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Abstract: Anemone flaccida Fr. Schmidt is a traditional medicinal herb in southwestern China and has
multiple pharmacological effects on bruise injuries and rheumatoid arthritis (RA). A new drug with
a good curative effect on RA has recently been developed from the extract of A. flaccida rhizomes,
of which the main medicinal ingredients are triterpenoid saponins. Due to excessive exploitation,
the wild population has been scarce and endangered in a few of its natural habitats and research on
the cultivation of the plant commenced. Studies on the gene expressions related to the biosynthesis
of triterpenoid saponins are not only helpful for understanding the effects of environmental factors
on the medicinal ingredient accumulations but also necessary for monitoring the herb quality of
the cultivated plants. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) as
a sensitive and powerful technique has been widely used to detect gene expression across tissues
in plants at different stages; however, its accuracy and reliability depend largely on the reference
gene selection. In this study, the expressions of 10 candidate reference genes were evaluated in
various organs of the wild and cultivated plants at different stages, using the algorithms of geNorm,
NormFinder and BestKeeper, respectively. The purpose of this study was to identify the suitable
reference genes for RT-qPCR detection in A. flaccida. The results showed that two reference genes
were sufficient for RT-qPCR data normalization in A. flaccida. PUBQ and ETIF1a can be used as
suitable reference genes in most organs at various stages because of their expression stabilitywhereas
the PUBQ and EF1A genes were desirable in the rhizomes of the plant at the vegetative stage.

Keywords: Anemone flaccida Fr. Schmidt; reference gene; data normalization; RT-qPCR; medici-
nal herb

1. Introduction

Anemone flaccida Fr. Schmidt, a perennial herb in the Ranunculaceae family, distributes
mainly in southwestern China and is commonly known as “Di Wu” in its original place [1].
Its rhizome has been used as a traditional national medicine to heal fractures for a long
time [2]. Recently, a new drug extracted from its rhizomes has been developed by the Hubei
University of Chinese Medicine and has shown good curative effects in the treatment of
rheumatoid arthritis (RA) [3].

The habitats of A. flaccida plants are usually under woods in mountainous areas over
1500 m above sea level [4]. In natural habitats, the sprouting buds of the plant usually
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emerge in mid- to late- March from the rhizomes and then grow in spring when the weather
becomes warmer. The plant enters flowering and seed production from mid- April to late-
May. In late June, its aboveground parts begin senescence and die eventually. The plant
grows relatively vigorously in spring compared with that in winter; however, its growth
rate is rather slow because of cool temperatures in the natural high altitude habitat. The
total growth period of the species in a year is usually about 90 days. Most seeds of the plant
cannot germinate probably because they often shatter before full maturity [4]; thus, the
plant depends mainly on its rhizome for population propagation. The low reproductive
capacity, slow growth characteristics and narrow habitat [5] have led the wild populations
of the plant to be scarce and endangered due to excessive exploitation in the past years.
In order to meet the requirement for medicinal usage, studies have been undertaken to
grow the plant under a more controlled environment and management. For instance,
Xin [6] showed that the combined application of phosphate and potassium fertilizers could
promote the growth and development of the cultivated plants.

Quality control is of great importance for medicinal herb plantations. Apart from the
quantification of medicinal ingredients, the expression analysis of the key genes involved in
the biosynthesis of pharmacological constituents is often performed into monitor the herb
quality [7]. Moreover, gene expressions can provide a deep insight to understanding how
cultivation techniques and environmental factors affect the herb quality, which is conducive
to developing cultivation and management methods. The main medicinal ingredients are
triterpenoid saponins in the rhizome of A. flaccida [2]. In 2016, Zhan et al. [8] performed a
combined transcriptomic and proteomic analysis to identify key genes in the biosynthetic
pathway of triterpenoid saponins in A. flaccida, which made it possible to monitor the
quality of cultivated plants through gene analysis.

