degree of surgical excision (Simpson grade). While about 70–80% 
of completely excised WHO grade I meningiomas do not recur, the remaining 20–30% do, with half of these 
recurrences occurring before the tenth year of follow-up3. For completely excised WHO grade II lesions, histology 
predicts a recurrence of 50% over 5 years and a disease-specific survival rate of 69% over 10 years. Given this lack 
of predictive accuracy, such patients require lifelong monitoring with MRI imaging and clinical follow-up. Not 
only does this represent a significant financial burden but the strain on the psychological well-bring of patients 
can be substantial given the associated ongoing uncertainty. It is therefore critical to develop more precise 
adjunctive methods of assessing recurrence risk that take into account the molecular biology of meningioma.

The genetic landscape of meningiomas is the next frontier to our understanding of its biology and its 
relation to disease recurrence, and many studies have begun to elucidate important molecular associations with 
aggressiveness and recurrence. For example, previous studies have identified chromosomal rearrangements4, 
mutations in genes TERT5, AKT16, SMO7, DREAM complex repression8, and DNA methylation9–11 as correlates 
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of tumor aggressiveness or recurrence, though translation into routine clinical practice remains limited to date. 
We add to the growing body of literature seeking to describe meningiomas in molecular terms by leveraging 
transcriptomics methods rooted in systems biology to capture small additive biological effects and relate them to 
complex and multifactorial clinical traits12–14. Such methods may help extract translatable markers of meningioma 
recurrence and avoid the potential stochasticity of using individual genes.

Gene co-expression networks are used to detect patterns in transcriptomic data by incorporating additive 
signal from relatively low gene expression levels12,13,15. This technique establishes gene similarity profiles based 
on shared connectivity profiles and clusters individual genes into co-expressed (biologically similar) modules. 
Expression of each module can be represented using principle component analysis to define a module meta-gene 
in order to reduce the noisy effects of individual genes. This approach seeks to holistically and robustly represent 
individual biological processes. Importantly, it is being increasingly used to identify novel disease-associated gene 
programs that would not be identified using single-gene approaches alone. Examples include the identification 
of gene programs underlying mouse weight12, glioblastoma13, and Huntington’s disease14. With the affordability 
of gene expression profiling, meta-gene-based prediction of tumor recurrence becomes feasible.

In the current study, we hypothesized the existence of gene modules that predict tumor recurrence with high 
accuracy. By annotating modules correlated with recurrent phenotypes we aim to provide further insight into 
the underlying biology driving tumor recurrence and identify potential new avenues for molecular therapeutics.

Methods
Data collection and pre‑processing.  We identified five datasets in the publicly available repository Gene 
Expression Omnibus (GEO)16 which contained human meningioma tissue transcriptomics and which were, at 
minimum, annotated with WHO grade and recurrence/progression. We define recurrence as the re-appearance 
of tumor on imaging after complete excision or the measurable progression of tumor after subtotal resection. Four 
of these studies use microarrays (GSE4329017, GSE1658118, GSE7438519, and GSE16181 (no citation available)) 
and one uses RNA-sequencing (GSE1366618) (Table 1). Gene expression analysis for these studies was carried 
out using microarray platforms Affymetrix Human Genome U133A, Affymetrix Human Genome U133 Plus 
2.0, Illumina Human HT-12 V4.0, SU Homo Sapiens 912 (a custom-built chip with 912 cancer-related genes), 
and the high throughput sequencing platform Illumina HiSeq 4000, respectively. Raw data from each study was 
background corrected, log2 transformed and quantile normalized except GSE16181, which had previously been 
pre-processed similarly (the samples were background corrected, log2 transformed, and the signal intensity of 
each gene in a sample was divided by the 50th percentile of all genes in that array). GSE16181 constituted the 
discovery cohort and external validation was done using a merged dataset from the remaining microarray-
based series (validation cohort 1) which was batch-corrected with ComBat, a well-established Bayesian batch 
correction tool20, and the RNA-sequencing series GSE136661 (validation cohort 2).

