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Pure-quartic solitons
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Temporal optical solitons have been the subject of intense research due to their intriguing

physics and applications in ultrafast optics and supercontinuum generation. Conventional

bright optical solitons result from the interaction of anomalous group-velocity dispersion and

self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising

purely from the interaction of negative fourth-order dispersion and self-phase modulation,

which can occur even for normal group-velocity dispersion. We provide experimental and

numerical evidence of shape-preserving propagation and flat temporal phase for the

fundamental pure-quartic soliton and periodically modulated propagation for the higher-order

pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic

soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our

experimental observations. Our discovery, enabled by precise dispersion engineering, could

find applications in communications, frequency combs and ultrafast lasers.
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T
he fascinating phenomenon of optical solitons, solitary
optical waves that propagate in a particle-like fashion over
long distances1, has been the subject of intense research

during the last decades due to its major role in breakthrough
applications such as mode locking2, frequency combs3,4 and
supercontinuum generation5,6 among others7–9. Temporal
solitons in optical media10,11, as studied to date, arise from
the balance of the phase shift due to anomalous quadratic
group-velocity dispersion (GVD), that is, negative GVD
parameter b2¼ (@2k/@o2)o0, and the self-phase modulation
(SPM) due to the nonlinear Kerr effect.

In practice, higher-order nonlinear and dispersive effects often
perturb this behaviour. In silicon (semiconductor) waveguides the
most significant higher-order nonlinearities are associated with
free carriers (FCs) generated by two-photon absorption
(TPA)12,13, which have hampered the observation of soliton-
based effects in this material. Recently, some of us achieved
higher-order soliton compression of picosecond pulses in
silicon14 by using a dispersion engineered photonic crystal
waveguide (PhC-wg). Turning to higher-order dispersive effects,
the presence of third order dispersion (TOD; b3¼ @3k/@o3) leads
to soliton instability15, whereas positive fourth-order dispersion
(FOD; b4¼ (q4k/@o4)40), can give rise to radiation at specific
frequencies16. In the presence of negative FOD (b4o0), as was
shown by a series of theoretical works in optical fibres17–21,
solitons can be stable. These studies17–21 led to the concept of
quartic solitons22, solitary pulses resulting from the interaction of
anomalous GVD and SPM but modified by the presence of FOD.

In the following we report the experimental discovery and
physical description of an entirely new class of solitons
originating purely from the interaction of negative FOD and
SPM, as conceptually depicted in Fig. 1a, which can occur even
when the GVD vanishes or is normal. Since they arise just from
quartic dispersion and SPM, and to distinguish them from the

solitary waves studied earlier17–22, we propose the name of
pure-quartic soliton for this new class of solitary wave. This
experimental discovery is enabled by the unique dispersion
properties of PhC-wgs, which allow us to combine very large
negative b4 with small positive b2 and negligible b3 for the
wavelength under study. Though our work directly pertains to
pulse propagation in guided wave structures, the same ideas apply
to spatial solitons, particularly to subdiffractive matter-wave
solitons in regimes where the fourth-order diffraction is the
dominant diffractive effect23,24. Furthermore, it was shown that
in Ti:sapphire lasers FOD ultimately limits the minimum pulse
duration in cavities with near-zero GVD and TOD25–27, hinting
that the pulse shaping behaviour in the laser cavity for ultrashort
pulses (below 10 fs) arises from the balance of SPM and FOD28.