Reverse transcription quantitative polymerase chain reaction (RT-qPCR), with the
characteristics of high efficiency, high sensitivity and good repeatability, has been widely
used to quantify the expression levels of transcripts in various organisms at various devel-
opmental stages and under different conditions [9,10]. In RT-qPCR analysis, the appropriate
internal reference gene(s) for data normalization is an important prerequisite to ensure
the accuracy. Reference genes used in RT-qPCR analysis usually play important roles in
maintaining the normal life of cells and are often referred to as housekeeping genes, such
as actin (ACT) [11], 18S ribosomal RNA (18S rRNA) [11], Elongation Factor 1-α (EF1A) [12],
beta tubulin (β-tubulin) [13], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [13], pyruvate
kinaseII (PKII) [14], alpha-tubulin (α-tubulin) [15], 28S ribosomal RNA (28SrRNA) [16], polyu-
biquitin (PUBQ) [17], Eukaryotic translation initiation Factor 1A (ETIF1a) [18], ubiquitin [18]
and histone H2A (hh2a) [19]. Most of these genes usually express stably in different organs
and at various developmental stages. However, a few of these housekeeping genes have
been shown to express variably across species and tissues or under diverse conditions [12].
Failure to use suitable reference gene(s) may deviate from the gene expression profile and
lead to misinterpretation [20]. Therefore, the suitable reference genes specific to the species,
organs and growth conditions should be validated.

The best reference genes are usually identified by Excel-based software statistical algo-
rithms such as geNorm [21], NormFinder [22] and BestKeeper [23]. Such identifications
have been done in model plants, grain crops and a few other commercial crops such as Ara-
bidopsis [24], rice (Oryza sativa L.) [25] and Zanthoxylum bungeanum Maxim [26]. However,
in medicinal plants, similar studies have only been performed in a few major species, such
as Anoectochilus roxburghii [13], Panax ginseng [27] and Tripterygium wilfordii [28]. In this
study, the expression stability of 10 commonly used reference genes that were selected from
a comprehensive literature search [12–19] and based on the transcriptomic data [8] was
evaluated in different organs at various developmental stages of A. flaccida. The purpose of
this study was to identify the appropriate reference gene(s) for the normalization of gene
expression studies in the medicinal quality of cultivated plants in A. flaccida.
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2. Materials and Methods

A field experiment was conducted at the Chinese herbal medicine plantation base
(30◦8′31′′ N, 108◦55′35′′ E, 1600 m above sea level) in Lichuan City, Hubei Province, China.
Cutting rhizomes with a length of 2–3 cm were planted about 5 cm deep into the soil with
a row spacing of 25 cm and plant distance of 12.5 cm on 26 September 2014. The density
of the rhizome plantation was 320,000 plants/hm2. Prior to the planting of the rhizomes,
337.5 kg/hm2 of urea, 1000 kg/hm2 of calcium superphosphate and 625.5 kg/hm2 of potas-
sium magnesium sulphate were applied into the soil as a basal fertilizer [6]. The cultivated
plants were shaded by one layer of sunshade net with 10.4% of light transmittance to
imitate the natural habitat of the plant. No irrigation and herbicides were applied during
the entire growing period.

The statistical analysis of the expression stability was performed for all of the tested
samples (total) and separately for each growth stage for the rhizome samples and for the
samples of leaves of cultivated and wild plants. Rhizomes and leaves were sampled at the
vegetative stage on 3 April and flowering stage on 10 May 2015, respectively (CVR and
CVL: rhizomes and leaves of the cultivated plants, respectively, at the vegetative stage;
CFR and CFL: rhizomes and leaves of the cultivated plants, respectively, at the flowering
stage), Rhizomes were collected from withering plants on 11 July 2015 (CWR: rhizomes
of the cultivated plants at the withering stage). Leaf and rhizome samples of A. flaccida
were also collected from wild plants at Tonggubao (30◦17′22′′ N, 110◦49′11′′ E, 1800 m
above sea level), a natural habitat of the plant, in Changyang county, Hubei Province,
China on 6 April, 13 May and 14 July 2015, respectively (WVR and WVL: rhizomes and
leaves of the wild plants, respectively, at the vegetative stage; WFR and WFL: rhizomes
and leaves of the wild plants, respectively, at the flowering stage; WWR: rhizomes of the
wild plants at withering stage). Following thorough cleaning by tap water, the samples
were immediately put into liquid nitrogen and brought to the laboratory for analysis. All
samples were collected in three biological replicates.

