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Abstract . The 25-kD inhibitor of actin polymerization
(25-kD IAP), isolated from turkey smooth muscle (Mi-
ron, T., M. Wilchek, and B . Geiger. 1988 . Eur. J. Bio-
chem . 178:543-553.), is shown here to be a low mo
lecular mass heat shock protein (HSP). Direct sequence
analysis of the purified protein, as well as cloning and
sequencing of the respective cDNA, disclosed a high
degree of homology (67% identity, 80% similarity) to
the human 27-kD HSP Southern blot of chicken genomic
DNA disclosed one band, suggesting the presence of a
single gene, and Northern blot analysis revealed abun-
dant transcript of Nl kb in gizzard and heart tissues
and lower amounts in total 18-d chick embryo RNA
and in cultured fibroblasts . Exposure of the latter cells

THE assembly and modulation of the microfilament net-
work in eukaryotic cells depend not only on the pres-
ence ofits major building block, actin, but also on the

presence and activity of a large variety of actin-associated
proteins (Korn, 1982; Pollard and Cooper, 1986; Stossel et
al ., 1985 ; Vandekerckhove, 1990) . The coordinated action of
these components appears to affect a large variety of actin-
related cellular processes, including cellular morphogenesis
and motility, membrane dynamics, and cell adhesion . One
of the microfilament-associated proteins that is involved in
the latter process is vinculin (Geiger, 1979) . Recent studies
have shown that vinculin is associated with the cytoplasmic
faces of all types of adherens junctions and may serve as a
ubiquitous hallmark for this family of cell contacts (Geiger,
1982) . Early attempts to characterize the mode of action of
vinculin suggested that it might reduce the low-shear viscos-
ity of F-actin in vitro (Jockusch and Isenberg, 1981 ; Lin et
a] ., 1982 ; Wilkins and Lin, 1982) . However, further attempts
to characterize this actin-binding and modulating activity
yielded contradictory results (Evans et al ., 1984 ; Wilkins et
al ., 1986 ; Ruhmau and Wegner, 1988), some of which sug-
gested that actin was not directly affected by vinculin itself
but rather by other molecule(s) that copurify with it (Evans
et al ., 1984) . Such a "contaminant" was isolated by us and
denoted as 25-kD inhibitor of actin polymerization (25-kD
IAP)' (Miron et al ., 1988) . This protein was mainly de-

1 . Abbreviations used in this paper: HSP, heat shock protein; IAP, inhibitor
of actin polymerization .
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to 45"C resulted in over 15-fold increase in the appar-
ent level of the 25-kD IAP protein, confirming that its
expression is regulated by heat shock . Immunofluores-
cent microscopic localization indicated that after heat
treatment, the levels of the 25-kD IAP were markedly
increased and the protein was apparently associated
with cytoplasmic granules . Heat shock also had a
transient, yet prominent, effect on the microfilament
system in cultured fibroblasts : stress fibers disin-
tegrated within 10-15 min after incubation at 45°C,
yet upon further incubation at the elevated tempera-
ture, conspicuous actin bundles were apparently
reformed .

tected in muscular (smooth, cardiac, and skeletal) chick tis-
sues, and hardly detectable in fibroblasts or focal contacts .
Moreover, it markedly reduced low-shear viscosity ofF-actin
and suppressed the rate ofpolymerization in vitro (Miron et
al ., 1988) . Further studies indicated that the 25-kD IAP does
not affect the length of the lag period in the polymerization
of gel-filtered actin and thus behaves as a barbed-end capping
protein devoid ofnucleating activity (Miron, T., M. Wilchek,
and B. Geiger, unpublished results) . Immunological analysis
suggested that the 25-kD IAP is distinct from the HA-1 pro-
tein described by Wilkins et al . (1986) (see also Miron et al .,
1988) . In this paper we present biochemical and molecular
genetic evidence indicating that the gizzard 25-kD IAP is a
low molecular mass heat shock protein (HSP) homologous
to the human 27-kD HSP (Hickey et al ., 1986) . The expres-
sion of 25-kD IAP in cultured fibroblasts increased dramati-
cally after heat shock at 45°C and was detected in cytoplas-
mic granules . Actin, in the heat-treated cells, underwent
reorganization, manifested by conspicuous disassembly of
stress fibers after short heat shock (5-15 min), followed by
reassembly after a longer exposure (>30 min) at the elevated
temperature.