Results
Experimental signatures of pure-quartic solitons. In our
experiments we performed time- and phase-resolved propagation
measurements on the sample using a frequency-resolved
electrical gating (FREG) apparatus, depicted in Fig. 1b, which
can be modelled using a generalized nonlinear Schrodinger
equation (GNLSE). We show shape-preserving propagation and
flat temporal phase for fundamental pure-quartic solitons and
temporal compression and convex nonlinear phase for higher-
order pure-quartic solitons. In spite of maintaining these
well-known signatures of soliton-like behaviour, we show that
pure-quartic solitons present remarkably different properties than
solitons studied to date10,11,17–21. Importantly, the energy scaling
of pure-quartic solitons suggests much higher energies for
ultrashort pulses, which may inspire a new wave of soliton laser
developments. Finally, we derive the approximate shape of
fundamental pure-quartic solitons and find that it is close to a
Gaussian, which is remarkable given that the solitary wave
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Figure 1 | Concept of pure-quartic solitons and their experimental demonstration. (a) Schematics of pure-quartic solitons: (Left) Fourth-order dispersion

(FOD) gives rise to temporal pulse broadening (blue output pulse versus black input pulse in time) without affecting the spectrum; (Centre) self-phase

modulation (SPM) generates spectral broadening (red output pulse versus black input pulse in frequency) without affecting the temporal pulse shape;

(Right) the interplay of FOD and SPM can give rise to pure-quartic solitons which remain nearly unperturbed (green output pulses versus black input pulses

in both frequency and time); (b) Frequency-resolved electrical gating set-up: mode locked laser (MLL), photonic crystal waveguide (PhC-wg), tunable

delay, ultrafast photodiode (PD), Mach–Zehnder modulator (MZM), and optical spectrum analyser (OSA); (c) Scanning electron microscope image of the

sample; (d) Measured dispersion of the silicon photonic crystal waveguide used in our experiments: group index (ng), second-order dispersion parameter

(b2) and fourth-order dispersion parameter (b4).
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solutions found to date are always a function of hyperbolic
secant10,18,20.

For demonstrating the existence of pure-quartic solitons we
used the 396-mm-long dispersion engineered slow-light
silicon PhC-wg29 shown in Fig. 1c (see the Methods section).
Figure 1d shows the waveguide dispersion measured using an
interferometric technique30. At the pulse central wavelength,
1,550 nm, the PhC-wg has a measured group index of ng¼ 30,
a GVD of b2¼ þ 1 ps2 mm� 1, corresponding to normal
dispersion, a TOD of b3¼ þ 0.02 ps3 mm� 1, and a FOD of
b4¼ � 2.2 ps4 mm� 1. Note that b4 is negative in a 6-nm
wavelength range.

To perform a complete temporal and spectral characterization
of the sub-picojoule ultrafast nonlinear dynamics in the
waveguide we used a FREG apparatus31 in a cross-correlation
configuration, as schematically depicted in Fig. 1b (see the
Methods section). This set-up provides a series of spectrograms,
that is, the gated optical power versus delay, for varying input
powers. From these spectrograms we then extract the optical
pulses’ electric field envelope and phase using a numerical
algorithm32. Figure 2 shows the measured intensity (red dashed

lines) and phase (black dashed) at the output of the PhC-wg,
when injecting 1.3 ps Gaussian pulses (full-width at
half-maximum, FWHM) at 1,550 nm with different input
peak powers, P0. Figure 2a shows the frequency domain and
Fig. 2b shows the temporal domain. The physical length scales of
the dispersion orders for this pulse duration are: LGVD¼T0

2/
|b2|¼ 0.615 mm, LTOD¼T0

3/|b3|¼ 22.6 mm, LFOD¼T0
4/

|b4|¼ 0.168 mm, with T0¼ FWHM/1.665 for Gaussian pulses.
These length scales indicate that FOD is dominant, with the total
length of the sample being L¼ 2.4.LFOD and the GVD length
being LGVD¼ 3.66.LFOD. TOD is negligible in this sample for our
pulses.

