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Abstract

Association studies have linked microbiome alterations with many human diseases, but not always 

reported consistent results, which necessitates cross-study comparisons. Here, a meta-analysis of 

eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal 

cancer (CRC, N = 768), which was controlled for several confounders, identified a core set of 29 

species significantly enriched in CRC metagenomes (FDR < 1E-5). CRC signatures derived from 

single studies maintained accuracy in other studies. By training on multiple studies we improved 

detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes 

revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation 

genes. Moreover we inferred elevated production of secondary bile acids from CRC metagenomes 

suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. 

Through extensive validations, this meta-analysis firmly establishes globally generalizable, 

predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.

Introduction

Studying microbial communities colonizing the human body in a culture-independent 

manner has been enabled by metagenomic sequencing technologies [1]. These have yielded 

glimpses into the complex yet incompletely understood interactions between the gut 

microbiome – the microbial ecosystem residing primarily in the large intestine – and its host 

[2]. To explore microbiome-host interactions in a disease context, metagenome-wide 

association studies (MWAS) have begun to map gut microbiome alterations in diabetes, 

inflammatory bowel disease, colorectal cancer and many other conditions [3–12]. However, 

due to the many biological factors possibly influencing gut microbiome composition in 

addition to the condition studied, a current challenge for MWAS is confounding, which can 

cause false associations [13, 14]. This issue is further aggravated by a lack of standards in 
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metagenomic data generation and processing, making it difficult to disentangle technical 

from biological effects [15].

Robustness of microbiome-disease associations can be assessed through comparisons across 

multiple metagenomic case-control studies, i.e. meta-analyses. These aim at identifying 

associations that are consistent across studies and thus less likely attributable to biological or 

technical confounders. Most informative are meta-analyses of populations from diverse 

geographic and cultural regions. Previous microbiome meta-analyses based on 16S rRNA 

gene amplicon data found stark technical differences between studies and the reported 

taxonomic disease associations were either of low effect size or not well resolved [16–18]. 

In contrast, shotgun metagenomics enables analyses with higher taxonomic resolution and of 

gene functions to improve statistical power for fine-mapping disease-associated strains and 

aid in the interpretation of host-microbial co-metabolism. Thus far however, meta-analyses 

of shotgun metagenomic data have either reported on features of general dysbiosis in 

comparisons across multiple diseases [19], or have left it unclear how well microbiome 

signatures generalize across studies of the same disease when data are rigorously separated 

to avoid over-optimistic evaluations of their prediction accuracy [20].

Here, we present a meta-analysis of a total of eight studies of CRC including fecal 

metagenomic data from 386 cancer cases and 392 tumor-free controls. After consistent data 

reprocessing, we examined an initial set of five studies for CRC-associated changes in the 

gut microbiome. Firstly, we investigated potential confounders, followed by identifying 

(univariate) microbial species associations, and inferring species co-occurrence patterns in 

CRC. Secondly, we trained multivariable classification models for recognition of CRC 

status, from both taxonomic and functional microbiome profiles and tested how accurately 

these models generalized to data from studies not used for training. Moreover, we evaluated 

performance improvements achieved by pooling data across studies and the disease-

specificity of the resulting classification models. Thirdly, targeted investigation of virulence 

and toxicity genes as candidate functional biomarkers for CRC revealed several of these to 

be enriched in CRC metagenomes indicative of their prevalence and potential relevance in 

CRC patients. Three additional, more recent studies were finally used to independently 

validate these taxonomic and functional CRC signatures.

Results

Consistent processing of published and new data for meta-analysis of CRC metagenomes

In this meta-analysis we included four published studies which used fecal shotgun 

metagenomics to characterize CRC patients compared to healthy controls (referred to by the 

country codes FR, AT, CN, and US, corresponding to the respective main study population; 

see Table 1, Supplementary Table S1, and Methods for inclusion criteria). For an additional 

fifth study population, we generated new fecal metagenomic data from samples collected in 

Germany (herein abbreviated as DE); a subset of samples from this patient collective were 

published previously (Table 1, Methods, [8]). These five studies were conducted on three 

continents and differed in sampling procedures, sample storage, and DNA extraction 

protocols. Notably, the fecal specimen of the US study were freeze-dried and stored at -80°C 

for more than 25 years before DNA extraction and sequencing [10]. In all studies, however, 

Wirbel et al. Page 3

Nat Med. Author manuscript; available in PMC 2021 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



samples were collected prior to treatment, thus excluding cancer therapy as a potential 

confounding effect [14, 21]. Most samples were even taken before bowel preparation for 

colonoscopy, with some exceptions in the DE, CN and US studies (Supplementary Table 

S2). To ensure consistency in bioinformatic analyses, all raw sequencing data were 

(re-)processed using mOTUs2 for taxonomic profiling [22] and MOCAT2 for functional 

profiling [23].

Univariate meta-analysis of species associated with CRC

The first aim of the meta-analysis was to determine gut microbial species that are enriched 

or depleted in CRC metagenomes in a consistent manner across the five study populations. 

However, as these studies differed from one another in many biological and technical 

aspects, we first quantified the effect of study-associated heterogeneity on microbiome 

composition. We contrasted this with other potential confounders (‘patient age’, ‘BMI’, 

‘sex’, ‘sampling after colonoscopy’, and ‘library size’; additionally, ‘smoking status’, ‘type 

II diabetes comorbidity’, and ‘vegetarian diet’ where available Extended Data 1, 

Supplementary Table S3). This analysis revealed the factor ‘study’ to have a predominant 

impact on species composition, which is supported by a recent comparison of DNA 

extraction protocols, as these typically differ between studies [15]. An analysis of microbial 

alpha and beta diversity showed study heterogeneity to also have a larger effect on overall 

microbiome composition than CRC in our data (Extended Data 2).

For the identification of microbial taxa significantly differing in abundance in CRC, 

parametric effect size measures are not well established, because microbiome data is 

characterized by non-Gaussian distributions with extreme dispersion; we thus used a 

generalisation of the fold change (Extended Data 3) and non-parametric significance testing. 

In this permutation test framework [24] (herein referred to as blocked univariate Wilcoxon 

tests) differential abundance in CRC can be assessed while accounting for ‘study’ as a 

nuisance effect that is treated as a blocking factor; additionally, motivated by our confounder 

analysis, we also blocked for ‘colonoscopy’ in all analyses (Methods, Extended Data 1). To 

rule out spurious associations due to the compositional nature of microbial relative 

abundance data, we additionally compared the results of this test with a method [25] 

employing log-ratio transformation (and found highly correlated results, Supplementary Fig. 

1, Supplementary Table S4).

