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Abstract: We present a theoretical study on the adsorption and spin transport properties of magnetic
Fe@C28 using Ab initio calculations based on spin density functional theory and non-equilibrium
Green’s function techniques. Fe@C28 tends to adsorb on the bridge sites in the manner of C–C bonds,
and the spin-resolved transmission spectra of Fe@C28 molecular junctions exhibit robust transport
spin polarization (TSP). Under small bias voltage, the transport properties of Fe@C28 are mainly
determined by the spin-down channel and exhibit a large spin polarization. When compressing
the right electrode, the TSP is decreased, but high spin filter efficiency (SFE) is still maintained.
These theoretical results indicate that Fe@C28 with a large magnetic moment has potential applications
in molecular spintronics.
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1. Introduction

Molecular spintronics has attracted tremendous attentions due to its promising applications
in nanoelectronics in the past few years [1–6]. The conductance can be directly controlled by the
spin degrees of freedom in a single molecule. Compared with traditional semiconductor spintronic
devices, the spin–orbital coupling and hyperfine interactions in the molecule are weak [7]; therefore,
the molecular building blocks in spintronics are a very promising candidate for the new generation of
molecular devices that can improve performance and enhance functionality, especially in magnetic
storage and quantum information processing [8,9].

One of the central issues in molecular spintronics is how to manipulate the spin freedom in
a molecular junction. A common approach is having the magnetic molecule sandwiched between
the source and drain metallic electrodes [10]. Among all possible candidates, magnetic (endohedral)
fullerenes form an attractive family of clusters due to their peculiar structures and remarkable
properties. Recently, various fullerenes that include C60 [11–15], C70 [11–13,16], and B40 [17,18]
have been extensively studied and can be suggested as magnetoresistance devices [11,13–15] or spin
filters [16,17]. In the fullerene family, it is worth noting that the small fullerene C28 has inherent
magnetic moment [19].

Up to now, C28 has been extensively studied both in terms of experimental and theoretical
aspects [20–28]. C28 adopts a Td point group, with four unpaired C atoms located at the apex of
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a tetrahedron, which leads to large magnetic moment (4.0 µB). However, the delocalized magnetic
moment is unstable and easy to quench in C28 [19], which limits its application in molecular spintronics.
Fortunately, encapsulated 3d or lanthanide transition metal (TM) atoms can stabilize the structure,
and the magnetic moment can also be localized in the TM atoms [20,22–24]. Previous studies mainly
focused on stability [20,21,23,24], magnetic properties [20,26,28], and vibrational properties [25].
Nevertheless, the spin transport properties of the magnetic TM@C28 have not been reported so far
and thus require examination. Considering the stability and magnitude of the magnetic moment
of 3d TM@C28 [20], Fe@C28 is very promising for molecular spintronics. Thus, two key questions
should be addressed: can Fe@C28 be adsorbed on an Au(111) surface?; and does Fe@C28 junction have
a high-performance for molecular spintronic devices? The answers to these questions may broaden the
opportunities for designing novel fullerene devices.

In this research, the electronic structure of Fe@C28 was studied first. Then, we considered all
possible adsorption configurations of Fe@C28 adsorbed on the Au(111) surface and identified the most
stable configuration after structure relaxation. Finally, the spin transport properties of a scanning
tunneling microscopy (STM)-type Au-Fe@C28-Au junction at the molecular scale were explored.
The Fe@C28 junction can act as a high-efficiency spin filter, and the conductance can be effectively
modulated by means of pushing forward or pulling back the Au tip.

2. Materials and Methods

In these calculations, electronic structures and geometry relaxations were performed using
the SIESTA package [29]. The exchange-correlation energy functional was described by the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) form [30]. An energy cutoff

was set to be 400 Ry for the real-space mesh size. For the relaxation of structures, the Hellmann-Feynman
(HF) forces on each atom was less than 0.01 eV/Å to find a local minimum.