Materials andMethods

Purification of the 25-kDJAP
The25-kD IAP was extracted from freshly frozen turkey gizzards according
to Feramisco and Burridge (1980) with the following slight modifications.
(a) The frozen muscle (100 g), already trimmed free of fat and connective
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tissues, was ground ina cold meat grinder and subjectedto homogenization
with 0.5 mM PMSF (500 ml) at 4°C. The supernatant was collected(sup-1),
andthepellet wassubjected to shorthomogenization withlowionic strength
buffer (pH 9; 500 ail) and extracted for 30 min at 37°C . Supernatant of this
step (sup-2) wascollected . (b) The combined supernatants (sup-1 and sup-2)
were precipitated with 10 mM MgC12 and the supernatant was fractionated
with ammonium sulfate (20.5 g/100 nil) . The precipitate was redissolved
and dialyzed as described (Miron et al., 1988). (c) Chromatography on
DEAE-cellulose and hydroxyapatite was performed according to Miron et
al . (1988) .

Protein Electroblotting andMicrosequencing
Partially purified 25-kD IAP was subjected to 12.5% PAGE in the pres-
ence of SDS. Immediately after electrophoresis, the gel was blotted onto
polyvinylidene difluoride membrane. Electrophoretic transfer was carried
out according to Bauw et al . (1989) . The blotted protein was stained for
30 s with 0.1% amido black in a methanol (45 %)/acetic acid (7 %) solution,
destained with distilledwater, and air dried. The spot ofthe 25-kD IAPwas
cut out, quenched by 0.2% polyvinylpyrrolidone in methanol solution to
lower nonspecific adsorption, and was subjected to either trypsinor ASAN
endoprotease (Boehringer-Mannheim GmbH, Mannheim, FRG) digestion
in 0.1 M Tris-HCI, pH 8, for 4 h at 37°C . The peptides released from the
blot were separated by HPLC on a C4-reversed-phase column (0.46 x 25
cm ; Vydw Separations Group, Hesperia, CA) and equilibrated with tri-
fluoroacetic acid (0.1%) . Peptides were eluted by a linearly increasing gra-
dient of acetonitrile (1% per min) in 0.1% trifluoroacetic acid . Eluted pep-
tides, detected by UV absorbance at 214 run, were collected by hand in
Eppendorf tubes. The samples were dried in a Speed Vac centrifuge and
sequenced by applying the peptide (redissolved in 0.1% trifluoroacetic acid,
30% acetonitrile) onto a Polybrene-coated glass filter. The sequence analy-
sis was carried out witha gas-phase sequenator (model 477A; Applied Bio-
systems, Inc., Foster City, CA), equipped with anon-line PTH-amino acid
analyzer (model 120A ; Applied Biosystems, Inc.) .

Molecular Genetic Techniques
A chicken gizzard cDNA library in kgtll bacteriophage was purchased
from Clonetech (Palo Alto, CA) . The original titer ofthe library was -109
PFU/ml with 90% recombinants and an average insert size of 1.7 kb.
Screening of the library was carried out using polyclonal rabbit antibodies
(for the general methodology see Young and Davis, 1988). Inserts were ex-
cised from the phage DNAby EcoRl digestion and recloned into Bluescript
KS+ vector (Stratagene Cloning Systems, La Jolla, CA). For sequencing,
we usually selected clones displaying both orientations to allow for bi-
directional single-strand sequencing. Southern and Northern blot analyses
were carried out under high stringency conditions (hybridization at 42°C,
washing at 68°C) as described (Sambrook et al ., 1989).

Actin Localization
Localization of actin within cells was determined by staining with
rhodamine-labeled phalloidin (Sigma Chemical Co., St. Louis, MO) after
1 min permeabilization with 0.1% Triton X-100 in 50 mM MESbuffer, pH
6.5, and fixation with 3% paraformaldehyde (30 min) .