2.1. Total RNA Isolation and Quality Control

Frozen samples (2 g of leaves and 1 g of rhizomes) were ground with a pre-cooled
mortar and pestle in liquid nitrogen. Total RNA was extracted from the leaves and rhi-
zomes by Trizol Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions on a Heraguard ECO Clean Bench (Thermo Fisher Scientific, Waltham, MC,
USA). The quality and quantity of RNA were checked by agarose gel electrophoresis and
spectrophotometry (NanoDrop Technologies, Wilmington, DE, USA). RNA samples with
A260/A280 between 1.8–2.2 were used for further RT-qPCR analysis.

2.2. Candidate Reference Gene Selections

Based on the transcriptome data sequences of A. flaccida [8], the potential homologues
of 10 commonly used housekeeping genes were selected as candidate reference genes in
this study: EF1A [12], β-tubulin [13], GAPDH [13], PKII [14], α-tubulin [15], 28SrRNA [16],
PUBQ [17], ETIF1a [18], ubiquitin [18] and hh2a [19].

2.3. Primer Design and Amplification Efficiency Test

Primers for the amplification of candidate reference genes were designed using
Oligo7.0 software (V7.56 version) based on the data of Zhan et al. [8] with an anneal-
ing temperature between 58 ◦C and 62 ◦C, a primer length of 20–24 bp, GC content about
45%–55% and an amplicon length of 126–156 bp (Table 1, Figures S1 and S2). For each
pair of primers, a standard curve was generated using five different cDNA concentrations
(1, 5−1, 5−2, 5−3 and 5−4 fold dilutions with three replicates, respectively) (Figure S3).
The cycle threshold (Ct) values were automatically determined for each reaction using
CFX-1000 PCR apparatus (Analytik Jena AG company, Berlin, Germany). The amplification
efficiency (E) for each gene was determined with the slope of a linear regression model [12]
using the Ct values and the following equation: E = 10−1/slpoe.
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Table 1. Primer information and amplification efficiency of 10 candidate reference genes.

Gene Gene Name Primer Sequence (5′-3′)
Amplicon
Length

(bp)
Tm
(◦C)

Determination
Coefficient (R2) E

β-tubulin Beta-tubulin F: GCCTGCTTGAATGTGGAGAATCT 129 57.8 0.980 1.84R: CCCTTCACAAATCGCAATCTCAAC 57.9
PUBQ Polyubiquitin F: CAAGTGACACCAATGCCCTAAACT 151 57.9 0.975 1.86R: GATGGCAGGGTATATTTTCCTACGC 59.6

ETIF1a Eukaryotic translation
initation factor 1A

F: TGTTCTTCGGCATGGCTACT 126 55.4 0.981 2.00R: CCACGGCTCTCGTTCATCTAA 57.6
ubiquitin Ubiquitin F: CTCATCACCAGCACCTACATC 146 54.9 0.992 2.01R: CCGATTCCGCAACCAAGT 54.9

PKII Pyruvate kinase II F: GATGATGCTGCGGCTTGAAG 137 57.4 0.983 2.08R: CCAACAGACGGATTGGATTATCTC 57.9

GAPDH Glyceraldehyde-3-
phosphate dehydrogenase

F: CCGAGTCCTGGATCTGATT 124 55.6 0.997 2.13R: GGGTGCAAACTAGATAACTGG 55.2

α-tubulin Alpha-tubulin F: ACATGCGATGTAATGGCAAGAAGC 134 57.9 0.963 1.81R: GGTGCTTGTTCTGTTCTCCAGTGA 59.6

EF1A Elongation Factor 1-α F: AGGCGGAGAGGCTTATCA 147 54.9 0.984 1.92R: GAGGTCTACTAATCTGGACTGGTA 57.9

hh2a Histone H2A F: TCAGCTTCAGCTCAAGCACTAACATCAG 145 61.1 0.905 2.00R: GGCGTTCCTGTGGTGTAGTTGTATGG 62.7

28S rRNA 28S ribosomal RNA F: TCTAGTAACGGCGAGTGAAG 156 55.4 0.984 1.94R: GGAACTTAGGTCGGTGGTTA 55.4

E, Amplification efficiency for each gene.