At a meta-analysis false discovery rate (FDR) of 0.005, we identified 94 microbial species to 

be differentially abundant in the CRC microbiome, out of 849 species consistently detected 

across studies (Supplementary Table S4, Methods). Among these, we focused on a core set 

of the 29 most significant markers (FDR < 1E-5, Fig. 1a) for further analysis. The latter 

included members of several genera previously associated with CRC, such as 

Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus, Gemella, Prevotella, and 

Solobacterium (Fig. 1b, [8–11]), and 8 additional species without genomic reference 

sequences (meta-mOTUs, Methods, [22]) mostly from the Porphyromonas and Dialister 
genera and the Clostridiales order (see Extended Data 4 and Supplementary Table S4 for 

genus-level associations). Collectively, these 29 core CRC-associated species show a 

previously underappreciated diversity of 11 Clostridiales species to be enriched in CRC (Fig. 
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1b). In contrast to the majority of species that are more strongly affected by study 

heterogeneity than by CRC status, 26 out of the 29 CRC-associated species varied more by 

disease status (Fig. 1d).

All of the core CRC-associated species were enriched in patients and were often 

undetectable in metagenomes from non-neoplastic controls. While previous studies were 

contradictory in the reported proportion of positive versus negative associations [8, 9, 17, 

20], our meta-analysis results are more easily reconciled with a model in which – potentially 

many – gut microbes contribute to or benefit from tumorigenesis than with the opposing 

model in which a lack of protective microbes contributes to CRC development (Fig. 1b). 

Although these core taxonomic CRC associations were highly significant and consistent, 

individual studies showed marked discrepancies in the species identified as significant (Fig. 

1a). Retrospective examination of the precision and sensitivity with which individual studies 

detected this core of CRC-associated species showed relatively low sensitivity for the US 

study (consistent with the original report [10]) and low precision of the AT study due to 

associations that were not replicated in other studies (Supplementary Fig. 2).

Analyzing patient metagenomes for co-occurrences among the core set of 29 species that are 

strongly enriched in the CRC microbiome revealed four species clusters with distinct 

taxonomic composition (Fig. 2a, Extended Data 5, Methods). Two of them showed strong 

taxonomic consistency: Cluster 1 exclusively comprised Porphyromonas spp., and cluster 4 

only contained members of the Clostridiales order. In contrast, the other two clusters were 

taxonomically more heterogeneous with cluster 3 grouping together the species with highest 

prevalence in CRC cases (all among the ten most highly significant markers), consistent with 

a co-occurrence analysis of one of the data sets included here [11]. Cluster 2 contained 

species with intermediate prevalence.

Investigating whether these four clusters were associated with different tumor 

characteristics, we found the Porphyromonas cluster 1 to be significantly enriched in rectal 

tumors (Fig. 2b), consistent with the presence of superoxide dismutase genes in 

Porphyromonas genomes possibly conferring tolerance to a more aerobic milieu in the 

rectum (Extended Data 5). The Clostridiales cluster 4 was significantly more prevalent in 

female CRC patients. All species clusters showed a slight tendency towards late-stage CRC 

(i.e. AJCC stages III and IV), but this was only significant for cluster 3. Associations with 

patient age and BMI were weaker and not significant (Extended Data 5). To rule out 

secondary effects due to differences in patient composition among studies, all of these tests 

were corrected for study effects (by blocking for ‘study’ and ‘colonoscopy’, see Methods). 

At the level of individual species, significant stage-specific enrichments could not be 

detected suggesting CRC-associated microbiome changes to be less dynamic during cancer 

progression than previously postulated [26], although fecal material may be less suitable to 

address this question than tissue samples.

Metagenomic CRC classification models

To establish metagenomic signatures for CRC detection across studies in face of geographic 

and technical heterogeneity, we developed multivariable statistical modeling workflows with 

rigorous external validation to avoid prevailing issues of overfitting and over-optimistic 

Wirbel et al. Page 5

Nat Med. Author manuscript; available in PMC 2021 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



reports of model accuracy [19]. As a precaution against over-optimistic evaluation, these 

workflows are independent of the above-described differential abundance analysis. Instead, 

LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression classifiers 

were employed to select predictive microbial features and eliminated uninformative ones 

(Methods).

In a first step, we used abundance profiles from five studies including the 849 most abundant 

microbial species and assessed how well classifiers trained in cross validation (CV) on one 

study generalize in evaluations on the other four studies (study-to-study transfer of 

classifiers) (Fig. 3a). Within-study cross-validation performance, as quantified by the Area 

Under the Receiver Operating Characteristics (AUROC) curve, ranged between 0.69 and 

0.92 and was generally maintained in study-to-study transfer (AUROC dropping by 

0.07±0.12 on average) with two notable exceptions. First, in line with the univariate analysis 

of species associations, CRC detection accuracy on the US study was lower than for the 

other studies, both in cross-validation and in study-to-study transfer. This could potentially 

be explained by the US fecal specimen, unlike in the other studies, being freeze-archived for 

>25 years before metagenomic sequencing [10]. Second, classifiers trained on the AT study 

did not generalize as well to the other studies, consistent with low study precision seen in 

univariate meta-analysis (Supplementary Fig. 2). Given the microbial co-occurrence clusters 

described above, we wondered whether species-species interactions would provide 

additional information relevant for CRC recognition that is not contained in species 

abundance profiles. However, nonlinear classifiers able to exploit such interactions did not 

yield significantly better accuracies (Supplementary Fig. 3, see also [27]), suggesting that 

the linear model based on few biomarkers (on average 17 species account for more than 80% 

of the classifier weight, Extended Data 6) is near optimal for CRC prediction.

We further assessed if including data from all but one study in model training improves 

prediction on the remaining held-out study (leave-one-study-out validation, LOSO). LOSO 

performance of species-level models ranged between 0.71 and 0.91, and when disregarding 

the US study as an outlier was ≥0.83 (Fig. 3b). This corresponds to a LOSO accuracy 

increase of 0.076±0.03 compared to study-to-study transfer. These results suggest that one 

can expect a CRC detection accuracy ≥0.8 (AUROC) for any new CRC study using similarly 

generated metagenomic data. We moreover verified that metagenomic CRC classification 

models trained on species composition were not biased for clinical subgroups. With the 

exception of slightly more sensitive detection of late stage CRC (P = 0.03, mostly 

originating from the US study, Extended Data 7), we did not observe any classification bias 

by patient age, sex, BMI, or localization. Together this suggests that these metagenomic 

classifiers are unlikely to be strongly confounded by the clinical parameters recorded.

Several previous studies comparing microbiome changes across multiple diseases reported 

primarily general dysbiotic alterations and highlighted the need to examine the disease 

specificity of microbiome signatures [17, 19]. Therefore, we assessed false positive (FP) 

predictions of our metagenomic CRC classifiers on fecal metagenomes of type 2 diabetes [4, 

5], Parkinson’s disease [12], ulcerative colitis and Crohn’s disease [6, 7] patients, reasoning 

that classifiers relying on biomarkers for general dysbiosis would yield an excess of FPs on 

these cohorts. However, our LOSO classification models calibrated to have a false-positive 
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rate (FPR) of 0.1 on CRC datasets in fact maintained similarly low FPRs on other disease 

datasets ranging from 0.09 to 0.13 (Fig. 3c). Interestingly, disease specificity of LOSO 

models was significantly improved over that observed for classifiers trained on a single 

study, indicating that inclusion of multiple studies in the training set of a classifier can 

substantially improve its specificity for a given disease.