The spin-dependent transport properties studied are based on a state-of-the-art technique where
the density functional theory (DFT) is combined with the Keldysh nonequilibrium Green’s function
(NEGF) theory, implemented in the NanoDcal package [31,32]. The spin-dependent current–voltage
(I-V) curves and transmission functions were obtained by using the Landauer-Büttiker formula as the
following equations (1) and (2):

Iσ(V) =
e
h

∫
Tσ(E, V)[ f (E− µL) − f (E− µR)]dE (1)

Tσ(E, V) = Tr
[
ΓL(E, V)Gσ(E, V)ΓR(E, V)G†σ(E, V)

]
(2)

Here, Iσ(V) is the current through the device under the external bias voltage V; Tσ(E,V) is the
transmission function of the junction, indicating the rate at which electrons are transmitted from the
left to the right electrodes by propagating through the device; Gσ(E,V) is the retarded Green’s function
of the central region (σ = ↑/↓); ΓL/R(E,V) is the left/right electrode and central region coupling matrix;
µ(L/R) is the chemical potential; and f(E-µ(L/R)) is the Fermi-Dirac distribution function. In our transport
calculations, the model of the Fe@C28 junction was periodic along the x and y directions, and the
transport direction was along z. A mesh cutoff energy was set to be 150 Ry, and the Monkhorst-Pack
(1 × 1) K-point grid was adopted to sample the 2D Brillouin zone. Test calculations with a larger basis
set, larger cutoff energy, and denser K-point (i.e., 3 × 3) provide similar results.

3. Results

3.1. Electronic Structure of Fe@C28

First, we will discuss the electronic properties of Fe@C28. The fully relaxed structure of Fe@C28

fullerene adopts a C2v point group (Figure 1A). The Fe atom deviates from the cage center with
a 0.454-Å displacement and reduces the Td symmetry to C2v. The Fe atom is above the middle of
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two pentagons sharing an edge and forms two identical Fe–C bonds, with a corresponding bond
length of ~2.052 Å. According to symmetry classification, there are 10 types of inequivalent C atoms,
13 inequivalent C–C bonds, and 6 inequivalent rings that include 4 inequivalent pentagons and 2
hexagons, respectively. The optimized C–C bond lengths are changed from 1.430 to 1.541 Å [20].
The binding energy of Fe@C28 is defined as EFe@C28 – EC28 – EFe = −1.312 eV, indicating that the
C28-encapsulated Fe atom makes the Fe@C28 much more stable.

Figure 1B shows that the isosurface of spin density is mainly localized on Fe atoms, which is
a remarkable difference in the C28 case [12]. The calculated magnetic moment is mainly distributed on
the Fe atom, which is about 3.270 µB, and the total magnetic moment of Fe@C28 is expected to be 4.0 µB.

In addition, we also examined the electronic structure of Fe@C28 with Td symmetry. By adopting
the DFT calculations, the Td-symmetry Fe@C28 has a larger magnetic moment of 6.0 µB, but its energy
is 1.054 eV higher than that of the C2v configuration. Figure 1C–E shows the spin-resolved frontier
orbitals, average density of states (DOS) of C, and Fe’s 3d orbitals of Fe@C28. It is obvious that there are
no degenerate orbitals in Fe@C28, since the C2v point group only has one-dimensional representations.
Clearly, the energies of spin-resolved frontier molecular orbitals is significantly differ from one another.
The spin-up HOMO (3dxz dominated in Fe) and LUMO two frontier orbitals locate at −0.163 and
0.162 eV, while the spin-down HOMO and LUMO (3dx2−y2 dominated in Fe) locate at −0.571 and
0.914 eV. Then, the spin-up and spin-down electrons of the HOMO–LUMO gaps are 0.325 and 1.485 eV,
respectively. Since the electronic structure of the spin-up and spin-down electrons is significantly
different, Fe@C28 could be a potential candidate in molecular spintronics.
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Figure 1. (A) Optimized structure of Fe@C28 fullerene with C2v symmetry. There are 10 inequivalent C
atoms, 13 inequivalent C–C bonds, and 6 inequivalent rings, with the inequivalent atoms labeled by
different colors. (B) Spin density of Fe@C28. (C) Spin-resolved frontier orbitals of Fe@C28. Isovalue is
set to ±0.01 e/Å3. (D) Average spin-resolved density of states (DOS) projected to C28 of the Fe@C28

with the energy window from −1.0 to 1.5 eV. (E) Spin-resolved DOS projected to the five 3d orbitals of
Fe atom.