2.4. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)

The first strand cDNA was synthesized with 1 µg of high-quality total RNA and
1 µL of oligo dT primers (50 µmol/L) for each sample according to the Thermo RevertAid
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA). The RT-qPCR assays
were carried out with a CFX-1000 PCR apparatus and SYBR Premix Ex TaqII (Wuhan
Khayal Bio-Technology Company, Wuhan, China) to test the transcription variability of
the 10 candidate reference genes across the samples. The total reaction volume was 20 µL,
containing 1 µL of diluted cDNA, 10 µL of 2× Ultra SYBR Mixture, 0.4 µL of each primer
(10 µmol/L) and 8.2 µL of RNase-free water. The three steps of RT-qPCR program began
with 95 ◦C for 10 min, 45 cycles of 95 ◦C for 15 s and 60 ◦C for 15 s, followed by 72 ◦C
for 10 min. The dissociation curve was obtained by heating the amplicon from 56 ◦C
to 95 ◦C. Each RT-qPCR reaction was carried out with three technical replicates and a
template-free control.

2.5. Statistical Analysis on Gene Expression Stability

The expression stability of the 10 candidate genes was evaluated by Ct value [29] and
three different algorithms: geNorm (http://medgen.ugent.be/jvdesomp/genorm/, accessed
on 20 July 2018), NormFinder (http://www.mdl.dk/publicationsnormfinder.html, accessed
on 20 July 2018) and BestKeeper (http://www.genequantification.de/bestkeeper.html, ac-
cessed on 20 July 2018). The geNorm algorithm calculates the expression stability (defined
as the parameter M) of each candidate reference gene based on its expression level in a set
of given samples. The gene with the lower M value indicates a higher expression stabil-
ity [15,21]. The geNorm algorithm selects the optimal number of required reference genes by
comparing the pair-wise variation (Vn/Vn+1) values between consecutively ranked genes.
The cut-off values are usually recommended to be a default value of 0.15 [21,30]. Similarto
the geNorm algorithm, the NormFinder algorithm uses a model-based approach to deter-
mine the expression stability of reference genes based on intra- and inter- group variations.
Herein, the gene with the lowest mean expression stability value is considered to be the most
stably expressed [23,31]. BestKeeper evaluates and ranks the expression stability of candidate
reference genes by calculating the standard deviation (SD) and the coefficient of variation
(CV) based on the Ct values. The most stably expressed reference gene presents the lowest
standard deviation (CV ± SD) [24,32]. Following RT-qPCR data collection, amplification
cycles (Ct values) were converted to relative quantities using the equation E−∆Ct (∆Ct =
the corresponding Ct value − minimum Ct). The relative quantities were then used for

http://medgen.ugent.be/jvdesomp/genorm/
http://www.mdl.dk/publicationsnormfinder.html
http://www.genequantification.de/bestkeeper.html
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the gene expression stability evaluation by geNorm, NormFinder and BestKeeper analyses,
respectively, according to the manufacturer’s instructions.

3. Results
3.1. Validating Expression Levels of Candidate Reference Genes

The specificity of the primers used for the candidate reference genes were verified
by reverse transcription PCR. There were no primer dimers and nonspecific amplification
as checked by agarose gel electrophoresis (Figure S1). There were great variations in the
transcript levels of the 10 candidate reference genes in the different samples of A. flaccida
(Figure 1). The mean Ct values of the genes ranged from 22.82 to 28.06 across all samples.
Among them, PKII had the lowest mean Ct value and β-tubulin had the highest mean Ct
indicating the highest expression level for PKII but the lowest for β-tubulin. The expression
level of PUBQ presented the least variation (CV = 0.2%), while that of GAPDH presented
the most variation (CV = 5.78%) across all samples (Figure 1).
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Figure 1. Expression levels of 10 candidate reference genes in different samples. Lines across the boxes depict the
medians. Boxes indicate the interquartile range. Whiskers represent 95% confidence intervals and black circles represent the
deviated values.