Functional metagenomic signatures for CRC

As shotgun metagenomics data, in contrast to 16S rRNA gene amplicon data, allow for a 

direct analysis of the functional potential of the gut microbiome, we examined how 

predictive metabolic pathways and orthologous gene families differing in abundance 

between CRC patients and controls would be of CRC status. When applying the same 

classification workflow as above to eggNOG orthologous gene family abundances [28], 

CRC detection accuracy was very similar to that observed for taxonomic models (Fig. 3de). 

AUROC values ranged from 0.70 to 0.81 for study-to-study transfer (per-study averages, 

Fig. 3e) and from 0.78 to 0.89 in LOSO validation with a pattern of generalization across 

studies resembling that for taxonomic classifiers. The accuracy of functional signatures did 

not strongly depend on eggNOG as an annotation source, but was similar when based on 

other comprehensive functional databases, such as KEGG [29] (Extended Data 8). When 

using individual gene abundances from metagenomic gene catalogues as a classifier input 

[30], we observed higher within-study cross-validation AUROC values of ≥0.96 in all 

studies, but lower generalization to other studies (AUROC between 0.60 and 0.79) 

(Extended Data 8).

To explore changes in metabolic capacity of gut microbiomes from CRC patients more 

broadly, we quantified gut metabolic modules (defined in [31]) and subjected these to the 

same differential abundance analysis developed for microbial species. Gut metabolic 

modules with significantly higher abundance (FDR < 0.01, Wilcoxon test blocked for study 

and colonoscopy) in CRC metagenomes predominantly belonged to pathways for the 

degradation of amino acids, mucins (glycoproteins) and organic acids. This clear trend was 

accompanied by a depletion of genes from carbohydrate degradation modules (Fig. 4ab). 

Differences in all four high-level categories were highly significant (P < 1E-6 in all cases, 

blocked Wilcoxon tests) and consistent across studies (Fig. 4b). Overall these results 

establish a clear shift from dietary carbohydrate utilization in a healthy gut microbiome to 

amino acid degradation in CRC consistent with an earlier report based on a subset of the 

data [8]. Correlation analysis suggests that increased capacity for amino acid degradation is 

mostly contributed by CRC-associated Clostridiales (cf. cluster 4 in Fig. 2, Supplementary 

Fig. 4). About one half of these metagenomic pathway enrichments are also in agreement 

with independent metabolomics data suggesting increased availability of amino acids in 

epithelial cells or feces of CRC patients (Supplementary Table S5, [32–36]). While the 

observed pathway enrichments could potentially result from many factors, including 

unmeasured ones [13], they are consistent with established dietary risk factors for CRC, 

which include red and processed meat consumption [37] and low fiber intake [38].

The large metagenomic data set analyzed here allowed us to quantify the prevalence of gut 

microbial virulence and toxicity mechanisms thought to play a role in colorectal 
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carcinogenesis. Prominent examples include the Fusobacterium nucleatum adhesion protein 

A (encoded by the fadA gene), the Bacteroides fragilis enterotoxin (bft gene) and colibactin 

produced by some Escherichia coli strains (pks genomic island) [39, 40]. Moreover, 

intestinal Clostridium spp. are known to contribute to the conversion of primary to 

secondary bile acids using several metabolic pathways including 7α-dehydroxylation, 

encoded in the bai operon [41]. The products of this 7α-dehydroxylation pathway, 

deoxycholate and lithocholate, are known hepatotoxins associated with liver cancer [42] and 

hypothesized to also promote CRC [43]. Although intensely studied at a mechanistic level, 

these factors are not (well) represented in general databases that can be used for 

metagenome annotation (Supplementary Fig. 5). Thus, we built a targeted metagenome 

annotation workflow based on Hidden Markov Models to identify and quantify virulence 

factors and toxicity pathways of interest in CRC. Additionally, we used co-abundance 

clustering to infer operon completeness for factors encoded by multiple genes (Methods, 

Extended Data 9, Supplementary Fig. 5). While fadA, bft, the pks island and the bai operon 

were clearly detectable in deeply sequenced fecal metagenomes, they varied broadly with 

respect to abundance, significance and cross-study consistency of enrichment (Fig. 4c): fadA 
and pks were significantly enriched in CRC metagenomes (P = 5.3E-10 and 4.1E-4 

respectively), whereas no significant abundance difference could be detected for bft in fecal 

metagenomes, despite reports on its enrichment in the mucosa of CRC patients [44], its 

carcinogenic effect in mouse models [45], and synergistic action with pks [46]. Our 

quantification of the bai operon showed a highly significant enrichment in CRC 

metagenomes (P = 1.6E-9) observed across all five studies (Fig. 4d) at an average abundance 

that exceeded fadA and pks copy numbers (Fig. 4c). Metagenome analysis indicated that at 

least four Clostridiales species (including the well characterized C. scindens and C. 
hylemonae [47, 48]) have a (near) complete 7α-dehydroxylation pathway contributing to the 

observed enrichment of bai operon copies (Extended Data 9). To validate this finding and 

further explore its value towards diagnostic application, we developed a targeted 

quantification assay for the baiF gene based on quantitative PCR (qPCR, see Methods). 

Quantification of baiF by qPCR using genomic DNA from 47 fecal samples of the DE study 

population was found to be similar to, yet more sensitive than by metagenomics (Fig. 4e). 

Gut microbial baiF copy numbers clearly distinguished CRC patients from controls (P = 

0.001) at an AUROC of 0.77, which in this subset of samples is surpassed by only a single 

species marker for CRC (Extended Data 9). Although consistent with increased 

deoxycholate metabolite levels reported for serum and stool samples of CRC patients [49], 

this finding does not imply 7α-dehydroxylation pathway activity. We therefore quantified 

baiF expression using RNA extracts from the same set of fecal samples, and found also 

transcript levels to be elevated in CRC patients (Fig. 4f). The observed weak correlation of 

baiF expression with genomic abundance (Fig. 4f) might be explained by dynamic 

transcriptional regulation [47] and bai expression in feces might not accurately reflect the 

tumor microenvironment. Taken together, these data suggest gut microbial metabolic 

markers to be meaningful and highly predictive of CRC status.

Validation of CRC signatures in independent study populations

Even though CRC classification accuracy for both species and functions were evaluated on 

independent data, we nonetheless sought to confirm it using two additional study 
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populations from Italy (IT1 and IT2, combined N = 61 CRC, N = 62 CTR, [27], see 

Methods, Table 1) and one from Japan (JP, N = 40 CRC, N = 40 CTR, see Methods, Table 

1). The overlap of single species associations detected in the IT2 study and those from the 

meta-analysis was found to vary within the range seen for the other studies, whereas for IT1 

and JP the overlap was slightly lower (cf. study precision in Supplementary Fig. 2, Extended 

Data 10). Nonetheless, the AUROC of LOSO classification models based on species ranged 

between 0.79 and 0.81 and that for the classifiers based on eggNOG from 0.71 to 0.92 (Fig. 