3.2. Adsorption Properties

Before the spin transport calculation, we studied the adsorption properties of Fe@C28 on the
Au(111) surface and first identified the most stable adsorption configuration. Symmetry analysis
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showed that the free Fe@C28 with a C2v point group has a total of 29 inequivalent sites, which include
10 types of inequivalent C atoms (named point), 13 types of inequivalent C–C bonds (named line), and 6
types of inequivalent rings, respectively. Then, three special adsorption sites at the Au(111) surface
were considered, namely hollow, bridge, and top sites. Therefore, there are a total of 87 adsorption
configurations. To find the most stable adsorption configuration, we relaxed all the initial structures.
A 4 × 4 × 3 supercell for the Au(111) surface and 11.54 × 11.54 × 30 Å3 were adopted to mimic the
adsorption unit cell. The Monkhorst-Pack (5 × 5 × 1) K-point used to sample the Brillouin zone ensures
accurate results. In this calculation, we fixed the Au substrate and only relaxed the Fe@C28.

The lowest energy configuration is shown in Figure 2A,B. After adsorption, C28 cage has a slight
distortion, while the Fe atom has an obvious displacement. The Fe atom has a total displacement of
0.174 Å with respect to the undistorted Fe@C28, and forms a Fe–C bond of about 2.122 Å in length.
The Fe@C28 tends to adsorb on the bridge site of the Au(111) surface via a C–C bond. The adsorbed
C–C bond is nearly parallel to the Au–Au bond (Figure 2B), and the bond length is slightly elongated
from 1.435 to 1.536 Å. Two Au–C bond lengths are 2.232 and 2.354 Å after adsorption, implying effective
bonding between Fe@C28 and the Au(111) surface. We obtained the adsorption energy as follows:
∆E = EFe@C28+Au_sub – EFe@C28 – EAu_sub = −1.19 eV. The large adsorption energy indicates that Fe@C28

on Au(111) has a strong chemical adsorption.
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adsorbed on the bridge site of the Au(111) surface via a C–C bond. (C) Density of states (DOS) of
Fe@C28 after being adsorbed on the Au(111) surface within an energy window from –1.0 to 1.5 eV.

To understand the changes in electronic structure of Fe@C28 before and after adsorption, a projected
density of states (PDOS) analysis was performed (Figure 2C). Fe d orbital is around 1.3 eV above
the Fermi level, which is similar to the free Fe@C28. However, due to the strong Au–C chemical
bonding and charge transfer, the original sharp peaks in freestanding C28 are broadened and mixed
together. Mülliken population analysis showed that 0.26 e are transferred from Au(111) to Fe@C28,
and the Fe atom loses 0.16 e. On the one hand, the charge transfer makes the LUMO occupied
and the peak disappear (Figure 2C). On the other hand, the magnetic moment of the Fe atom is
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slightly increased by 0.17 µB. In order to see the charge transfer more clearly, we plotted the real
space differential charge density distribution and average along the z direction, which is presented
in Figure 3. It is clear that the charge transfer mainly occurs at the surface between Fe@C28 and the
Au substrate. Furthermore, because the Fe atom is bonded with the C that is shared by the three
pentagons, a significant charge transfer was also expected. In conclusion, because the magnetic moment
is hardly affected by adsorption, this robust magnetic moment provides a prerequisite for molecular
spintronics applications.
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3.3. Transport Properties

We designed a STM-type junction of Fe@C28 and studied the voltammetric properties. The central
region of the STM-type junction can be divided into two parts: the upper part is modeled as an
Au adatom adsorbing on a 4 × 4 × 2 Au(111) hollow site, and the lower part is the most stable
Fe@C28-Au(111) adsorption configuration discussed above. The central region is shown in Figure 4A.
This Au-Fe@C28-Au junction is reasonable in experiments, and the current is easily to measure. It is well
known that the contact configuration of molecules and electrodes is a key factor affecting the transport
properties [33–37]. When pulling back and pushing forward the Au STM tip, the corresponding Au–C
bond will be broken or formed. Therefore, the conductance of the junction can be modulated by
controlling the distance between the Au tip and Fe@C28.