Gene module detection and meta‑gene computation.  Our analysis was based on the well-
established Weighted Gene Correlation Network Analysis (WGCNA), which has been described in detail 
elsewhere13. Modules were discovered using the discovery cohort. We first constructed an adjacency matrix 
with gene–gene Pearson correlations. Soft-thresholding was introduced by raising correlations to a common 
power, selected as the lowest natural number for which the network approached scale-free topology (r2 ≥ 0.9). 
The adjacency matrix was subsequently converted into a biologically-inspired topological overlap map (TOM), 
wherein pairwise gene similarities are computed based their shared connectivity profiles within the network, a 
more meaningful measure than direct correlation21. Hierarchical clustering was done on the TOM and clusters 
(gene modules) selected with hybrid adaptive tree cut22, an unsupervised dendrogram cutting function which 
considers not only the degree of correlation but also the shape of the dendrogram to determine clusters. Finally, 
representative module “meta-genes” for each sample are taken as the projections of a sample’s modules’ gene 
expression values on their respective first principal components. The validity of this approach is demonstrated 
in Supplemental Fig. 1.

Module characterization.  We first selected modules with significantly different meta-gene expression 
between recurrent and non-recurrent tumors (t-test p < 0.05) in the discovery cohort. In order to probe the 
biological function of relevant modules, we used the well-established and open-source Enrichr23,24 to analyze their 

Table 1.   Study demographics. 1 Follow-up (years). 2 Time to recurrence (years). 3 Follow up at least 3 years for 
non-recurrent tumours, though specific times are not published. 4 Follow up reported as 0 to 91 months (up to 
7.6 years) with a median of 28 months (2.3 years), though specific times are not available.

GEO entry
N patients
(n recurrence)

Mean age
(SD)

N male
(%)

Median F/U1

(range)
Median TTR​2
(range)

WHO grade
(I II III) [n]

GSE16181 252 (92) 44.1 (12.7) 53 (21.0) 10.0 (1.0–15.0) 3.0 (1.0–14.0) 140 88 24

GSE43290 47 (8) 61.7 (15.0) 13 (27.7) 3.5 (1.4–25.4) N/A 33 12 2

GSE16581 16 (6) 58.3 (11.1) 7 (43.8) 4.4 (0.3–8.6) N/A 8 7 1

GSE74385 45 (22) N/A N/A N/A3 N/A 17 8 20

GSE136661 145 (22) 58.0 (13.5) 52 (35.8) N/A4 N/A 116 29 0
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constituent gene lists. Highly associated GO Biological Processes, GO Molecular Functions, and transcription 
factors (from the CHEA/ENCODE consensus list) are shown in Fig. 1.

Recurrence classifier.  A logistic regression classifier was used as our prediction model, with module meta-
genes as regressors and recurrence as a binary response (Fig. 2). The model was trained with the discovery cohort 
and tested with tenfold cross validation on the discovery cohort and separately with the two external validation 
sets. Performance was also tested by stratifying each model by WHO grades. Differences between receiver 
operating characteristic curves were assessed used DeLong’s p-value, as computed with the pROC package in 
R25. A multivariate logistic regression model was used to verify that modules provide prognostic information 
even when controlled for WHO grade in all cohorts and, given the depth of annotation in validation cohort 
2, this model is also controlled for Simpson grade. Module performance was further assessed by computing 
the predictive accuracies of constituent individual genes and assessing the performance of sparsified models 
containing only the most individually predictive genes (Fig. 3, Supplemental Fig. 3). Finally, potential driver 
transcription factors (from Enrichr, q-values < 0.05 considered significant) were annotated based on their 
association with tumor recurrence (t-test < 0.05 considered significant) in both validation cohorts (Fig. 4).

Computational platform.  All analysis was performed using R, an open-source platform for statistical 
computation and graphics26.

Figure 1.   Gene module detection and characterization. (A) Weighted gene co-expression network dendrogram 
demonstrates hierarchical clustering of individual genes. Module annotation of individual genes is represented 
by the colour bar, which reveals 2 significant modules (blue and turquoise). (B) Module gene lists are annotated 
using Enrichr. The top 5 transcription factors (ENCORE/CHEA consensus TFs) and entries for GO Biological 
Processes and GO Molecular Functions are represented in the top, middle, and bottom rows, respectively. 
Ranking is by − log10(q-value). Color corresponds to the module colour from (A). (C,D) Boxplots comparing 
meta-gene expression between recurrent and non-recurrent tumors (C) and WHO grades (D) for both 
modules. (E) Correlation between time to recurrence (years) and meta-gene expression of both modules. 
Pearson correlation is represented by ρ . *p < 0.05.
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Figure 2.   Logistic regression classifier performance. For each receiver operative characteristic curve, black 
represents a model containing both modules while blue and turquoise correspond to their respective individual 
modules (SUZ12-enriched and E2F4/FOXM1-enriched, respectively). The top row (including all WHO grades) 
includes a red curve which represents the predictive accuracy of WHO grade alone. Note that with the exception 
of the black curves, each model contains a single predictive variable (metagene or WHO grade). Models in 
rows 2–4 include only individual WHO grades as labeled. Columns (left to right) represent performance on the 
discovery cohort (tenfold cross validation), merged microarray validation cohort (Validation 1), and RNA-seq 
validation cohort (Validation 2). For the models including all WHO grades, the red curves are statistically less 
predictive (DeLong p < 0.05) than all other curves in the Discovery and Validation 2 cohorts, while all curves in 
Validation 1 are similar to one another (DeLong’s p < 0.05).
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Ethical approval.  This article relies entirely on openly available data from previous studies, and thus ethics 
approval is not required.