To understand the origin of the experimental observations in
Fig. 2 we employ a GNLSE model to describe the propagation in
the silicon PhC-wg:
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Here A(z,t) is the slowly varying amplitude of the pulse, al,eff
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Figure 2 | Experimental and modelling results. (a) Frequency and (b) time domain results for different input powers. The dashed red lines represent the

intensity measurements, the blue solid lines represent the intensity simulations, the black dashed line represents the measured phase, and the solid black

line represents the simulated phase. The green solid line at 0.7 W represents the normalized input intensity. The yellow box encompasses the fundamental

pure-quartic soliton, showing nearly unperturbed propagation and flat temporal phase. The turquoise box includes two cases of higher-order pure-quartic

solitons, showing temporal compression and nonlinear spectral broadening. The higher-order pure-quartic solitons observed here are greatly perturbed by

the presence of free carriers.
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denotes the linear loss, geff and aTPA,eff are the effective nonlinear
Kerr and TPA parameters, respectively; nFC,eff and seff represent
the free-carrier dispersion (FCD) and the free-carrier absorption
effective parameters for a free-carrier concentration of Nc. Since
we use a slow-light PhC-wg, the effective coefficients vary with
the slow-down factor S¼ ng/n0 (ref. 13). We use the measured
envelope amplitude of the input pulse as the input to our GNLSE
model with the sample parameters detailed in the Methods
section. As shown in Fig. 2, the model (solid lines) agrees well
with the experimental data (dashed lines) in both frequency and
time.

We first focus on the time domain results of Fig. 2b. At the low
coupled power of 0.07 W, nonlinear effects can be neglected and
we simply observe small temporal broadening, mainly due to
quartic dispersion. The different signs of b2 and b4 counteract
each other to some degree, leading to a modest temporal
broadening at the output of this short PhC-wg (from 1.3 to
1.4 ps). We have verified, by running the GNLSE for longer
lengths that the pulse width keeps increasing with the propaga-
tion distance in the linear case. Increasing the input power up to
0.7 W, where the nonlinear length LNL¼ 1/(geffP0) becomes
comparable to LFOD, the pulse preserves its initial shape and
duration, as illustrated by the good matching between the
measured output intensity (dashed red line) and the normalized
input intensity (green solid line). Furthermore, the temporal
phase across the pulse duration is nearly flat. These are two
signatures of fundamental soliton behaviour10. Simple estimates,
confirmed with GNLSE simulations, show that the loss due to
TPA at this power level is quite small and that free carriers do not
yet play a role. At 2.5 W, where LNLooLFOD, the phase becomes
convex due to the stronger nonlinear Kerr effect and the main
peak of the pulse narrows, temporal signatures of a higher-order
soliton. At even higher powers, 4.5 W, the main peak of the pulse
narrows even more, corresponding to a higher-order soliton with
a higher-soliton number11. In addition, a long tail develops
towards the leading edge of the pulse. We provide an explanation
for this effect below.

Next we examine the frequency domain in Fig. 2a. At 0.07 W,
since the nonlinearities are negligible and the pulse spectrum is
not affected by the dispersion, the pulse spectral shape is
maintained. At 0.7 W the pulse preserves its initial spectral shape,
again consistent with fundamental soliton behaviour in the
spectral domain. At higher powers (2.5 and 4.5 W) the pulse
experiences spectral broadening and splits into two peaks,
spectral signatures of higher-order solitons. The observed blue
shift and asymmetry are associated mainly with FCD. Note that
the oscillations in the measured spectra simply correspond to
Fabry–Perot reflections at the input and output facets of the
PhC-wg and disorder in the periodic media33.

Whereas we previously reported shape-preserving fundamental
solitons and higher-order soliton compression in silicon14, such
behaviour was unforeseen for the normal GVD here. By setting
b2¼ 0 in our numerical model we find that the signatures of
soliton behaviour are maintained: the shape is preserved and the
phase is flat for the fundamental soliton at 0.7 W, and at 2.5 and
4.5 W, the higher-order solitons undergo nonlinear temporal
narrowing. This demonstrates that GVD is not important in this
system and, since we established that TOD is also negligible, that
the soliton behaviour stems purely from the interaction of FOD
and SPM. Furthermore, we have verified that the long tail at the
leading edge observed at high powers (Fig. 2b), as well as the
self-acceleration of the pulse, originate from the interaction of
negative FOD and FCD. The FCD generates additional blue
components (Fig. 2a) and the negative FOD makes them travel
faster than the red components of the pulse, analogous to our
earlier results with negative GVD13,14,34.