Immunological Methods
Preparation ofmAbs tothe 25-kD IAPwas carried out according to the pro-
cedure described in detail by Eshhar (1985) . Affinity purification of the
mAbs onanti-mouse IgGcolumn and immunofluorescence microscopic lo-
calization of the 25-kD IAP were performed according to Miron et al .
(1988) . Polyclonal antibodies to the 25-kD IAP were prepared in rabbits by
repeated injections ofthepure protein, emulsified in Complete Freund'sAd-
juvant (Difco Laboratories, USA) . Antibody titers were evaluated by RIA
or Western blot analysis (Towbin et al ., 1979) after SDS-polyacrylamide
electrophoresis on 12% gels (Laemmli et al ., 1970).

HeatStress Conditions
Chicken embryo fibroblasts were prepared from 7-d embryos according to
Avnur andGeiger (1981) . Cells were grown in Dulbecco's MEMcontaining
10% FCS on either tissue culture dishes (6 cm) or sterile glass cover slips .
For stress conditions, the medium was replaced with preheated medium
(45°C): for short heat shock (5-30 min) cells were incubated in awaterbath
(45°C), while for longer stress (>30 min), cells weremaintained in an incu-
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Figure 1. An outline of the seven cDNA clones encoding the 25-kD
IAPand their alignment along the respective mRNA (top). Thebox
represents the coding region along themRNA. The location of sev-
eral restriction sites (as marked) is indicated.

bator at 45°C. Conditions for double stress were as described by Collier
et al . (1988) .

Results
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To obtain the complete primary sequence of the 25-kD IAP,
we cloned the respective cDNA from chicken gizzard XgtlI
expression library. Initial attempts to use the mAbs for li-
brary screening were unsuccessful and we, therefore, pro-
duced rabbit polyclonal antibodies . One of the clones (3.1,
340 bp), revealed by screening with these antibodies, con-
tained sequences corresponding to those obtained by the di-
rect protein sequencing . ThecDNA of this clone was, there-
fore, used for reprobing the library and revealed additional
independent clones, as shown in Fig. 1. Alignment of these
clones was achieved by restriction endonuclease mapping
and ultimately by complete sequencing .
As shown in Fig. 2, an open reading frame of 579 by fol-

Figure 2. The complete nucleotide and deduced amino acid se-
quences of the 25-kD IAP, obtained by sequencing of the cDNA
clones described above. These sequence data are available from
EMBL/GenBank/DDBJ under accession number X59541 .
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1 GGGCGCACCATGGCCGAGCGCCGCGTGCCCTTCACCTTCCTCACCAGCCCCAGCTGGGAG 60
M A E R R V P F T F L T S P S W E