Results
An overview of patient demographics can be found in Table 1. The discovery cohort (GSE16181) comprised 252 
tumors, of which 92 (37%) recurred. Patients were distributed between WHO grade I (140; 56%), II (88; 35%), 
and III (24; 9%). Median follow up was 10 years (range 1–15) and median time to recurrence was 3 years (range 
1–14). Validation cohort 1 (merged microarray) consisted of 108 tumors and 36 recurrences (33%). Tumors 
consisted of WHO grade I (58; 54%), II (27; 25%), and III (23; 21%). Finally, validation cohort 2 (GSE136661) 
consisted of 145 patients (22 recurrences; 15%). One hundred sixteen (80%) were WHO grade I and 29 were 
WHO grade II (20%). This cohort was also annotated with Simpson grade (53 grade 1 [37%], 60 grade 2 [41%], 
31 grade 4 [21%], and 1 unknown [1%]), MIB (mean 6.4; SD 7.5), chromosome 22 loss (73 loss, 54 no loss, 18 
unknown), and TERT promoter mutation (19 mutants, 84 wild type, 42 unknown).

Co-expression networks revealed two gene modules (Fig. 1) with significant association to recurrence (t-test 
p < 0.05) and WHO grade (ANOVA p < 0.05): a “blue” module containing 220 genes, and a “turquoise” module 
containing 299 genes (Supplemental data; Fig. 1C,D; Supplemental Figs. 2 and 4). We note that all but one input 
gene falls into one of the modules using adaptive tree cutting (Fig. 1A), which is likely explained by the design 
of the array (consisting of genes highly correlated with pro-cancer anti-cancer mechanisms). The meta-gene of 
each module was defined as the first principal component of its expression values15. Annotating module genes 
with Enrichr reveals transcription factors SUZ12, NFE2L2, SOX2, TP53, SALL4 to be strongly associated with 
the blue module (hereafter called the “SUZ12-enriched” module), and E2F4, FOXM1, TRIM28, KAT2A, SIN3A 

Figure 3.   E2F4/FOXM1-enriched module performance. (A,B) Correlation between kME (the correlation of a 
gene’s expression to the E2F4/FOXM1-enriched module meta-gene) and the recurrence predictive accuracies 
(AUCs) of the module’s constituent genes as assessed in validation cohorts 1 (A) and 2 (B). The interrupted 
black line represents the module metagene performance. Green points represent genes that whose ROC curves 
are similar to the module metagene (DeLong’s p > 0.05), while red points represent genes which are significantly 
different (DeLong’s p < 0.05). (C,D) AUCs of ROC curves generated from iteratively removing genes from the 
module in descending order of highest AUC in validation cohorts 1 (C) and 2 (D) as computed in (A,B) (and 
iteratively re-calculating the resultant meta-genes). A maximum of 100 top genes are removed from each cohort. 
Dotted lines and dot colors are as in (A,B). Blue line corresponds to 90% of the absolute AUC of the full model. 
Thirty of the top genes in validation cohort 1 must be removed before the updated module metagene yields an 
AUC less than 90% of the full model (sparse model 1), and thirteen in validation cohort 2 (sparse model 2). 
Notably, only two genes overlap between these sparse models. (E) ROC curves comparing the full model in 
validation cohort 1 (solid turquoise curve) to sparse model 1 (meta-gene of the 30 genes extracted above) on 
validation cohorts 1 (solid black curve) and 2 (broken black curve). All curves are statistically similar (DeLong’s 
p > 0.05). (F) ROC curves comparing the full module in validation cohort 2 (solid turquoise curve) to sparse 
model 2 (meta-gene of the 13 genes extracted above) on validation cohorts 2 (solid black curve) and 1 (broken 
black curve). The AUC of the solid black curve is significantly higher than the other two (DeLong’s p < 0.05).
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to be strongly associated with the turquoise module (hereafter called the “E2F4/FOXM1-enriched” module). 
Annotating with biological processes and molecular functions yield several mechanisms related to cell cycle and 
transcription (Fig. 1B). We note that the SUZ12-enriched module has a strong positive correlation with time to 
recurrence (Pearson correlation 0.87, p < 0.05) while the E2F4/FOXM1-enriched module has a strong negative 
correlation (Pearson correlation − 0.80, p < 0.05) (Fig. 1E). This further supports the E2F4/FOXM1 module as a 
marker of aggressiveness in meningioma.