These observations at the output of the silicon PhC-wg suggest
the existence of a new type of soliton: pure-quartic solitons. We
use the term soliton here to refer to solitary optical waves that
propagate essentially unperturbed over long distances, not to
exact localized solutions of integrable nonlinear differential
equations35.

As expected in a silicon system at 1,550 nm, pure-quartic
solitons are strongly perturbed by TPA and FC as we just
described, and thus the measured behaviour differs from the
simple case with just SPM and FOD. Therefore, to elucidate the
dynamics of pure-quartic solitons in the absence of higher-order
nonlinearities we next numerically study the propagation of
picosecond pulses along the PhC-wg neglecting all effects but
SPM and FOD.

Propagation behaviour of pure-quartic solitons. Figure 3a,b
depict the propagation dynamics of undistorted pure-quartic
solitons, that is, in the presence of SPM and FOD only. Such a
system is governed by the biharmonic nonlinear Schrodinger
equation
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In our simulations we consider two different power levels:
fundamental pure-quartic solitons occur at moderate powers
(Fig. 3a), whereas at high powers higher-order pure-quartic
solitons result (Fig. 3b).

The simulations in Fig. 3a show shape-preserving pulse
propagation in time and frequency over five quartic dispersion
lengths LFOD for a fundamental pure-quartic soliton. The very
slight increase in the maximum intensity at t¼ 0 corresponds to
the pulse adapting itself from the standard Gaussian pulse used as
an input to the model, to the soliton form whose approximate
shape we provide in the next section. The output, represented by
the blue curve to the right of the propagation plot, shows that the
pulse maintains essentially the same amplitude, shape (Gaussian),
and duration (1.3 ps) as the input pulse. Importantly, the
temporal phase at the output, represented by the black solid line,
is flat across the duration of the pulse.

Figure 3b reveals a higher-order pure-quartic soliton,
with the pulse experiencing periodic recurrent propagation.
In time the pulse undergoes compression and then periodically
returns to its initial shape. In frequency the pulse splits
into two and then recombines to recover its initial spectral
shape after the same period. At the maximum compression
point, the pulse reaches the minimum duration of 0.54 ps,
a compression factor of 2.4 compared with the initial
pulse duration, with a peak intensity of two times that of the
initial pulse. Our simulations show the compression factor
of the pure-quartic soliton roughly follows the same trend
as conventional solitons11. Specifically, larger intensities
lead to higher compression factors and to compression
occurring at an earlier spatial position along the waveguide.
Crucially, while the trends are superficially similar to the
behaviour of conventional solitons, the different scaling of SPM
and FOD with pulse length suggests that the well-known
definitions of soliton number and soliton period will not be
appropriate for pure-quartic solitons; further studies are
underway to derive the appropriate parameters and physical
scaling laws for these field structures.

To understand why the experimental observations of pure-
quartic solitons in Fig. 2 differ from the numerical results of the
undistorted system in Fig. 3a,b, we simulate the propagation
along the PhC-wg including all the effects in the real system
indicated in equation 1. The outputs shown in Fig. 3c,d match
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our experimental measurements at P0¼ 0.7 W and P0¼ 4.5 W.
Figure 3c shows that the signatures of the fundamental
pure-quartic soliton remain in realistic simulations: the pulse
maintains its shape and width, and the phase at the output
remains almost flat. However, the intensity of the pulse
decreases due, predominantly, to the linear loss in the slow-
light waveguide B70 dB cm� 1. Since the intensity decreases as
the pulse propagates, the linear FOD will eventually dominate
over the SPM for longer distances, leading to temporal
broadening of the fundamental pure-quartic soliton. The
higher-order pure-quartic soliton in the realistic scenario of
Fig. 3d differs considerably from Fig. 3b. The TPA clamps the
intensity in the waveguide from the early stages of propagation.
The FCD introduces blue components that lead to the
self-acceleration of the pulse and an asymmetry, and the free-
carrier absorption induces absorption on the trailing edge. These
effects of TPA and FCs on the propagation of higher-order
pure-quartic solitons in silicon are analogous to the effects of
FCs on conventional solitons14.