5ab). We also validated CRC enrichment of fadA, pks and bai genes in these three study 

populations (Fig. 5c). Altogether these results highlight consistent alterations in the gut 

microbiome of CRC patients across eight study populations from seven countries in three 

continents.

Discussion

Through extensive and statistically rigorous validation, in which data from studies used for 

training is strictly separated from that for testing, our meta-analysis firmly establishes that 

gut microbial signatures are highly predictive of CRC (see also [27]). In particular 

metagenomic classifiers trained on species profiles from multiple studies maintained an 

AUROC of at least 0.8 in seven out of eight data sets and achieved an accuracy similar to the 

fecal occult blood test, a standard non-invasive clinical test for CRC (Supplementary Fig. 6, 

cf. [8]). These results thus suggest that polymicrobial CRC classifiers are globally applicable 

and can overcome technical and geographical study differences, which we found to 

generally impact observed microbiome composition more than the disease itself (Fig. 1c, 

Extended Data 1, 2). The generalization accuracy of classifiers across studies seen here is 

higher than that reported in 16S rRNA gene amplicon sequencing studies, which are 

characterized by even larger heterogeneity across studies [16, 18] (Supplementary Fig. 7).

Previous microbiome meta-analyses suggested that the majority of gut microbial taxa 

differing in any given case-control study reflect general dysbiosis rather than disease-

specific alterations illustrating the difficulty of establishing disease-specific microbiome 

signatures [17, 19]. Here, by combining data across studies for training (LOSO), we were 

able to develop disease-specific signatures that maintained false positive control on diabetes 

and IBD metagenomes at a very similar level as for CRC (Fig. 3c) despite these diseases 

having shared effects on the gut microbiome [17, 50] and an increased comorbidity risk [51].

Although for diagnostic purposes, unresolved causality between microbial and host 

processes during CRC development are not a central concern, elucidating the underlying 

mechanisms would greatly enhance our understanding of colorectal tumorigenesis. Towards 

this goal, we developed both broad and targeted annotation workflows for functional 

metagenome analysis. First, we found functional signatures based on the abundances of 

orthologous groups of microbial genes to yield accuracies as high as taxonomic signatures 

(Fig. 3), which raises the hope for future improvements in metagenome annotation to 

translate into microbiome signature refinements. Second, by investigating potentially 

carcinogenic bacterial virulence and toxicity mechanisms taking a targeted metagenome 

annotation approach, we confirmed highly significant enrichments of the colibactin-

producing pks gene cluster and the Fusobacterium nucleatum adhesin FadA in CRC 
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metagenomes (Fig. 4c). Our results support the clinical relevance of these factors adding to 

the experimental evidence for their carcinogenic potential [46, 52–54]. We further examined 

the bai operon, encoding enzymes that produce secondary bile acids via 7α-

dehydroxylation, as an example of toxic host-microbial co-metabolism (see [27] for another 

intriguing example). While α-dehydroxylated bile acids are established liver carcinogens 

[42], their contribution to CRC is less clear [43]. Here, we have, for the first time, shown bai 
to be highly enriched in stool from CRC patients (Fig. 4cd) and confirmed this finding at 

both the genomic and the transcriptomic level using qPCR (Fig. 4ef). As bai enrichment 

(and expression) is likely a consequence of a diet rich in fat and meat [55], it is intriguing to 

explore whether bai could be used as a surrogate microbiome marker for such difficult-to-

measure dietary CRC risk factors. To further unravel the molecular underpinning of these 

dietary CRC risk factors, molecular pathological epidemiology studies that investigate the 

mucosal microbiome as part of the tumor microenvironment, hold great potential [56, 57]. 

However, they will require more comprehensive diet questionnaires, medical records, and 

molecular tumor characterizations than are available for the study populations analyzed here. 

In this context, carcinogens possibly contained in the virome also warrant further 

investigation [58, 59], but for this goal, metagenomic data needs to be generated with 

protocols optimized for virus enrichment [60].

Taken together, our results and those by Thomas, Manghi et al. [27], strongly support the 

promise of microbiome-based CRC diagnostics. Both taxonomic and metabolic gut 

microbial marker genes established in these meta-analyses could form the basis of future 

diagnostic assays that are sufficiently robust, sensitive, and cost-effective for clinical 

application. The targeted qPCR-based quantification of the baiF gene is a first step in this 

direction. Our metagenomic analysis of this and other virulence and toxicity markers bridge 

to existing mechanistic work in preclinical models and could enable future work aiming to 

precisely determine the contribution of gut microbiota to CRC development.

Data and Code Availability

The raw sequencing data for the samples in the DE study that had not been published before 

(see Methods), are made available in the European Nucleotide Archive (ENA) under the 

study identifier PRJEB27928. Metadata for these samples are available as Supplementary 

Table S6.

For the other studies included here, the raw sequencing data can be found under the 

following ENA identifiers: PRJEB10878 for [11], PRJEB12449 for [10], ERP008729 for 

[9], and ERP005534 for [8]. The independent validation cohorts can be found in SRA under 

the identifier SRP136711 for [27] and in the DDBJ database under the ID DRA006684.

Filtered taxonomic and functional profiles used as input for the statistical modeling pipeline 

are available in Supplementary Data 1.

The code and all analysis results can be found under https://github.com/zellerlab/crc_meta.

Wirbel et al. Page 10

Nat Med. Author manuscript; available in PMC 2021 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/zellerlab/crc_meta


Methods

Study inclusion and data acquisition

We used PubMed to search for studies that published fecal shotgun metagenomic data of 

human colorectal cancer patients and healthy controls. The search term, all hits, and the 

justification for exclusion or inclusion are available in Supplementary Table S1. Raw fastq 

files were downloaded for the four included studies from the European Nucleotide Archive, 

using the following ENA identifiers: PRJEB10878 for [11], PRJEB12449 for [10], 

ERP008729 for [9], and ERP005534 for [8].

DE study recruitment and sequencing

The German (DE) study population data consist of 60 fecal CRC metagenomes, 38 of which 

were sequenced and published in [8] under ENA accession ERP005534. The fecal 

metagenomes from additional 22 CRC patients recruited for the same ColoCare study 

(DKFZ, Heidelberg, [61, 62]) were sequenced later as part of this work. All fecal samples 

were collected after colonoscopy. Sixty gender- and age-matched participants of the 

PRÄVENT study run by the same clinical investigators were included as healthy controls; as 

these were not subjected to colonoscopy, the presence of undiagnosed colorectal carcinomas 

cannot be completely ruled out but is expected to be unlikely due to low prevalence of 

preclinical CRC in the general population [63].

Written informed consent was obtained from all additional 22 CRC patients and 60 controls. 

The study protocol was approved by the institutional review board (EMBL Bioethics 

Internal Advisory Board) and the ethics committee of the Medical Faculty at the University 

of Heidelberg. The study is in agreement with the WMA Declaration of Helsinki and the 

Department of Health and Human Services Belmont Report.