We next investigated whether the meta–genes could be used to predict meningioma recurrence using a 
logistic regression model (Fig. 2). Notably, the E2F4/FOXM1-enriched module consistently achieved equal or 
greater performance (AUC) than the SUZ12-enriched module and both modules combined. We achieve good 
performance from this module in the discovery cohort (tenfold cross validation AUC = 0.87 ± 0.05) and both 
validation cohorts (AUC = 0.81 ± 0.09 and AUC = 0.77 ± 0.1 in validation cohorts 1 and 2, respectively). Notably, 
the performance of all module meta-gene predictors was better than WHO grade in the discovery and RNA-
seq validation cohorts (DeLong p < 0.05). The E2F4/FOXM1-enriched module meta-gene remains a predictor 
of recurrence when correcting for WHO grade in all cohorts, and in the RNA-seq validation cohort it remains 
independently predictive when also correcting Simpson grade (Table 2). Notably, only one patient was excluded 
from the model which included Simpson grade due to missing data; the other three models included all samples. 
We also investigated the E2F4/FOXM1-enriched module classifier performance for individual WHO grades 
and achieved modest performance for all permutations. For WHO grade 1, AUCs are 0.69 ± 0.12 (discovery), 
0.68 ± 0.16 (validation 1), and 0.76 ± 0.11 (validation 2). For WHO grade 2, AUCs are 0.93 ± 0.08 (discovery), 
0.72 ± 0.2 (validation 1), and 0.76 ± 0.18 (validation 2). For WHO grade 3: 0.88 ± 0.14 (discovery) and 0.87 ± 0.16 
(validation cohort 1). We suspect that relatively poor performance seen in the WHO grade 1-only cohort is 
related to the rarity of recurrence labels.

Figure 4.   Transcription factors associated with the E2F4-enriched module. Transcription factors with Enrichr 
q-value < 0.05 and t-test p < 0.05 between recurrent and non-recurrent tumors in both validation cohorts are 
included. Red corresponds to validation cohort 1 (microarray) and blue corresponds to validation cohort 2 
(RNA-sequencing). ANOVA p-values for gene association with WHO grade are found on the plot, with colour 
corresponding to boxplot colours. Note that DEPDC1 and NFKB1 are not significantly associated with WHO 
grade in validation cohort 1, SUZ12 and RUNX1 are not significantly associated with WHO grade in validation 
cohort 2, and that TWIST1 is not significantly associated with WHO grade in either validation cohort.

Table 2.   Model performance by cohort. 1  M = Module, WHO = WHO grade, SG = Simpson Grade. 2 Odds 
ratios and p-values refer to the module performance within the multivariate model.

Series Predictors1 OR (95%CI)2 p value2

Discovery M + WHO 666.73 (249.80–1779.55)  < 2 × 10–16

Validation 1 M + WHO 4.17 (1.63 – 10.69) 3.7 × 10–3

Validation 2 M + WHO 0.26 (0.12 – 0.55) 6.0 × 10–4

Validation 2 M + WHO + SG 0.24 (0.12 – 0.48) 7.5 × 10–5



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18028  | https://doi.org/10.1038/s41598-020-74482-2