The relative quantitative expression of each gene in different organs at various stages
is presented as the percentage of the aggregated reference transcript pool in Figure 2. The
proportions of EF1A, PUBQ, ETIF1a and β-tubulin transcripts were relatively consistent
while, those of α-tubulin, 28S rRNA, PKII, hh2a, GAPDH and ubiquitin transcripts were more
variable across the samples. The proportions of the gene transcripts were comparable in
the same organs between wild and cultivated plants at the same stage, except for those of
PKII and 28S rRNA in the rhizomes at the vegetative stage, ubiquitin and GAPDH in the
leaves at the vegetative stage, GAPDH, PKII, hh2a and α-tubulin in the rhizomes and leaves
at the flowering stage, ubiquitin in the leaves at the flowering stages and PKII and hh2a in
the rhizomes at the withering stage (Figure 2).
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Figure 2. Relative expression levels of 10 candidate reference genes in different samples. CVR: rhizomes of the cultivated
plants at the vegetative stage; WVR: rhizomes of the wild plants at the vegetative stage; CVL: leaves of the cultivated
plants at the vegetative stage; WVL: leaves of the wild plants at the vegetative stage; CFR: rhizomes of the cultivated plants
at the flowering stage; WFR: rhizomes of the wild plants at the flowering stage; CFL: leaves of the cultivated plants at
the flowering stage; WFL: leaves of the wild plants at the flowering stage; CWR: rhizomes of the cultivated plants at the
withering stage; WWR: rhizomes of the wild plants at the withering stage.

3.2. Expression Stability of Candidate Reference Genes
3.2.1. geNorm Analysis

The tested reference genes by geNorm showed relatively stable expressions with M
values less than 1.5 (Figure 3). The expressions of PUBQ and EF1A were the most stable
while those of 28S rRNA and PKII were the least stable across all samples (Figure 3a). At
the vegetative stage, PUBQ and EF1A also kept the most stable expression in the rhizomes
as well as PUBQ and hh2a in the leaves while PKII and 28S rRNA showed the least stable
expression in the rhizomes and β-tubulin and ubiquitin in the leaves (Figure 3b,c). At the
flowering stage, the expressions of ETIF1a and EF1A were the most stable in the rhizomes
as well as those of ETIF1a and PUBQ in the leaves (Figure 3d,e). The least stably expressed
genes were PKII in the rhizomes and GAPDH in the leaves at the flowering stage. At the
withering stage, ETIF1a and EF1A were the most stably expressed genes but PKII was the
least stably expressed gene in the rhizomes (Figure 3f). Most V3/4 values (VR: 0.005; VL:
0.033; FR: 0.017; FL: 0.019) were larger than the V2/3 values (VR: 0.003; VL: 0.007; FR: 0.01;
FL: 0.018) and all the of V2/3 values were below 0.15 (Figure 4). This indicated that two
reference genes could be sufficient for normalizing gene expressions in A. flaccida samples.
The addition of a third reference gene did not significantly increase the statistical reliability
of the calculation.
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Figure 3. Expression stability and ranking of 10 candidate reference genes calculated by geNorm. The mean expression
stability was calculated by a stepwise exclusion of the least stable gene across all samples. The least stable genes are on the
leftand the most stable ones on the right. The statistical analysis of the expression stability was performed for all of the
tested samples (Total) and separately for each growth stage for the rhizome samples and for the samples of the leaves of the
cultivated and wild plants. (a) Total: all rhizome and leaf samples of cultivated and wild plants; (b) VR: rhizomes at the
vegetative stage; (c) VL: leaves at the vegetative stage; (d) FR: rhizomes at the flowering stage; (e) FL: leaves at the flowering
stage; (f) WR: rhizomes at the withering stage.
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Figure 4. Determination of the optimal number of reference genes required for effective normalization. A pairwise variation
(Vn/Vn+1) analysis between the normalization factors (NFn and NFn+1) was performed by the geNorm program to
determine the optimal number of reference genes that might be carried out for RT-qPCR data normalization in various
sample pools. The statistical analysis of the expression stability was performed for all of the tested samples (Total) and
separately for each growth stage for the rhizome samples and for the samples of the leaves of the cultivated and wild plants.
Total: all rhizome and leaf samples of the cultivated and wild plants; VR: rhizomes at the vegetative stage; VL: leaves at the
vegetative stage; FR: rhizomes at the flowering stage; FL: leaves at the flowering stage; WR: rhizomes at the withering stage.