Genomic DNA was extracted from the fecal samples (preserved in RNALater) and libraries 

were prepared as previously described [8]. Whole-genome shotgun sequencing was 

performed by using Illumina HiSeq 2000 / 2500 / 4000 (Illumina, San Diego, USA) 

platforms at the Genomics Core Facility, European Molecular Biology Laboratory, 

Heidelberg.

Independent validation cohorts

During the revision of this manuscript, we included three independent study populations for 

external validation. Two of them were recruited in Italy (IT1 and IT2) with informed consent 

from all participants and ethical approval by the Ethics committee of Azienda Ospedaliera of 

Alessandria and that of the European Institute of Oncology of Milan. Shotgun fecal 

metagenomic data was generated as described in [27].

The third study population was recruited in Japan (JP) with informed consent and ethical 

approval of the institutional review boards of the National Cancer Center Japan - Research 

Institute and the Tokyo Institute of Technology. DNA was extracted from frozen fecal 

samples using a GNOME DNA Isolation Kit (MP Biomedicals, Santa Ana, CA) with an 

additional bead-beating step as previously described [64]. DNA quality was assessed with an 
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Agilent 4200 TapeStation (Agilent Technologies, Santa Clara CA). After final precipitation, 

the DNA samples were resuspended in TE buffer and stored at -80°C before further analysis. 

Sequencing libraries were generated with the Nextera XT DNA Sample Preparation Kit 

(Illumina, San Diego, CA). Library quality was confirmed with an Agilent 4200 

TapeStation. Whole-genome shotgun sequencing was carried out on the HiSeq2500 platform 

(Illumina). All samples were paired-end sequenced with a 150-bp read length to a targeted 

data set size of 5.0 Gb.

Taxonomic profiling and data preprocessing

The metagenomic samples were quality controlled using MOCAT2's -rtf procedure, which is 

based on the 'solexaqa' algorithm [23]. In particular, reads that map with at least 95% 

sequence identity and alignment length of at least 45 bp to the human genome hg19 were 

removed. In a second step, taxonomic profiles were generated with the mOTU profiler 

version 2.0.0 ([22, 65, 66] – see motu-tool.org and GitHub version tag 2.0.0) using the 

following parameters: -l 75, -g 2 and -c. Briefly, this profiler is based on ten universal single-

copy marker-gene families (COG0012, COG0016, COG0018, COG0172, COG0215, 

COG0495, COG0525, COG0533, COG0541 and COG0552) [66]. These marker-genes were 

extracted from >25,000 reference genomes and >3,000 metagenomic samples allowing to 

profile prokaryotic species with a sequenced reference genome (ref-mOTUs) and ones 

without (meta-mOTUs). The read count for a mOTU was calculated as median of the read 

count of the genes that belonged to that mOTU.

mOTU profiles were first converted to relative abundances to account for library size. Then, 

profiles were filtered to focus on a set of species that are confidently detectable in multiple 

studies. Specifically, microbial species that did not exceed a maximum relative abundance of 

1E-03 in at least 3 of the studies were excluded from further analysis, together with the 

fraction of unmapped metagenomic reads.

Functional metagenome profiling and data preprocessing

High-quality reads (same quality filtering as for taxonomic profiling) were aligned against a 

combined database (IGChg38 hereafter) consisting of the hg38 release of the human 

reference genome and the integrated gene catalog (IGC) containing 9.9 million non-

redundant microbial genes [30] using BWA mem [67] (Version: 0.7.15-r1140) with default 

parameters. The purpose of adding the human genome to the reference database was to filter 

out reads that mapped as well or better to some human sequence than to any bacterial gene. 

Alignments were computed separately for paired-end and single read libraries (single reads 

could result from read pairs where one read was filtered out in the quality filtering procedure 

described above). Alignments were then filtered to only retain those longer than 50bp with 

>95% sequence identity. Then the highest scoring alignment(s) was/were kept for each read. 

As IGChg38 is a database of predominantly genes and not genomes, there will be a 

substantial proportion of read-pairs where one end maps within the gene while the other end 

does not – it either maps to an adjacent gene or remains unmapped due to intergenic regions 

not contained in the database. Therefore, we counted a whole read-pair aligning to a gene 

when (i) both ends from a read pair map to the same gene, (ii) only one end from a read-pair 

maps to the gene, or (iii) a read from the single read library maps to the gene. We then 
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counted only the read-pairs that map uniquely to one gene in the IGC, thus excluding 

ambiguous read pairs mapping with similarly high scores to multiple genes in the database. 

For a given metagenomic sample, we further normalized the abundance of each IGC gene by 

the length of that gene. We then estimated relative abundance of IGC genes by dividing gene 

abundances by the total abundance of all genes in IGC (excluding the human chromosomes).

Because metagenomes from CRC patients were not included when the IGC was constructed, 

we analyzed how well CRC-associated species as identified in this meta-analysis were 

represented in the IGC. Using a phylogenetic marker gene (COG0533), which is also used 

by the species profiling workflow on which the meta-analysis is based, for 24 out of the 29 

core CRC-associated species we found a match in the IGC with at least 90% nucleotide 

identity, indicating that a sequence from the same species (above 93.1% identity) or a 

slightly more distant relative is present in the IGC (Supplementary Fig. 8).

The relative abundance of eggNOG orthologous groups [28] was estimated by summing 

relative abundances of genes annotated to belong to the same eggNOG orthologous group as 

of the most recent annotations provided by MOCAT2 [23]. To obtain KEGG orthologous 

groups (KO) and pathway abundances, we applied the same procedure, but using KEGG 

annotations for IGC provided by MOCAT2 [29].

Overview over statistical analyses

For univariate association testing between the abundances of microbial taxa or gene 

functions we used nonparametric tests throughout; all of these were two-sided Wilcoxon 

tests except were otherwise noted. To account for potential confounding and heterogeneity 

between data sets we employed a stratified version of the Wilcoxon test [24] (see below for 

details). ANOVA was conducted on rank-transformed data. Significance of binary co-

occurrence patterns was assessed using (stratified) Cochrane-Mantel-Haenszel tests.

Multivariable analysis was done with strict separation between training and test data. This 

importantly also pertained to feature selection, which was either done via the LASSO [68] or 

by nested cross-validation procedures to avoid overoptimistic performance assessment [69] 

(see below for details). All samples included in this meta-analysis came from distinct 

individuals to ensure that generalization across subjects – rather than across timepoints 

within a given subject – is assessed.

Confounder analysis

To quantify the effect of potential confounding factors relative to that of CRC on single 

microbial species, we used an ANOVA-type analysis. The total variance within the 

abundance of a given microbial species was compared to the variance explained by disease 

status and the variance explained by the confounding factor akin to a linear model including 

both CRC status and confounding factor as explanatory variables for species abundance. 