www.nature.com/scientificreports/

Given the E2F4/FOXM1-enriched module performance, we sought to better understand it’s internal gene 
structure (Fig. 3; Supplemental Fig. 3). We find there is weak positive correlation between kME (the correlation 
between a gene’s expression and it’s representative meta-gene’s expression) and individual gene predictive 
accuracies (external validation AUC) for both validation cohorts (Fig. 3A,B). However, the data is quite noisy and 
thus demonstrates the considerable benefit of co-expression analysis. In order to determine module stability, we 
sequentially removed the most individually predictive genes and re-calculated the resultant meta-gene classifier 
performance until the module performance (AUC) dropped to 90% of it’s original AUC (Fig. 3C,D). Thirty 
genes were removed in validation cohort 1 and 13 in validation cohort 2; we define these top-performing genes 
as sparse modules 1 and 2, respectively. Notably, only 2 genes overlap in these sparse modules. The meta-gene 
computed from sparse module 1 performs similarly to the full E2F4/FOXM1-enriched module in validation 
cohort 1 (DeLong p > 0.05). It also performs similarly to both of these models when applied to validation cohort 
2. The meta-gene from sparse module 2 performs significantly better than the E2F4/FOXM1-enriched module 
in validation cohort 2 (DeLong’s p < 0.05), though the performance of the E2F4/FOXM1-enriched module and 
sparse module 2 in validation cohort 1 are similar (Fig. 3E,F). Importantly, neither of the sparse models exhibit 
consistently improved performance over the full model (any gain in one validation cohort is lost in the other 
as shown in Supplemental Fig. 3). This analysis suggests that the redundancy of the larger models adds to its 
generalizability across different samples and data acquisition techniques.

We also sought to characterize transcription factors (TFs) associated with the E2F4/FOXM1-enriched module 
using the Enrichr data (Fig. 4). TFs significantly associated with module genes (q-value < 0.05) with significantly 
different expression between recurrent and non-recurrent tumors in both validation cohorts (t-test p < 0.05) are 
examined in Fig. 4. Notably, three TFs are upregulated in recurrent tumors (FOXM1, DEPDC1, SUZ12) and five 
are downregulated (NFKB1, RUNX1, STAT5A, TWIST1, and EP300). Importantly, TWIST1 is not significantly 
associated with WHO grade (ANOVA p > 0.05) in either of the validation cohorts, and DEPDC1, SUZ12, NFKB1, 
and RUNX1 is not significantly associated with WHO grade one of the validation cohorts.

Finally, we performed a gene linkage analysis on module genes to assess the importance of chromosomal 
gains/losses in meningioma biology (Supplemental Fig. 5). We note that the module genes are distributed 
throughout the genome and thus it is not possible to explain the biology we observe in terms of single large 
chromosomal gains/losses. However, we note a significant correlation between the degree of gene separation on 
a chromosome and their co-expression, which gives credence to the need for studying this biology in terms of 
gene programs rather than individual genes.

Discussion
We have used a simple and robust approach to predict meningioma recurrence using gene modules derived 
from a list of cancer-associated genes, which yields high accuracy in two external validation cohort: one merged 
microarray-based cohort and one RNA-seq based cohort. Predictive ability of the E2F4/FOXM1-enriched module 
remained modest when controlling for WHO grade in all 3 cohorts. In the highly annotated validation cohort 2, 
this module remained predictive of recurrence when also controlling for Simpson grade. We also demonstrate 
the robustness of a module approach, showing that while predictive accuracies can be improved on an individual 
cohort by sparsifying the module into the its most individually predictive genes, any added performance is 
lost on other cohorts. This lends credence to the value of a gene program-based approach. Finally, we identify 
transcription factors which are strongly associated with the top-performing module and whose expression is 
significantly different between recurrent and non-recurrent tumors. In particular, FOXM1, DEPDC1, and SUZ12 
are positively associated with recurrence while RUNX1, STAT5A, TWIST1, EP300 and NFKB1 are negatively 
associated.

These results lend to the value of this semi-supervised approach to genetic analysis and yields a panel of genes 
which could effectively be represented on an inexpensive mini-microarray chip for clinical use. Additionally, 
some of the associated transcription factors have previously been implicated in meningioma. For example, 
FOXM1 has been shown to be a critical driver of meningioma aggressiveness and is associated with the activating 
DREAM complex, thereby allowing cell-cycle progression and cell proliferation8. SUZ12 is known as an element 
in PRC2, which is involved in chromatin silencing and appears to be lost in a subset of comparatively indolent 
meningioma8. EP300, an apoptosis-associated transcription factor, has been shown to be downregulated in 
meningioma when compared to normal arachnoid27 though it’s role in meningioma prognostication is not well 
understood. While DEPDC1 has not been studied in meningioma, it is a known regulator of NFkB signaling 
and is overexpressed in multiple cancers such as glioma, breast cancer, and nasopharyngeal cancer, having been 
proposed as a potential therapeutic target in each28–30. Similarly, the roles of RUNX1, STAT5, and TWIST1 in 
meningioma remain poorly understood, and could represent novel therapeutic targets.