3.2.2. NormFinder Analysis

The expression stability of 10 candidate reference genes resulted from NormFinder
analysis demonstrated that PUBQ was the most stably expressed gene in all samplesexcept
for the rhizomes at the vegetative and withering stages in which EF1A was ranked as the
most stably expressed gene (Table 2).

Table 2. Expression stability of the candidate reference genes calculated by the NormFinder software.

Rank
Total VR VL FR FL WR

Gene Stability Gene Stability Gene Stability Gene Stability Gene Stability Gene Stability

1 PUBQ 0.094 EF1A 0.002 PUBQ 0.002 PUBQ 0.004 PUBQ 0.004 EF1A 0.001

2 EF1A 0.167 PUBQ 0.003 ETIF1a 0.002 ETIF1a 0.004 EF1A 0.004 β-tubulin 0.001

3 ETIF1a 0.206 α-tubulin 0.004 EF1A 0.011 ubiquitin 0.031 ETIF1a 0.017 ubiquitin 0.026

4 β-tubulin 0.210 ETIF1a 0.006 α-tubulin 0.078 hh2a 0.106 β-tubulin 0.018 PUBQ 0.046

5 hh2a 0.316 hh2a 0.029 hh2a 0.091 PKII 0.166 28SrRNA 0.086 ETIF1a 0.055

6 ubiquitin 0.344 β-tubulin 0.124 28SrRNA 0.102 EF1A 0.173 α-tubulin 0.211 GAPDH 0.060

7 α-tubulin 0.372 ubiquitin 0.162 PKII 0.103 GAPDH 0.335 PKII 0.212 α-tubulin 0.083

8 GAPDH 0.494 GAPDH 0.208 GAPDH 0.189 α-tubulin 0.441 ubiquitin 0.212 28SrRNA 0.091

9 PKII 0.506 28SrRNA 0.297 ubiquitin 0.295 β-tubulin 0.519 hh2a 0.662 hh2a 0.188

10 28SrRNA 0.635 PKII 0.661 β-tubulin 0.299 28SrRNA 0.562 GAPDH 0.877 PKII 0.208

The statistical analysis of the expression stability was performed for all of the tested samples (Total) and separately for each growth stage
for the rhizome samples and for the samples of the leaves of the cultivated and wild plants. Total: all rhizome and leaf samples of cultivated
and wild plants; VR: rhizomes at the vegetative stage; VL: leaves at the vegetative stage; FR: rhizomes at the flowering stage; FL: leaves at
the flowering stage; WR: rhizomes at the withering stage.
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3.2.3. BestKeeper Analysis

The results obtained by the BestKeeper analysis showed that all of the SD values of
Ct of the 10 candidate reference genes were smaller than 1, and the expression of PUBQ
was the most stable in total samples and in the rhizomes and leaves at the vegetative stage
while ETIF1a was ranked as the most stable gene in the other samples (Table 3).

Table 3. Expression stability of the candidate reference genes calculated by the BestKeeper software.