Variance calculations were performed on ranks in order to account for non-Gaussian 

distribution of microbiome abundance data. Potential confounders with continuous values 

were transformed into categorical data either as quartiles or for the case of body mass index 

(BMI) into lean/obese/overweight according to conventional cutoffs (lean: < 25, obese: 25 - 

30, overweight: > 30).
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Univariate meta-analysis for the identification of CRC-associated gut microbial species

Significance of differential abundance was tested on a per-species basis using a blocked 

Wilcoxon test implemented in the R coin package [24]. Informed by the results of the 

preceding confounder analysis, we blocked for `study` and additionally `colonoscopy` in the 

CN study. Within this framework, significance is tested against a conditional null 

distribution derived from permutations of the observed data. Notably, permutations are 

performed within each block in order to control for variations in block size and composition. 

To adjust for multiple hypothesis testing, P-values were adjusted using the false-discovery 

rate (FDR) method [70].

As nonparametric effect size measures we used the area under the ROC curve (AUROC) 

with permutation-based confidence intervals computed using the pROC package in R [71]. 

We further developed a generalization of the (logarithmic) fold change that is widely used 

for other types of read abundance data. This generalization is designed to have better 

resolution for sparse microbiome profiles (where 0 entries can render median-based fold 

change estimates uninformative for the large portion of species with a prevalence below 0.5). 

The generalized fold change (gFC) is computed as mean difference in a set of pre-defined 

quantiles of the logarithmic CTR and CRC distributions (see Extended Data 3 for further 

details; we used quantiles ranging from 0.1 to 0.9 in increments of 0.1).

For the retrospective analysis of study precision and recall for detecting microbial species 

associations from the meta-analysis, the true set was defined as the species which were 

associated at a given FDR in the meta-analysis. Then, we checked how well this set of 

species would be recovered using the single-study significance as determined by the 

Wilcoxon test. Study precision corresponds to the proportion of meta-analysis significant 

species among those detected as significant in a single study. Similarly, recall (or sensitivity) 

corresponds to the proportion of species out of the true set of meta-analysis significant 

species that were recovered in a given study.

Species co-occurrence and cluster analysis in CRC metagenomes

For the analysis of gut bacterial species co-occurring in CRC microbiomes, relative 

abundances of the core set of associated species (excluding the CRC-depleted Clostridiales 
meta-mOTU [1296]) were discretized into binary values to determine whether a CRC 

(metagenomic) sample is “positive” or “negative” for a given microbial marker. To 

normalize for differences in prevalence (and therefore specificity) of these markers we 

adjusted the threshold value, above which a sample is labeled “positive” based on the 

abundance in healthy controls. For each microbial species, the 95th percentile in healthy 

controls was used as threshold, which effectively results in adjusting the per-marker false 

positive rate to 0.05. Based on the binarized species-by-sample matrix, species were then 

clustered using the Jaccard dissimilarity as implemented in the vegan package in R [72]. 

Associations between species clusters and meta-variables were tested as 2-by-n (where n is 

the number of categories in the meta-variable tested) contingency tables using a Cochrane-

Mantel-Haenszel test with study as blocking factor as implemented in the coin package [24].
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Multivariable statistical modeling workflow and model evaluation

As a main goal of our work is to assess the generalization accuracy of microbiome-based 

CRC classifiers across technical and geographic differences in patient populations, we 

extensively validated classification models across studies taking the following two 

approaches.

In study-to-study transfer validation, metagenomic classifiers were trained on a single study 

and their performance externally assessed on all other studies (off-diagonal cells in Fig. 

3ac). Effectively we implemented a nested cross validation procedure on the training study 

to compute within-study accuracy (cells on the diagonal in Fig. 3ac) and tune the model 

hyperparameters.

In leave-one-study-out (LOSO) validation, data from one study was set aside as an external 

validation set, while the data from the remaining 4 studies was pooled as a training set on 

which we implemented the same nested cross validation procedure as for study-to-study 

transfer (see [19] for a more detailed description of LOSO).

Data preprocessing, model building, and model evaluation was performed using the 

SIAMCAT R package (https://bioconductor.org/packages/SIAMCAT, version 1.1.0).

Preprocessing of taxonomic abundance profiles for statistical modeling

Relative abundances were first filtered to remove markers with low overall abundance and 

no variance (an artifact for single-study data arising from the joint data filtering described 

above), log-transformed (after adding a pseudo-count of 1E-05 to avoid non-finite values 

resulting from log(0), [73]) and finally standardized as z-scores. Data were split into training 

and test set for 10 times repeated 10-fold stratified cross validation (balancing class 

proportions across folds). For each split, a L1-regularized (LASSO) logistic regression 

model [68] was trained on the training set, which was then used to predict the test set. The 

lambda parameter, i.e. regularization strength was selected for each model to maximize the 

area under the precision recall curve under the constraint that the model contained at least 5 

non-zero coefficients. Models were then evaluated by calculating the area under the Receiver 

Operating Characteristics curve (AUROC) based on the posterior probability for the CRC 

class.

In model transfer to a hold-out study, the holdout data were normalized for comparability in 

the same way as the training dataset by using the frozen normalization function in 

SIAMCAT, which retains the same features and re-uses the same normalization parameters 

(e.g. the mean of a feature for z-score standardization). Then, all 100 models derived from 

the cross validation on the training dataset (10 times repeated 10-fold CV) were applied to 

the holdout dataset and predictions were averaged across all models.

In the LOSO setting, data from the four training studies were jointly processed as a single 

dataset in the same way as described above using 10 times repeated 10-fold stratified cross 

validation.
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Preprocessing of functional abundance profiles

Functional profiles, such as eggNOG gene family or KEGG module abundance profiles were 

preprocessed as described above for species profiles, but using 1E-06 as maximum 

abundance cutoff and 1E-09 as a pseudo-count during log transformation. Since these 

abundance tables contained several thousand input features we implemented an additional 

feature selection step, which was nested properly into the cross-validation procedures as 

described above. This nested approach is crucial to avoid over-optimistically biased 

performance estimates ([74], Chapter 7.10). Specifically, features were filtered inside each 

training fold (without using any information from the test fold) by selecting the 1600 

features with highest single-feature AUROC values (for features depleted in CRC, 1 - 

AUROC was used for feature selection).

Preprocessing of gene abundance profiles

To ascertain the predictive power of a classifiers based on IGC gene abundances [30] we 

applied a series of filters to the abundance tables to reduce the number of genes that would 

be the input of the LASSO modelling. These filters where applied once on a per-study level 

and once in a leave-one-study-out (LOSO) mode, where they were applied jointly to all 

studies in the training set, with the remaining one being held out for external validation.

The following filters were applied in this order:

1. All genes with 0 abundance in ≥15% of samples (regardless of CRC status) were 

discarded.

2. The remaining data was discretized using the equal frequencies method 

implemented in the 'discretize' function of the sideChannelAttack R package 

(version 1.0-6) as a preparation to the minimal-redundancy-maximal-relevance 

(mRMR) algorithm [75].

3. As a feature selection procedure, mRMR (code version from 20 April 2009 

downloaded from http://home.penglab.com/proj/mRMR/ on 3 Dec 2016) was run 

on the gene abundance table to retain the 100 top genes as output.