Approximate solution for the fundamental pure-quartic soliton.
We now derive an analytic expression for the fundamental pure-
quartic soliton. The experimental observations and numerical
simulations indicate that the central part of fundamental pure-
quartic solitons appears to be Gaussian. Assuming this shape, we
look for an approximate solution to equation (2) in two separate
ways for verification purposes: using the variational principle and
looking for a local approximation near the centre. The complete
derivations for the variational and local approximate solutions are
described in Supplementary Note 1 and Supplementary Note 2,
respectively.

In both cases, after a simple dimensional analysis, we take the
central part of the pure-quartic soliton to be of the form

A z; tð Þ ¼ A0eimgeff A2
0ze
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b4j j
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where, since b4o0, we have written b4 ¼ � b4j jfor convenience,
and m and n are free parameters. The variational approach gives
m ¼ 7=ð8
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;whereas the local approxima-
tion gives m ¼ 1

2, v¼ 1. Thus, these approaches predict pulse
widths which differ only by a factor 2

1
8 or by o10%. The fact that

these different approximations give very similar results reinforces
our confidence in them. Based on these results, the argument of
Akhmediev and Karlsson36 suggests that pure-quartic solitons do
not lose energy due to linear radiation. []ally, taking the Fourier
transform of the right-hand side equation (3) in time and position
leads to a straight line in an o-k diagram. Since this straight line
does not intersect the linear dispersion relation of the medium,
the soliton cannot lose energy to dispersive waves.

To test the validity of this analytic approximate solution we
numerically solve equation (2) with the b4 and geff of our sample
(see Methods section) and obtain the output of the system at the
power level corresponding to a fundamental pure-quartic soliton
for a propagation length L¼ 30 � LFOD. This long propagation
distance ensures convergence of the pulse evolution. The results
of this numerical experiment for three different pulse shapes: a
Gaussian, a hyperbolic secant (sech), and a super Gaussian of
order four, are depicted by a solid blue curve in Fig. 4a–c,
respectively. Importantly, the hyperbolic secant and super
Gaussian inputs (black solid curve in Fig. 4b,c, respectively)
evolve into the solitary wave Gaussian shape, constituting an
additional signature of soliton-like behaviour and proving that
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this type of soliton acts as an attractor. These results are
overlapped with the variational approximation (dashed red curve)
and the local approximation (green dashed curve), using the same
parameters. The agreement between the numerical and the
variational solution in the central part of the pulse is remarkable.
The local approximation deviates only slightly. In addition we
numerically find that mE0.63, again very close to the variational
result. In the background of Fig. 4a, we show the measured pulse
at the output of the chip at P0¼ 0.7 W (cyan dot-dashed curve),
which matches variational solution perfectly. The wings observed
in the numerical solution relate to the fact that the phase shift
profile of the FOD has a quartic dependence with time, whereas
the SPM varies quadratically, as illustrated in Fig. 4d. This allows
both phase shift profiles to perfectly counterbalance each other
close to the centre of the pulse, but deviate from each other at the
edges. This fact is not captured in the approximate analytic
solution since a perfect balance between FOD and SPM is
assumed.