In our study, we demonstrate the potential utility of a meta-gene based systems biology approach in 
meningioma prognostication. This principle can be used in marker discovery for other challenging diseases 
where conventional approaches such as differential gene expression analysis have been unsuccessful. Our results 
are derived from data obtained under diverse conditions and yet still produce an accurate classier which projects 
translational value in creating a diagnostic panel. The additional mapping of potentially key transcription factors 
lends to the therapeutic potential of this holistic approach as well, though validation studies would be needed 
to support this hypothesis.

Our study uses publicly available data and is thus limited by sparse annotation and variable follow-up times. 
The discovery cohort is not associated with a peer-reviewed citation, and thus the full extent of their methodology 
is not available. The extent of tumor excision is not known in all cohorts. Although this is conventionally held to 
affect recurrence31 the relevance has been debated over the past decade and our classifier yields high accuracy 
purely with gene expression data. Additionally, in validation cohort 2, our classifier is predictive of recurrence 
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independently of Simpson grade. While follow-up times are limited for some patients (Table 1) they still represent 
real life data from general neurosurgical practice. This does, however, limit our ability to perform further analysis 
such as Kaplan–Meier survival prediction and may affect results given that we show time dependence of the 
correlation between metagene expression and recurrence (Fig. 1). Additionally, we note that the behaviour of 
these metagenes appears to depend on the cohort being investigated (though always are prognostic of recurrence), 
which makes choosing a clinically relevant cut-off point impossible. Achieving clinical value would therefore 
require the use of a training cohort. Though our results are largely exploratory at present, further optimization 
of a predictive gene module using prospectively gathered cohorts with greater follow up times may ultimately 
translate into a novel, personalized approach to care for patients with meningioma.

Conclusions
We apply gene co-expression networks to a microarray-based cohort of 252 adult meningiomas and identify a 
gene module which predicts tumor recurrence with high accuracy in both microarray and RNA-seq external 
validation cohorts. Importantly, the module remains predictive when controlling for WHO grade in all three 
cohorts. With the wide accessibility of custom-made mini-arrays, our findings support, and should encourage, 
the shift to include this or a similar classifier in routine clinical care. Furthermore, the module’s strong association 
with key transcription factors may yield new therapeutic options for patients with meningioma.

Data availability
All data is available and was retrieved from the publicly accessible online genetic repository GEO omnibus (https​
://www.ncbi.nlm.nih.gov/geo/).

Received: 1 May 2020; Accepted: 21 September 2020

References
	 1.	 Vernooij, M. & Ikram, M. Incidental findings on brain MRI in the general population. N. Engl. J. Med. https​://doi.org/10.1056/

NEJMo​a0709​72 (2007).
	 2.	 Rogers, L. et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J. Neurosurg. 122, 4–23 

(2015).
	 3.	 Jääskeläinen, J. Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors 

predicting recurrence in 657 patients. A multivariate analysis. Surg. Neurol. 26, 461–469 (1986).
	 4.	 Ketter, R. et al. Predictive value of progression-associated chromosomal aberrations for the prognosis of meningiomas: a 

retrospective study of 198 cases. J. Neurosurg. 95, 601–607 (2001).
	 5.	 Goutagny, S. et al. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. 

Brain Pathol. 24, 184–189 (2014).
	 6.	 Yesilöz, Ü. et al. Frequent AKT1E17Kmutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and 

reduced time to tumor recurrence. Neuro Oncol. 19, 1088–1096 (2017).
	 7.	 Boetto, J., Bielle, F., Sanson, M., Peyre, M. & Kalamarides, M. SMO mutation status defines a distinct and frequent Molecular 

subgroup in olfactory groove meningiomas. Neuro Oncol. 19, 345–351 (2017).
	 8.	 Patel, A. J. et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive 

tumors. Proc. Natl. Acad. Sci. 116, 21715 (2019).
	 9.	 Nassiri, F. et al. DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram 

to optimize clinical management. Neuro Oncol. 21, 901–910 (2019).
	10.	 Barciszewska, A. Total DNA methylation as a biomarker of DNA damage and tumor malignancy in intracranial meningiomas. 