LASSO models were then built on log10-transformed abundances (pseudo-count of 10E-09, 

centered and scaled) of the sets of 100 top genes returned by mRMR. The whole process 

was repeated 10 times in a 5-fold stratified cross-validation scheme to allow for an 

estimation of the confidence of the AUROCs of the resulting models. We used the LiblineaR 

package (version 2.10-8) to build the LASSO models in R and tested a sequence of 20 cost 

parameters (equivalent or the lambda parameter controlling regularization strength) evenly 

spaced from 0.0012 to 0.22. The cost parameter was selected to maximize the AUROC 

within the training set.

External evaluation of disease-specificity of the metagenomic classifiers

To assess how disease-specific the predictions of the CRC models are, we applied these to 

data from case-control studies investigating other human diseases. Fecal metagenomic data 

of patients with Parkinson’s disease [12], type 2 diabetes [4, 5], and inflammatory bowel 

disease [6, 7] were taxonomically profiled as described above. The parameters for quality 
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control with MOCAT2 and for the mOTU profiler were the same as described above, except 

for the data from [6], where we used -l 50 (to set the threshold for minimum alignment 

length to 50) as the read length is shorter (average read length 71) compared to the other 

more recently generated Illumina shotgun metagenomic data.

Relative abundance data were treated exactly as another holdout dataset for each model, i.e. 

applying the frozen normalization prediction routines as described above. For each CRC 

model applied to the external datasets, a cutoff on its prediction output was adjusted to yield 

a false positive rate (FPR) of 0.1 on the controls of its respective (CRC) training set. 

Subsequently its FPR on metagenomes from patients suffering from the above-mentioned 

(non-CRC) conditions was assessed to evaluate its disease specificity. The rationale behind 

this is that a metagenomic classifier recognizing general features of dysbiosis would be 

expected to predict CRC patients and those suffering from other conditions at a similar rate; 

such a classifier would thus in the above-described evaluation display a much higher FPR 

than on the controls of its training set. In contrast maintaining a low FPR in this evaluation 

indicates that the classification model is based on CRC-specific features rather than 

hallmarks of general dysbiosis or nonspecific inflammation.

Functional profiling of gut metabolic modules (GMMs)

Gut metabolic modules were computed as originally proposed [31], using the KEGG KO 

profiles based on the IGC (see Functional metagenome profiling above) as input. Statistical 

analysis and generalized fold change calculations were performed analogously to species 

profiles (see above). Gut metabolic modules were summarized across functional groups (e.g. 

amino acid degradation) as geometric mean of all modules within the respective group.

Targeted functional analysis of virulence and toxicity pathways of potential relevance in 
CRC

To investigate toxins and virulence mechanisms that have previously been implicated with 

CRC [40], we constructed for each gene belonging to the respective virulence or toxicity 

pathway a hidden Markov model (HMM). Each HMM was built from a multiple sequence 

alignment generated by MUSCLE [76], containing the respective reference sequences and 

close homologs identified using PSI-Blast [77]. Multiple sequence alignments are available 

together with the code for this paper (https://github.com/zellerlab/crc_meta). Then, we 

screened the IGC metagenomic gene catalogue [30] with each HMM using the HMMER 

software (version 3.1b2) [78]. Genes with an E-value below 1E-10 were filtered for 

uniqueness, since in some cases the HMMs would call different regions in the same gene. 

For single gene virulence factors (i.e. fadA and bft), potential IGC hits were aligned against 

the reference sequence using the Needleman-Wunsch algorithm in the EMBOSS package 

[79]. Hits were then filtered based on percentage of sequence identity (cutoff: 40%) and 

sequence similarly to the species relative abundance profiles based on maximum relative 

abundance (cutoff: 1E-07) in order to exclude genes with limited relevance. Statistical 

analysis was performed on the sum of all genes.

For virulence pathways containing more than one gene, the IGC hits of each functional 

group within the pathway were aligned against the respective reference sequence and filtered 
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for percentage of sequence identity and maximum abundance. Then, all hits were clustered 

based on the Pearson correlation of the log-abundances across all samples using the Ward 

algorithm as implemented in the hclust function in R. The gene clusters were filtered based 

on operon completeness (how many genes of the operon were present in the cluster) and 

average correlation within the cluster (Extended Data 9). For statistical analysis, the genes in 

the selected gene clusters were summed up within each group or all together for the overall 

analysis.

Quantitative PCR for baiF 

Real-time quantitative PCR to quantify the abundance and expression of baiF was performed 

on a subset of samples in the DE cohort (20 control and 24 colorectal cancer samples, see 

Supplementary Table S6). For these samples, DNA and RNA extraction was done with the 

Allprep PowerFecal DNA/RNA kit (Qiagen, Cat No: 80244) with additional RNAse and 

DNAse digestion steps, respectively, as described by the manufacturer. DNA and RNA 

concentrations were determined by Qubit Fluorometer (Invitrogen) and quality control of all 

RNA samples was done using an Agilent 2100 Bioanalyzer in combination with RNA 6000 

Nano and Pico LabChip kits.

First-strand cDNA was synthesized by SuperScript IV VILO Master Mix with ezDNAse 

enzyme and random hexamer primers (Invitrogen, catalogue number 11766500) as 

recommended by the manufacturer. Reaction were performed as described in the protocol 

with one minor change of temperature (incubation for the reverse transcription step at 55°C).

To quantify baiF relative to the total bacterial RNA/DNA in a sample, qPCR was performed 

in triplicates for 16S rRNA and the baiF genes, using both cDNA and genomic DNA 

(gDNA) as template. We used the following primers for baiF: TTCAGYTTCTACACCTG 

(forward), GGTTRTCCATRCCGAACAGCG (reverse), and standard primers F515 and 

R806 for 16S [80]. RT-PCR reactions were prepared with a final primer concentration of 0.5 

μM, including 5 ng of genomic DNA or 10 ng of cDNA in 20 μl final reaction volume, and 

reactions were performed with SYBR Green qPCR mix on StepOne Real-Time PCR system 

(Thermo Fisler Scientific). Cycling conditions were as follows; initial denaturation of 95°C 

for 10 min, then 40 cycles of denaturing at 95°C for 15 s, annealing at 60°C for 60 s 

followed by melt curve analysis.