61 CCCTTCCGCGACTGGTACCATGGCAGCCGCCTCTTCGACCAGTCCTTCGGGATGCCGCAC 120
P F R D W Y H G S R L F D Q S F G M P H

121 ATCCCCGAGGATTGGTACAAGTGGCCCAGCGGCAGCGCCTGGCCCGGATACTTCCGTCTG 180
I P E D W Y K W P S G S A W P G Y F R L

181 CTGCCCAGCGAGAGCGCCCTGCTGCCGGCCCCTGGGTCGCCCTACGGCCGGGCGCTGAGC 240
L P S E S A L L P A P G S P Y G R A L S

241 GAGCTGAGCAGCGGCATCTCCGAGATCCGGCAGAGCGCCGACAGCTGGAAGGTCACCCTG 300
E L S S G I S E I R Q S A D S W K V T L

301 GACGTCAACCACTTTGCTCCTGAGGAGCTGGTGGTGAAGACTAAGGATAACATCGTGGAG 360
D V N H F A P E E L V V K T K D N I V E

361 ATCACCGGCAAACACGAGGAGAAACAGGATGAGCACGGCTTCATCTCCAGGTGCTTCACC 420
I T G K H E E K Q D E H G F I S R C F T

421 CGCAAATACACCCTCCCCCCAGGCGTGGAAGCCACAGCCGTGCGGTCCTCGCTGTCCCCC 480
R X Y T L P P G V E A T A V R S S L S P

481 GATGGGATGCTGACAGTGGAGGCCCCGCTGCCCAAGCCAGCCATCCAGTCATCCGAGATC 540
D G M L T V E A P L P K P A I Q S S E I

541 ACCATCCCCGTCACCGTCGAGGCCAAGAAGGAAGAACCAGCCAAGAAGTAGGAGGAGGCC 600
T I P V T V E A K K E E P A K K

601 CCGCTGCTGTCCCCTGCCATGCACCCCGCACGCCTGCCCCCAGCTCCCACCCCCCTTTGT 660

661 ATTTTTTATTTGGTACTCACCCATCACCCAGTGCCTTGAATAAACGTGGTGGAAAAGAGA 720

721 AAATTGATGGGAATAAAAGTGGTGGAAGAAAAAAAAAAAACCC 763
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IAP 176 EITIPVTVEAKKEEPAKK 193
1111111 :I

H27 EITIPVTFESRAQLGGRSCKIR
I
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CRY ERPIPVSREEKPTSAPSS

Figure 3 The primary sequence oftranslated cDNA derived from
the chicken 25-kD MY (IAP) is compared to that oflow molecular
mass human HSP 27 (H27) and chicken a-crystallin (CRY) . The
tryptic peptides (T 1411 ) derived from pure turkey gizzard 25-kD
IAP, and those produced by Asp-N endoprotease digestion (Al-A7)
are indicated by the arrows . Verticalbars and colons indicate amino
acid identities and similarities, respectively. Dashes represent gaps
introduced to obtain best fit . These sequence data are available
from EMBL/GenBank/DDBJ under accession number X59541 .

lowing the presumptive initiator AUG was found, encoding
a protein of 193 amino acid residues . Analysis of the se-
quences thus obtained (as well as sequences generated by di-
rect protein sequencing as described below) against the
EMBL data base pointed to a high degree ofhomology (67%
identity, 80% similarity) with the human 27-kD HSP (HSP
27) (Hickey et al ., 1986) . a-Crystallin exhibited lower, yet
significanthomology to the chicken IAP (44 % identity, 60%
similarity) and human HSP (Fig . 3) .
The deduced sequences were further confirmed by direct

sequencing of peptides generated by enzymatic cleavage of
the purified 25-kD IAP As illustrated in Fig. 3, the tryptic
(marked T,_ 11 ) and ASP-N (marked A, .6) peptides cover a
total of 140 amino acid residues. They are compared here
with the complete deduced sequences of the 25-kD IAP, HSP
27, and a-crystallin . Comparison ofthe protein sequences to
those obtained by cDNA sequencing indicated that the two
were nearly identical except for two conservative substitu-
tions (S-T at position 9 and R-K at position 125) . It is not
clear whether these represent polymorphic variations or
chicken/turkey differences . Comparison of the peptide se-
quences to those of the human HSP 27 pointed to a high de-
gree of homology (>85 % identity within the overlap region)
and disclosed a lower homology to a-crystallin (de Jong et
al., 1984; Thompson et al ., 1987) .
The isolated cDNA clones reacted, in a Southern blot

analysis with only one band in total genomic chicken DNA,
digested with Pstl, HindIII, and BamHI restriction en-
donucleases (not shown), suggesting the presence of a single
gene.