The non-bonding configuration was considered first: the nearest Au–C distance was ~3.12 Å.
The calculated spin-resolved I-V curves within the bias region from −1.0 to 1.0 V are shown in Figure 4B.
Due to the asymmetric coupling between Fe@C28 and the left and right Au(111) surface, the currents
under the positive and negative bias are not symmetric. We found the spin-down current to be always
larger than that of the spin-up current within the examined bias range. The spin-up (down) current at
±1.0 V bias of the Fe@C28 junction is 8.26 (14.75) and −7.67 (−20.92) µA, respectively. To determine the
difference between the spin-up and spin-down current, we defined the bias voltage-dependent quantity
as R(V) = |Idown(V)/Iup(V)|. The calculated R from 2.52 to 12.05 shows effective spin polarization within
the examined bias range. Furthermore, the current under the negative bias voltage is significantly
larger than that of the positive bias voltage, which indicates a moderate rectification. Our results
suggest that the Fe@C28 junction is a high-efficiency spin injector under small bias voltage.
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We subsequently studied the spin transport properties of the Fe@C28 junction in equilibrium.
The spin-resolved transmission spectra of the Fe@C28 junction is plotted in Figure 5A, which shows
a significant difference between the spin-up and spin-down channels nearby the Fermi level.
The transmission spectra do not behave as several discrete and sharp transmission peaks but as
a continuous broadening platform-like peaks for both the up and down channels, which indicates
a strong molecule–electrodes coupling. For the spin-up channel, there are two 0.5-eV width platforms of
transmission spectra that are located at regions from −1.0 to −0.5 eV and from 0.5 to 1.0 eV, respectively.
As the transmission coefficients tend to zero nearby the Fermi level, a very small conductance is
expected. However, for the spin-down channel, there is a very wide transmission peak starting at
–0.2 eV and through the Fermi level, which gives rise to larger conductance than that of the spin-up
channel. In addition, the spin-resolved current under bias V can be obtained by integrating the
transmission spectra in the interval –eV/2 and eV/2, which is an intuitive explanation of why the
spin-down current is much larger than the spin-up current.

To quantitatively describe the spin injection efficiency, the spin filter efficiency (SFE) under the
zero bias is defined as follows: SFE = [Tup(EF) – Tdown(EF)]/[Tup(EF) + Tdown(EF)]. Here, Tup(EF) and
Tdown(EF) are the transmission coefficients of the spin-up and spin-down electrons at the Fermi level,
respectively. A positive or negative value of the SFE indicates conductance dominated by the spin-up
or spin-down electrons. The Tup(EF) and Tdown(EF) through the junction are about 2.20 ×10-2 and 0.27
G0 (G0 is the quantum conductance, and its value is e2/h), respectively; the SFE is predicted to be
−84.7 %, indicating that spin-down electrons dominated. In fact, the real space local density of states
(LDOS) of the spin-up and spin-down electrons are responsible for the different transport behaviors of
two spin channels, as shown in Figure 5B. The delocalization of the LDOS for the spin-down electrons
which can provides an effective transport channel at the Fermi level. While for the spin-up electrons,
the LDOS do not distribute over all the scattering region, and then the transport channel is blocked at
the Fermi level. Moreover, the DOS (Figure 6) also confirms that the transport channel of the spin-down
electrons is more efficient. The spin-resolved DOS contributes to two C atoms that are nearest to the
Au tip, a C−C bond adsorbed on the left electrode, and the Fe atom, respectively. As for the spin-up
electrons, the magnitude of the DOS is very flat and tends to zero near the Fermi level. However,
for the spin-down electrons, the magnitude of DOS is much larger than that of the spin-up electrons.
We noticed that the DOS of the Fe has a significant contribution around the Fermi level, suggesting
that the Fe atom plays a key role in the conduction of the spin-down electrons. The results of the real
space LDOS and DOS are consistent, which explains the difference in conductance between the two
spin channels.