Rank Total VR VL FR FL WR

1 PUBQ PUBQ PUBQ ETIF1a ETIF1a ETIF1a

CV ± SD 0.14 ± 0.04 0.27 ± 0.07 0.13 ± 0.04 0.07 ± 0.02 0.04 ± 0.01 0.05 ± 0.02

2 EF1A EF1A hh2a PUBQ PUBQ PUBQ

CV ± SD 0.76 ± 0.18 0.35 ± 0.08 0.15 ± 0.04 0.10 ± 0.03 0.07 ± 0.02 0.07 ± 0.02

3 hh2a ETIF1a ETIF1a EF1A β-tubulin EF1A

CV ± SD 0.96 ± 0.25 0.31 ± 0.09 0.19 ± 0.05 0.12 ± 0.03 0.11 ± 0.03 0.14 ± 0.03

4 ETIF1a β-tubulin 28SrRNA ubiquitin EF1A β-tubulin

CV ± SD 0.98 ± 0.26 0.31 ± 0.09 0.47 ± 0.14 0.22 ± 0.06 0.22 ± 0.06 0.12 ± 0.04

5 β-tubulin α-tubulin α-tubulin 28SrRNA PKII α-tubulin

CV ± SD 1.02 ± 0.29 0.42 ± 0.10 0.70 ± 0.15 0.26 ± 0.07 0.78 ± 0.17 0.21 ± 0.05

6 ubiquitin ubiquitin β-tubulin β-tubulin ubiquitin ubiquitin

CV ± SD 2.15 ± 0.52 0.47 ± 0.11 0.56 ± 0.16 0.32 ± 0.09 0.79 ± 0.19 0.32 ± 0.08

7 GAPDH hh2a EF1A hh2a 28SrRNA GAPDH

CV ± SD 2.14 ± 0.55 0.51 ± 0.14 0.70 ± 0.16 1.24 ± 0.33 0.69 ± 0.19 0.38 ± 0.10

8 PKII GAPDH PKII GAPDH α-tubulin hh2a

CV ± SD 2.47 ± 0.58 0.53 ± 0.14 0.96 ± 0.23 1.71 ± 0.44 1.37 ± 0.31 0.51 ± 0.14

9 α-tubulin 28SrRNA GAPDH PKII hh2a 28SrRNA

CV ± SD 2.98 ± 0.69 0.91 ± 0.24 1.13 ± 0.29 2.69 ± 0.65 2.19 ± 0.58 0.48 ± 0.14

10 28SrRNA PKII ubiquitin α-tubulin GAPDH PKII

CV ± SD 2.56 ± 0.71 2.61 ± 0.63 1.75 ± 0.41 2.88 ± 0.67 2.99 ± 0.78 0.94 ± 0.22

The statistical analysis of the expression stability was performed for all of the tested samples (total) and separately for each growth stage for
the rhizome samples and for the samples of the leaves of the cultivated and wild plants. Total: all rhizome and leaf samples of cultivated
and wild plants; VR: rhizomes at the vegetative stage; VL: leaves at the vegetative stage; FR: rhizomes at the flowering stage; FL: leaves at
the flowering stage; WR: rhizomes at withering stage. Descriptive statistics of 10 candidate genes based on the coefficient of variance (CV)
and standard deviation (SD) of their Ct values were determined using the whole data set. Reference genes were identified as the most
stable genes with the lowest coefficient of variance and standard deviation (CV ± SD).

4. Discussion

The selection of suitable reference gene(s) is crucial for obtaining reliable and repro-
ducible results of target gene expressions in different experimental conditions by RT-qPCR
analysis [30,31]. An ideal reference gene should be relatively consistent in expression
across all organs and experimental conditions [27]. In this study, PUBQ showed a stable
expression in most cases for A. flaccida, which was in line with the previous findings in Cicer
arietinum [17]. GAPDH has been recommended as a suitable reference gene in sugarcane
(Saccharum sp.) [33]; however, its expression was not so stable for A. flaccida in this study.
Similar results were also obtained in Miscanthus lutarioriparia [30]. These suggested that
reference genes need to be verified under certain experimental conditions and among
various species or organs [28,34].