Delta-Ct values were calculated as difference between baiF and 16S Ct values. Significance 

of the comparison between control and colorectal cancer samples was tested on the delta-Ct 

values using a one-sided Wilcoxon test as a confirmation of metagenomic enrichment.
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Extended Data

Extended Data 1. 
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Extended Data 2. 
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Extended Data 3. 
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Extended Data 4. 
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Extended Data 5. 
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Extended Data 6. 
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Extended Data 7. 
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Extended Data 8. 
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Extended Data 9. 
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Extended Data 10. 
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Despite study differences, meta-analysis identifies a core set of gut microbes strongly 
associated with CRC.
(a) Meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests 

(n=574 independent observations) is given by bar height (false discovery rate, FDR, of 

0.05). (b) Underneath, species-level significance as computed by two-sided Wilcoxon test 

(FDR-corrected P-value) and generalized fold change (Methods) within individual studies 

are displayed as heatmaps in gray and color, respectively (see color bars and Table 1 for 

details on studies included). Species are ordered by meta-analysis significance and direction 
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of change. (c) For a core of highly significant species (meta-analysis FDR 1E-5), association 

strength is quantified by the area under the Receiver Operating Characteristics curve 

(AUROC) across individual studies (color coded diamonds) and 95% confidence intervals 

are indicated by gray lines. Family-level taxonomic information is color-coded above 

species names (numbers in brackets are mOTU species identifiers, see Methods). (d) 
Variance explained by disease status (CRC vs controls) is plotted against variance explained 

by study effects for individual microbial species with dot size proportional to abundance 

(Methods); core microbial markers are highlighted in red. F. nucleatum – Fusobacterium 
nucleatum.
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Figure 2. Co-occurrence analysis of CRC-associated gut microbial species reveals four clusters 
preferentially linked to specific patient subgroups.
(a) The heatmap shows for all CRC patients (n=285 independent samples) if the respective 

sample is positive for each of the core set of microbial marker species (see Methods for 

adjustment of positivity threshold). Samples are ordered according to the sum of positive 

markers and marker species are clustered based on Jaccard similarity of positive samples, 

resulting in four clusters (Methods). Barplots in (b), (c), and (d) show the fraction of CRC 

samples that are positive for marker species clusters (defined as the union of positive marker 
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species) broken down by patient subgroups based on differences in tumor location, sex, or 

CRC stage, respectively. Statistically significant associations between CRC subgroups and 

marker species clusters were identified using the Cochran–Mantel–Haenszel test blocked for 

study effects and are indicated above bars (P < 0.1).
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Figure 3. Both taxonomic and functional metagenomic classification models generalize across 
studies in particular when trained on data from multiple studies.
CRC classification accuracy resulting from cross validation within each study (gray boxes 

along diagonal) and study-to-study model transfer (external validations off diagonal) as 

measured by AUROC for classifiers trained on (a) species and (d) eggNOG gene family 

abundance profiles. The last column depicts the average AUROC across external validations. 

Classification accuracy, as evaluated by AUROC on a held-out study, improves if taxonomic 

(b) or functional (e) data from all other studies are combined for training (leave-one-study-
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out, LOSO validation) relative to models trained on data from a single study (study-to-study 

transfer, average and standard deviation shown). Bar height for study-to-study transfer 

corresponds to the average of four classifiers (error bars indicate standard deviation, n=4). 

(c) Combining training data across studies substantially improves CRC specificity of the 

(LOSO) classification models relative to models trained on data from a single study 

(depicted by bar color, as in (c) and (d)) as assessed by the false positive rate (FPR) on fecal 

samples from patients with other conditions (see legend). Bar height for study-to-study 

transfer corresponds to the average FPR across classifiers (n=5) with error bars indicating 

the standard deviation of FPR values observed.
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Figure 4. Meta-analysis identifies consistent functional changes in CRC metagenomes.
(a) Meta-analysis significance of gut metabolic modules derived from blocked Wilcoxon 

tests (n=574 independent samples) is indicated by bar height (top panel, FDR of 0.01). 

Underneath, the generalized fold change (Methods) for gut metabolic modules [31] within 

individual studies is displayed as heatmap (see color key below (b)). Metabolic modules are 

ordered by significance and direction of change. A higher-level classification of the modules 

is color-coded below the heatmap for the four most common categories (colors as in (b), 

white indicating other classes). (b) Normalized log abundances for these selected functional 
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categories is compared between controls (CTR) and colorectal cancer cases (CRC). 

Abundances are summarized as geometric mean of all modules in the respective category 

and statistical significance determined using blocked Wilcoxon tests (n=574 independent 

samples, see Methods). (c) Normalized log abundances for virulence factors and toxins 

compared between metagenomes of controls (CTR) and colorectal cancer cases (CRC) 

(significant differences P < 0.05 were determined by blocked Wilcoxon test, n=574 

independent samples, see Methods for gene identification and quantification in 

metagenomes; fadA: gene encoding Fusobacterium nucleatum adhesion protein A, bft: gene 

encoding Bacteroides fragilis enterotoxin, pks: genomic island in Escherichia coli encoding 

enzymes for the production of genotoxic colibactin, and bai: bile acid inducible operon 

present in some Clostridiales species encoding bile acid converting enzymes). (d) Meta-

analysis significance (uncorrected P-value) as determined by blocked Wilcoxon tests (n=574 

independent samples) and generalized fold change within individual studies are displayed as 

bars and heatmap, respectively, for the genes contained in the bai operon. Due to high 

sequence similarity to baiF, baiK was not independently detectable with our approach. (e) 
Metagenomic quantification of baiF (metag. ab. – normalized relative abundance) is plotted 

against qPCR quantification in genomic DNA (gDNA) extracted from a subset of DE 

samples (n=47), with Pearson correlation (r) indicated (see Methods). (f) Expression of baiF 
determined via qPCR on reverse-transcribed RNA from the same samples in contrast to 

genomic DNA (as in e). The boxplots on the side of (e), (f) show the difference between 

cancer (CRC) and control (CTR) samples in the respective qPCR quantification (P-values on 

top were computed using a one-sided Wilcoxon test). All boxplots show interquartile ranges 

(IQR) as boxes with the median as a black horizontal line and whiskers extending up to the 

most extreme points within 1.5-fold IQR.
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Figure 5. Meta-analysis results are validated in three independent study populations
CRC classification accuracy for independent datasets, two from Italy and one from Japan 

(see Supplementary Table S2), is indicated by bar height for single study (white) and leave-

one-study-out (grey) models using either (a) species or (b) eggNOG gene family abundance 

profiles (cf. Fig. 3). Bar height for single study models corresponds to the average of five 

classifiers (error bars indicate standard deviation, n=5). (c) Normalized log abundances for 

virulence factors and toxins (cf. Figure 4c) compared between controls (CTR) and colorectal 

cancer cases (CRC). P-values were determined by blocked, one-sided Wilcoxon tests (n=193 
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independent samples). Boxes represent interquartile ranges (IQR) with the median as a black 

horizontal line and whiskers extending up to the most extreme points within 1.5-fold IQR.
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Table 1
Fecal metagenomic studies of colorectal cancer included in this meta-analysis.

See Methods for inclusion criteria and Supplementary Table S2 for extended meta-data. For a detailed 

description of patient recruitment and data generation for the DE study, see Methods. The data for 38 samples 

from the DE study had been published previously as part of an independent validation cohort in [8].

Country Code Reference No. of cases No. of controls

FR Zeller et al., 2014 [8] 53 61

AT Feng et al., 2015 [9] 46 63

CN Yu et al., 2017 [11] 74 54

US Vogtmann et al., 2016 [10] 52 52

DE this study 60 60

External validation cohorts

IT1 [27] 29 24

IT2 [27] 32 28

JP Courtesy of T. Yamada et al. 40 40
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