Expression ofthe 25-kD LAP in Cells and 7ïssues
The notion that the 25-kD IAP is a HSP was directly exam-
ined by heat shock of cultured fibroblasts. As previously in-
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Figure 4. Inununoblot analysis
of chicken fibroblasu before
and after )rest shock, using
nrAbstothe25-kDIAP(mAbs
mixture) and to vimulin (mAb
11.5) . Samples included: on-
treated fibroblasts maintained
at370C(0),heat-shockedcells
incubated at 45°C for 3 h (3),
4.5 h (4.5), as well as double-
shocked cells(3+3) . Applica-
tion of anti-2540 LAP alone

yielded only one band. The labeling with antivinculin was intro-
duced as an internal marker and previous examination indicated
that it was not altered after heat shock. The location ofthe 25-kD
IAP (IAP) and vinculin (V) bands is indicated with arrowheads .

dicated, these cells normally exhibit low levels of25-kDIAP
(determined by immunoblotting), but when heated to 45°C,
especially when double heat-shocked at 45°C (Collier et al .,
1988), the apparent levels of the 25-kD IAP increased up to
N15-fold (Fig. 4) . This was evident from densitometric scan-
ning of the autoradiograms obtained after immunoblotting.
Multiple samples of both the normal and heat-shocked cul-
tures were examined to render the assay quantitative .
Immunofluorescent staining of such fibroblasts showed

that while control cells (cultured at 37°C) displayed only
faint dotted nuclear staining (the nature of which is not en-
tirely clear), the level oflabeling in the cytoplasm after heat
shock was very high . At first (0.5-3 h), positively labeled
granules appeared in the cytoplasm (Fig. 5), and upon dou-
ble heat-shock apparent colocalization of the cytoplasmic
25-kD IAP with mitochondria was often noticed (not
shown) .
Northern blot analysis with total RNA extracted from

different chicken tissues indicated that the transcript encod-
ing the 25-kD IAP (-I kb long) was abundant in gizzard and
heart and detected at lower levels in total 18-d embryos or
cultured fibroblasts (Fig . 6), in line with previous results ob-
tained at the protein level .

Effect ofHeat Shock on the Organization ofthe
Microfilament System
Heat shock also had a transient, yet prominent, effect on the
microfilament system . In chick fibroblasts maintained at
37°C, actin is predominantly organized in large stress fibers
attached, at their termini, to the cytoplasmic faces of focal
contacts (Fig . 7 A) . After a short (5 min) incubation at 45°C,
deterioration of actin stress fibers was noticed (Fig . 7 B),
which became more extensive upon further incubation (Fig.
7, C-E) . However, upon longer incubation (3 h) an extensive
network of stress fibers reappeared (Fig. 7 F) .

Discussion
The present study, identifying the 25-kD IAP as an HSP ho-
mologous to the human HSP 27 (Hickey et al ., 1986), bears
some important implications both for the heat shock re-
sponse (or stress response in general), and for the mecha-
nisms that induce actin modulation in cells .
The heat shock response has been extensively studied in

recent years in diverse organisms, from prokaryotes to man

257

IAP 1
---5 Ti T2 T3 T4 -

MAERRVPFTFLTSPSWEPFRDWYHGSRLFDQSFGMPHIPEDWYKWPSGSAWPGYFRLLPS 60
1 111111 : :1 111 :111111 111111 11 1 :11 :1 1 11 1111 :1 11

H27 MTERRVPFSLLRGPSWDPFRDWYPXSRLFDQAFGLPRLPEEWSQWLGGSSWPGYVRPLPP
I : 111111 II I II

CRY MDITIQH-PWFKRALGPLIPSRLFDQFFGEGLLE ---------------YDLLP-

A3 A4 -AL
T5 T6

IAP 61 ESALLPAPGSP-YGRALS-E-LSSGISEIRQSADSWKVTLDVNHFAPEELVVKTKDNIVE 117
II : I I IIII : 1111 :1111 :II 1 :1 :IIIIII11 :11 IIIII :II

H27 AAIESPAVAAPAYSRALSRQ-LSSGVSEIRHTADRWRVSI.DVNHFAPDELTVKTKDGVVE
: I I 1 I 111 :11 :1 I : : : 111 II I : :I :II I :II

CRY ---LFSSTISPYYRQSLFRSVLESGISEVRSDRDKFTIMLDVKHFSPEDLSVKIIDDFVE

A6
T6 -9- TIo TI,

IAP 118 ITGKHEEKQDEHGFISRCFTRKYTLPPGVEATAVRSSLSPDGMLTVEAPLPKPAIQS --S 175
IIIIIII :IIIII :IIIIIIIIIIIIIII : I IIIII :I 111111 II I II