Since temporal optical solitons studied to date have some kind
of hyperbolic secant shape10,18,20, it is surprising that pure-
quartic solitons are approximately Gaussian. To understand this
better, we apply the argument of Dudley et al.37 to our system,
according to which the dispersive and nonlinear phase
components developed during short propagation distances must
cancel each other across the pulse duration to lead to the
formation of a soliton. Figure 5a shows the FOD- (red) and the
SPM-induced chirp (blue) after propagating the Gaussian
variational solution in equation 3 (dashed black curve) for a
distance LFOD/10 and demonstrates how this solution leads to the

mentioned cancellation across the central part of the pulse. To
highlight the different nature of the solutions found here with
respect to the previously studied NLS solitons with FOD, we
apply the same verification to the solution found in ref. 18, in the
limit b2¼ 0. Figure 5b shows how the sech2 solution obtained
from ref. 18 (dashed black curve) does not provide the necessary
cancellation of the SPM- and FOD-induced chirp required for the
formation of a stable solitary wave in the presence of just SPM
and FOD.

Discussion
The experimental results and the numerical simulations
presented here have established the existence of a new class
of solitons: pure-quartic solitons, arising from the interaction
of SPM and FOD only. In particular, we experimentally
demonstrated shape-preservation and flat-phase behaviour
for the fundamental pure-quartic soliton, and temporal
compression for the higher-order pure-quartic solitons. We
numerically demonstrated that the higher-order pure-quartic
soliton would undergo recurrent periodic propagation in the
absence of loss and higher-order nonlinearities. Although we
have verified that these signatures of soliton propagation are
preserved for long propagation distances in the presence of
just FOD and SPM, the disparity between the quartic profile of
the FOD-induced phase shift and the quadratic profile of the
SPM-induced phase shift affecting the edges of the pulse could
lead to stability issues that should be studied. Establishing
appropriate definitions of concepts such as soliton number and
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Figure 4 | Approximate solutions to a fundamental pure-quartic soliton and phase diagram. Comparison between the variational and local approximate
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soliton period for pure-quartic solitons is an open theoretical
challenge.

Our discovery was facilitated by the unique dispersion
properties of PhC-wgs that provide the design freedom to achieve
a wide variety of dispersion profiles. However, other guided wave
systems such as highly nonlinear fibres38, photonic crystal fibres8

or specially designed silicon waveguides22,39, could also be
engineered to observe pure-quartic solitons. The main
condition to fulfil is LFODooLGVD, LTOD (with b4o0), and, in
practice, we have verified that LFODooLGVD/3 across most of
the pulse bandwidth is enough for a robust observation. The
pure-quartic soliton behaviour starts to become observable when
LFOD becomes comparable to the sample length. However, our
initial simulations show that the pure-quartic soliton does not
reach a steady state until it propagates for several quartic
dispersion lengths, similar to conventional solitons40. Analogous
regimes of evolution have been demonstrated in Ti:sapphire laser
cavities25–28, taking advantage of the rich variety of physical
regimes offered by the discrete structure of the laser cavity. For
example, Zhou et al. demonstrated in ref. 26 8.5 fs pulses from a
Ti:sapphire laser operating near zero GVD with the minimum
pulse duration limited by FOD, and later Christov et al.28 hinted
that the ‘soliton-like pulse’ inside such a laser was ‘fourth-order
dispersion limited’. Here we experimentally demonstrate that the
balance between SPM and FOD gives rise to robust soliton-like
behaviour. Hence, the scope of our findings is not just limited to
nonlinear guided wave optics, but may provide novel insights into
extreme regimes of ultrafast lasers operation.

The Gaussian variational solution provided here constitutes a
good approximation to the central form of the fundamental pure-
quartic soliton. The results of our study on the cancellation of the
nonlinear and quartic dispersion phase components in short
propagation distances proved that no previously found solitary
wave solution10,18,20 can describe the behaviour of pure-quartic
solitons. This approximate solution, valid only for b4o0, could
stimulate new efforts in finding solutions to the biharmonic
nonlinear Schrodinger equation41,42 also of interest in the field
of spatial solitons23,24,43,44. Recent interest in temporal
cavity solitons in both microresonators3 and optical fibres7 with
applications in Kerr frequency combs45 and low-noise microwave
generation46 could also benefit from exploring pure-quartic
solitons in their systems. Furthermore, it would be interesting
to investigate analytic solutions supported by the pure-quartic
soliton system including the effects of linear loss, TPA and FCs.