BMC Cancer 20, 1–13 (2020).
	11.	 Gao, F. et al. DNA methylation in the malignant transformation of meningiomas. PLoS ONE 8, e54114 (2013).
	12.	 Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, 

1182–1192 (2006).
	13.	 Horvath, S. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. 

Sci. 103, 17402–17407 (2006).
	14.	 Langfelder, P. et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat. Neurosci. 

19, 623–633 (2016).
	15.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
	16.	 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, 991–995 (2013).
	17.	 Tabernero, M. D. et al. Gene expression profiles of meningiomas are associated with tumor cytogenetics and patient outcome. 

Brain Pathol. 19, 409–420 (2009).
	18.	 Lee, Y. et al. Genomic landscape of meningiomas. Brain Pathol. 20, 751–762 (2011).
	19.	 Schmidt, M. et al. Transcriptomic analysis of aggressive meningiomas identifies PTTG1 and LEPR as prognostic biomarkers 

independent of WHO grade. Oncotarget 7, 14551–14568 (2016).
	20.	 Chen, C. et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. 

PLoS ONE 6, e17238 (2011).
	21.	 Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 

17 (2005).
	22.	 Methods, T. et al. Package ‘dynamicTreeCut’. 1–14 (2016).
	23.	 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).
	24.	 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, 90–97 

(2016).
	25.	 Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
	26.	 R Development Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna Austria0, 

{ISBN} 3-900051-07-0 (2016).
	27.	 Wang, X. et al. Analysis of gene expression profiling in meningioma: deregulated signaling pathways associated with meningioma 

and EGFL6 overexpression in benign meningioma tissue and serum. PLoS ONE 7, 1–10 (2012).
	28.	 Kikuchi, R., Sampetrean, O., Saya, H. & Yoshida, K. Functional analysis of the DEPDC1 oncoantigen in malignant glioma and 

brain tumor initiating cells. J. Neurooncol. 133, 297–307 (2017).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1056/NEJMoa070972
https://doi.org/10.1056/NEJMoa070972


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18028  | https://doi.org/10.1038/s41598-020-74482-2

www.nature.com/scientificreports/

	29.	 Feng, X., Zhang, C., Zhu, L., Zhang, L. & Li, H. DEPDC1 is required for cell cycle progression and motility in nasopharyngeal 
carcinoma. Oncotarget 8, 63605–63619 (2017).

	30.	 Zhao, H. et al. High expression of DEPDC1 promotes malignant phenotypes of breast cancer cells and predicts poor prognosis in 
patients with breast cancer. Front. Oncol. 9, 1–11 (2019).

	31.	 Simpson, D. The recurrence of intracranlal meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry 20, 22–39 (1957).

Acknowledgements
The authors would like to thank Dr Oscar F. D’Urso and Dr Pietro I. D’Urso for their communication regarding 
dataset GSE16181.

Author contributions
Z.Z. conceived the study, supervised data analytics and translational components of the project. Z.Z. and A.L. 
designed the study, analyzed the data, wrote and revised the manuscript; B.H.K. guided data analysis and revised 
the manuscript; M.D.C. supervised the clinical components of the project and revised the manuscript.

Funding
ZZ was funded by the National Institute for Health Research, Academic Clinical Lectureship, award number: 
CL-2014-06-004, the Michael and Amira Dan Fellowships in Neurosurgery and the Hold’em for Life Oncology 
fellowship.

Competing interests 
All authors certify that they have no affiliations with or involvement in any organization or entity with any 
financial interest (such as honoraria, educational grants, participation in speakers’ bureaus, membership, 
employment, consultancies, stock ownership, or other equity interest, and expert testimony or patent-licensing 
arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, 
or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information
Supplementary information  is available for this paper at https​://doi.org/10.1038/s4159​8-020-74482​-2.

Correspondence and requests for materials should be addressed to Z.Z. or A.P.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-74482-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Meta-gene markers predict meningioma recurrence with high accuracy
	Methods
	Data collection and pre-processing. 
	Gene module detection and meta-gene computation. 
	Module characterization. 
	Recurrence classifier. 
	Computational platform. 
	Ethical approval. 

	Results
	Discussion
	Conclusions
	References
	Acknowledgements