The results of reference gene selections using RT-qPCR are also affected by reagents
and analysis software. Three analytical software platforms and high-quality reagents were
used to ensure the reliability of results in this study. geNorm, NormFinder and BestKeeper
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have been widely used to analyze the stability of gene expression and identify the best
reference gene(s) for data normalization in RT-qPCR studies. In this study, PUBQ was
ranked as the most stably expressed gene in all of the tested samples by the three methods.
However, EF1A was ranked as the first and PUBQ as the second most stable gene in the
rhizomes at the vegetative stage by The NormFinder. NormFinder algorithm uses a model-
based approach to determine the expression stability of reference genes based on intra- and
inter- group variation. BestKeeper evaluates and ranks the expression stability of candidate
reference genes by calculating the standard deviation (SD) and the coefficient of variation
(CV) based on the Ct values. The most stably expressed reference gene presents the lowest
standard deviation (CV ± SD) [23]. By BestKeeper, ETIF1a was ranked as the first most
stable gene and PUBQ the second in different organs at the flowering and withering stages
in this study although the PUBQ expression was the most stable at the vegetative stage.

The geNorm algorithm calculates the expression stability (defined as the parameter M)
of each candidate reference gene based on its expression level in a set of given samples. The
gene with the lower M value (M < 1.5) indicates a higher expression stability [21]. In the
evaluation by geNorm, ETIF1a was deemed to be the most stable gene in all specific organs
at the flowering and withering stages while EF1A was the most stably expressed gene in the
rhizomes at various stages. Zhan et al. also used EF1A as a reference gene to quantify the
expression levels of transcript in leaves and rhizomes of A. flaccida at the flowering stage [8].
PUBQ was ranked as the second and third most stably expressed gene in the rhizomes at
the withering and vegetative stage, respectively, although it was ranked as the first most
stably expressed gene in the leaves at the vegetative and flowering stages in this study.
These confirmed that different methods may give different results because of their different
strategies and calculation algorithms [29,35]. geNorm is known to be based on a more
effective and feasible algorithm for ensuring the optimal stability of reference genes and its
results have been widely accepted by many researchers [21]. NormFinder and BestKeeper
are best applied to assess the quality of the gene rankings obtained by geNorm [31].
Moreover, the geNorm algorithm can yield the optimal number of required reference genes
by comparing the pair-wise variation (Vn/Vn+1) values between consecutively ranked
genes. The cut-off values are usually recommended to be a default value of 0.15 [30].

We combined the results from the three methods together in this study, which is
shown in Table S1. Based on the result by geNorm that two reference genes were sufficient
for RT-qPCR data normalization in different organs at various stages, PUBQ and ETIF1a
were the most suitable reference genes for the total sample and specific organs in A. flaccida
at most stages. However, EF1A was more desirable as a reference gene than ETIF1a in
rhizomes at the vegetative stage. Moreover, EF1A in combination with PUBQ could also
be used as a reference gene in the rhizomes at the withering stage (Table S1). In addition,
the expression of PUBQ was more stable at the vegetative stage than at the other stages
whereas the expression of EF1A was more stable in the rhizomes than in the leaves. These
also confirmed that the expressions of a few housekeeping genes vary in spatial, temporal
and environmental-dependent patterns in plants.

5. Conclusions

The genes PUBQ and ETIF1a had a stable expression in most organs at different devel-
opmental stages of A. flaccida. Therefore, they can be used as reference genes for the data
normalization in an RT-qPCR analysis of this plant. PUBQ and EF1A were more desirable as
reference genes in rhizomes at the vegetative stage and could also be used at the withering
stage. This study laid a foundation for understanding the effects of cultivation methods on
the biosynthesis of triterpenoid saponins in A. flaccida for future gene expression analysis,
which will be beneficial for the development of artificial plantations of this medicinal herb.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/3/459/s1, Figure S1: Agarose gel electrophoresis of raw RNA in different samples. Ampli-
fication fragments were separated by 2% agarose gel electrophoresis. Figure S2: PCR assay for a
specificity assessment of qPCR amplification specificity of 10 candidate reference genes. Amplifi-
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cation fragments were separated by 2% agarose gel electrophoresis. Figure S3: Melting curves of
RT-qPCR amplifications of 10 candidate reference genes. Figure S4: Amplification efficiency of 10
candidate reference genes. Table S1: Expression stability ranking of 10 candidate reference genes by
using geNorm (G), NormFinder (N) and BestKeeper (B) methods.
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