Aside from their different physical origin, pure-quartic
solitons present significant potential advantages with respect
to conventional solitons. As mentioned, pure-quartic
solitons open the door to soliton functionality in the normal
GVD regime of optical media. More importantly, perhaps,
the energy of conventional solitons scales like (T0)� 1, whereas
the energy of pure-quartic solitons scales like (T0)� 3, which
suggests that they are more energetic for ultrashort pulses.
We expect that the understanding of pure-quartic solitons
provided in this paper, combined with the previous advances in
the laser literature25–28, will inspire a new wave of ultrafast laser
development.

Methods
Device and linear characterization. The present experiment was performed
using a silicon photonic crystal air-suspended structure with a hexagonal lattice
(p6m symmetry group) constant a¼ 404 nm, a hole radius r¼ 116 nm, and a
thickness t¼ 220 nm. A 396-mm-long dispersion engineered PhC-wg was created
by removing a row of holes and shifting the two innermost adjacent rows
50 nm away from the line defect. The air-clad devices were fabricated with a
combination of electron beam lithography, reactive ion and chemical wet
etching. The measured linear propagation loss in this slow-light region is
B70 dB cm� 1, with a total linear insertion loss of B13 dB (5 dB per facet).
Light was coupled in with tapered lensed fibres to SU8 polymer waveguides with
inverse tapers.

Phase-resolved characterization method. For the nonlinear experiments,
we used a mode locked laser (Alnair) fed into a pulse shaper (Finisar) generating
near transform-limited 1.3 ps pulses at 1,550 nm at a 30 MHz repetition rate.
These pulses were then input into the FREG apparatus. The pulses were split
into two branches by a fiber-coupler, with the majority of the energy coupled
into the PhC-wg. The remaining fraction was sent to a reference branch
with a variable delay, before being detected by a fast photodiode and transferred
to the electronic domain. This electronic signal drove a Mach–Zender
modulator that gated the optical pulse output from the PhC-wg. Using an
optical spectrum analyser, we measured the spectra as a function of delay to
generate a series of optical spectrograms. We de-convolved the spectrograms
with a numerical algorithm (256� 256 grid-retrieval errors Go0.005), to
retrieve the pulse intensity and the phase in both the temporal and spectral
domain32.

Generalized nonlinear Schodinger equation model. The parameters
used in our GNLSE model for the slow-light dispersion engineered PhC-wg are:
slow-down factor S¼ ng/n0¼ 8.64, effective linear absorption al,eff¼ 13.9 cm� 1 ;
b2¼ þ 1 ps2 mm� 1, a TOD parameter of b3¼ 0.02 ps3 mm� 1, and a FOD
parameter of b4¼ � 2.2 ps4 mm� 1; effective nonlinear parameter
geff ¼ 2pn2

l0 Aeff
S2 ¼ 4;072 Wmð Þ� 1;with n2 ¼ 6� 10� 18m2 W� 1and Aeff ¼ 0:44mm2;

effective TPA parameter aTPA;eff ¼bTPA
Aeff

S2¼1; 674 Wmð Þ� 1;with bTPA¼10�10� 12m W� 1;
effective free-carrier dispersion parameter nFC,eff¼ � 6� 10� 27 S m3; effective
free-carrier absorption parameter seff¼ 1.45� 10� 21 S m2. The simulation results
in Fig. 2 were obtained by using the measured input pulse as the input to the
model. The simulation results in Fig. 4 were obtained using a perfect Gaussian,
hyperbolic secant, and a super Gaussian (order 4) pulse of the same width as the
experimental pulse, 1.3 ps. The linear loss in the nanowires that couple light into
and out of the PhC-wg was negligible. Nonlinear absorption in the coupling
nanowire (effective area, B0.2 mm2) was taken into account in the NLSE model.
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