X27 ITGKNEERQDENGYISRCFTRKYTLPPGVDPTQVSSSLSPEGTLTVEAPNPKLATQS --N
I III 1111 :111111 I I :I II II : : III :I II : :I

CRY IHGKHSERQDDHGYISREFHRRYRLPANVDQSAITCSLSSDGMLTFSGPKVPSNMDPSHS



Figure 6. Northern blot analysis oftotal RNA (30 jig/lane) isolated
from several chicken tissues, cultured fibroblasts (CEF) and 18-d
embryo. The cDNA probe was prepared from clone 10.6, and hy-
bridization and washing were carried out under high stringency
conditions .
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Figure 5. Immunofluorescence labeling of
chickembryo fibroblasts maintainedat37°C
(A), and heat shocked at 45'C for 3 h (B)
with anti-25-kDa IAP (mixed mAbs) . No-
tice that inthe nonshocked controls there is
essentially nocytoplasmic labeling and only
faint dotted staining is detected in the nu-
cleus . After heat treatment, intense labeling
is detected in cytoplasmic granules . Bar,
10 ILK

(Schlesinger et al ., 1982) . The induced cascade of cellular
and molecular events after the exposure to elevated tempera-
ture, or to other forms of stress, has been investigated at sev-
eral levels . At the molecular level, families of HSPs, whose
expression is induced or highly augmented after stress treat-
ment, have been identified (Schlesinger et al ., 1982 ; Lind-
quist, 1986; Schlesinger, 1986 ; Lindquist and Craig, 1988 ;
Welch et al ., 1989) . These stress proteins are usually
classified into two major subgroups : the relatively high mo-
lecular mass (65-110 kD) HSPs and the low molecular mass
(15-30 kD) proteins (Lindquist and Craig, 1988) . It is gener-
ally assumed that these stress-induced proteins enable cells
to cope with altered environmental conditions, yet only little
is known about their exact functions (Schlesinger, 1986 ; Su-
sek and Lindquist, 1989) . It has nevertheless been argued
that some of the HSPs are potent chaperons, displaying a
general capacity to interact with a variety of cellular proteins
and nucleic acids and possibly modulate their cellular distri-
bution, stability, or reactivity (Ellis and Hemmingsen, 1989 ;
Rothman, 1989) . Moreover, it was noted that the various
HSPs have been highly conserved throughout evolution,
from bacteria to man, suggesting that they play critical and
indispensable roles .
The present study indicates that the 25-kD IAP is a mem-

ber of the low molecular mass HSP sub-family . The major
support for this notion is the close sequence homology be-
tween the human HSP 27 and the turkey or chick 25-kD IAP,
as well as the elevated expression of the latter in fibroblasts
after heat shock treatment . Other physico-chemical proper-
ties reported for several HSPs, such as the tendency to form
oligomeric aggregates (Collier and Schlesinger, 1986 ; Rossi
and Lindquist, 1989), are also observed with the 25-kD IAP
(paper in preparation) .
At the cellular level, heat response has diverse apparent