Nanomaterials 2019, 9, 1068 7 of 10
Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 10 

 

 

Figure 5. Transport properties of the Fe@C28 junction. Au tip and Fe@C28 are non-bonding. (A) Spin-
resolved transmission spectra of the Fe@C28 junction. (B) Spin-resolved DOS projected on two C atoms 
that are nearest to the Au tip, a C–C bond adsorbed on the Au(111), and endohedral Fe, respectively. 
Black line: total DOS; dot: Fe; virtual line: C. (C) Profile of the spin-resolved local DOS at the Fermi 
level, which suggests that the spin-down electrons can offer an effective conductance channel at EF. 

At last, we examined the case of the Au tip bonding with Fe@C28. Pushing forward the STM tip 
about 1.30 Å, the Au–C bond is formed. Here, the molecule–electrodes coupling was stronger than 
that in the non-bonding case; therefore, the transmission peaks became higher and wider (Figure 6). 
The Tup(EF) and Tdown(EF) are 9.17×10−2 and 0.53 G0, respectively. The SFE is predicted to be −70.4%, 
indicating that the conductance and SFE can be effectively modulated by the Au–C bond forming or 
breaking. All in all, our findings show that the Fe@C28 junction can be seen as a possible candidate 
for a high-efficiency spin filter, spin injector, and moderate rectifier under small bias voltage, which 
offers promising applications in nanoelectronic devices. 

Figure 5. Transport properties of the Fe@C28 junction. Au tip and Fe@C28 are non-bonding.
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respectively. Black line: total DOS; dot: Fe; virtual line: C. (C) Profile of the spin-resolved local DOS at
the Fermi level, which suggests that the spin-down electrons can offer an effective conductance channel
at EF.

At last, we examined the case of the Au tip bonding with Fe@C28. Pushing forward the STM tip
about 1.30 Å, the Au–C bond is formed. Here, the molecule–electrodes coupling was stronger than
that in the non-bonding case; therefore, the transmission peaks became higher and wider (Figure 6).
The Tup(EF) and Tdown(EF) are 9.17×10−2 and 0.53 G0, respectively. The SFE is predicted to be −70.4%,
indicating that the conductance and SFE can be effectively modulated by the Au–C bond forming or
breaking. All in all, our findings show that the Fe@C28 junction can be seen as a possible candidate for
a high-efficiency spin filter, spin injector, and moderate rectifier under small bias voltage, which offers
promising applications in nanoelectronic devices.
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4. Conclusions

In summary, we investigated the Fe@C28 absorption properties on an Au(111) surface and transport
properties by first principle DFT calculations and NEGF techniques. The free Fe@C28 has a localized
4.0-µB magnetic moment, and the cage tends to adsorb on the bridge sites of the Au(111) surface in the
manner of a C–C bond. Our calculations show that the conductance-controllable Fe@C28 junction can
act as a high-efficiency spin filter and as an effective spin injector under small bias voltage. A pure
spin current can be generated by the Fe@C28 junction, which can be used as a spin source in a device,
quantum computing, hard disk drive (HDD), etc. [8,9]. Moreover, when the magnetic moment of
Fe@C28 is flipped by the external magnetic field, the spin signal is also reversed. Thus, the proposed
Fe@C28 junction can also be used as a magnetic field sensor to detect the magnetic field [38]. All of the
results suggest that Fe@C28 not only can be seen as a promising candidate for molecular spintronics
but also will be helpful for designing novel fullerene-based spin filter devices.
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