manifestations (Schlesinger, 1986 ; Lindquist and Craig,
1988) . It has been shown that different cytoskeletal networks
undergo remarkable modulation after exposure to heat or to
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Figure 7. Rhodamine phalloidine staining of actin in chicken embryo fibroblasts cultured at 37°C (A) or following exposure to elevated
temperature (45°C) for 5 min (B), 15 min (C), 30 min (D), 1 h (E), 3 h (F) . Notice the progressive deterioration of stress fibers which
is detectable already after 5 min exposure to 45°C and to the apparent reformation of actin bundles after long exposure. Bar, 10 uM .
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other forms of stress. Actin-containing microfilaments were
reported to become disorganized (Glass et al ., 1985 ; Van
Bergen en Henegouwen and Linnemans, 1987; Shyy et al .,
1989), microtubules undergo disassembly (Van Bergen en
Henegouwen and Linnemans, 1987; Shyy et al ., 1989 ; Lin,
P S., 1982), and intermediate filaments of the various
classes collapse towards the perinuclear area (Biessmann et
al ., 1982 ; Collier and Schlesinger, 1986; Shyy et al . 1989 ;
Welch and Suhan, 1985; Welch et al ., 1985) . Our direct ex-
amination of the organization of the microfilament system,
after incubation at 45°C, was in line with Shyy et al. (1989),
indicating that microfilament bundles undergo transient dis-
assembly followed by a reassembly. It remains to be deter-
mined whether the rapid disorganization of actin is directly
attributable to the expression ofthe 25-kD IAP It is interest-
ing that, inaddition to the cytoskeletal reorganization, major
changes have been observed also in overall cell shape and in
the cytoplasmic disposition oforganelles after heat treatment
(Collier and Schlesinger, 1986 ; Shyy et al ., 1989) . While the
particular cellular manifestations of heat shock appear to be
quite diverse, many of the induced changes could be affected
by reorganization of the cytoskeleton . Several hypotheses
have been put forward to account for the heat-induced effects
on the various cytoskeletal systems. These include a direct
binding of HSPs to the cytoskeleton (Reiter and Penman,
1983 ; Leicht et al ., 1986 ; Nishida et al ., 1986 ; Ohtsuka et
al ., 1986) and changes indirectly induced by the arrest in
protein synthesis (13inguay, 1983 ; Welch and Feramisco,
1985) . The results presented in this paper provide a direct
indication for a potential link between the induction of a
specific HSP and the reorganization of the cytoplasmic
matrix .
The exact mechanism by which 25-kD IAP affects actin

polymerization was not fully elucidated . However, our
previous and current results suggest that the 25-kD LAY acts
like an F-actin barbed-end capping protein with little or no
effect on actin nucleation . This follows from (a) the reduc-
tion of the low-shear viscosity of actin filaments (Miron et
al ., 1988) ; (b) the rise in critical actin concentration under
physiological salt conditions ; and (c) the absence ofan effect
on the lag time of polymerization . This inhibitory activity
is further manifested by the ability of 25-kD IAP to induce
disassembly of F-actin, and even ofa-actinin crosslinked ac-
tin filaments (Miron et al ., 1988) . It is tempting to speculate
that an abrupt increase in the cytoplasmic levels of the MAD
IAP, after stress induction, might be involved in the disas-
sembly of cytoplasmic actin filaments . This suggestion,
however, should be considered with some caution since the
heat-induced disassembly of actin bundles, when apparent,
is transient (Fig. 7 ; see also Glass et al ., 1985 ; Shyy et al .,
1989), while the presence of the 25-kD UP persists for
many hours . Moreover, the deterioration of actin bundles is
observed shortly after heat shock, before an appreciable in-
crease is observed in the level of the 25-kD IAP We do not
have a direct explanation for the apparent recovery of the
microfilament system after the heat-induced disassembly,
but several possibilities should be considered, including a
modification of the MAD IAP protein and the appearance
of molecules that perturb its interaction with actin or change
its physical state. It is also possible that sequestration of the
IAP protein within the cytoplasm might prevent it from in-
teracting with actin . These possibilities are currently under
investigation .

The Journal of Cell Biology, Volume 114, 1991

The immunocytochemical results presented here suggest
that the cellular distribution of the MAD IAP changes as a
function of time after heat shock . Initially, the protein is ap-
parently associated with cytoplasmic aggregates similar to
those previously described (Collier et al ., 1988 ; Rossi and
Lindquist, 1989) and subsequently it appears to colocalize
with the mitochondria. The presence of HSPs (including
those of low molecular weight) in mitochondria has been
documented for different cell types and its physiological
significance discussed (Iida and Yahara, 1985 ; Nickells and
Browder, 1988) . It is possible that the effect on actin is ex-
erted only by the soluble protein, before it undergoes major
aggregation . This possibility is corroborated by our previous
results showing that aggregation of the chick MAD IAP is
accompanied by loss of its inhibitory activity (Miron et al .,
1988) .
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