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Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan-
demic potential, and a threat to animals and the human population. The influenza A virus genome
consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid
bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes
that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome
release into the cytosol. In this focused review, we concisely describe the virus infection cycle
and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza
uncoating during host cell entry.

Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus–
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1. Introduction

Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell
for their replication and propagation. Despite their apparent simplicity, they can cause
severe diseases and even pose pandemic threats [1–3]. Emerging viral infections, caused
by viruses that have not been previously recorded, continue to pose a major threat to
global public health [4], as it is the case for the biggest pandemic of the millennium so far,
the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [5].

Entry of an enveloped virus from the extracellular environment into cells proceeds
through a number of essential steps [6]. These include binding and attachment of a virus
outer protein to its receptor at the cell surface, penetration of the viral particle into the
cytoplasm, uncoating of the proteinaceous capsid allowing release of the viral nucleic
acids into the cell cytosol, viral genetic material replication, protein synthesis, and finally
new viral particle assembly and budding from the infected cell. The dissection of the
molecular events and viral–host interactions that take place once the virus binds to the cell
surface is essential for understanding how a particular virus infects cells. It also allows the
identification of potential new targets for antivirals and therapies for blocking or controlling
the infection and onset of diseases. In addition, understanding how viruses adopt or hijack
cellular pathways to their advantage often leads to novel insights in the normal functioning
of these pathways and is, therefore, of general interest beyond virology.

As viruses recognize target cells by first binding to cell receptors, the discovery of the
virus ligands is primordial for understanding the organ tropism, the potential host diversity,
and the mechanism of infection [7,8]. Enveloped animal viruses enter their host cells by
membrane fusion and two pathways have been described, depending on the characteristics
of the virus fusion protein. Fusion can occur at the cell plasma membrane at physiological
pH [9–15] or within the endocytic vacuolar system where it is triggered by a low pH [16–22].
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Virus capsid opening, the so-called uncoating, enables the virus genetic material to be
released in the cytosol and get ready for replication. Our understanding of virus uncoating
mechanisms has grown substantially in recent years and defines uncoating as a complex,
highly orchestrated, multi-step process that relies on both viral and cellular factors.

In this review, we describe the influenza A virus (IAV) infection cycle and focus on the
capsid uncoating process. We explore the latest studies that elucidate IAV capsid uncoating
and the host proteins involved.

2. The Infection Cycle of IAV
2.1. Influenza Virus Structure, Proteins and Classification

Influenza viruses are orthomyxoviruses, members of the family Orthomyxoviridae,
which comprises the genera Influenzavirus A, B and C, Thogotovirus, Quaranjavirus,
and Isavirus [23,24]. IAV is pleiomorphic [25] meaning that viruses with varying mor-
phologies can be produced by an infected cell. The most studied virus shape is spher-
ical, with around 100 nm diameter; the other is filamentous, from 100 nm to 30 µm in
length [26–28]. The filamentous morphology is typical of clinical isolates, whereas the
spherical shape is common in laboratory-passaged strains [28,29]. Whilst the biological
function and consequences of the viral morphology during IAV infection remain unknown,
studies have shown that it has implications in transmission, host adaptation and patho-
genesis [30–36]. IAV has eight distinct gene segments organized as a single-stranded,
negative-sense RNA genome assembled into ribonucleoprotein complexes (vRNPs) that
produce at least eleven proteins [37]. The segmented nature of the IAV genome has many
implications, the most popular is that it provides an evolutionary benefit by enabling
the virus to evolve by reassortment of gene segments between coinfecting viruses (see
reference [38] for a review on this topic). Filamentous and spherical particles have their
vRNPs arranged in bundle with all segments associated with the M1 from the capsid at the
same end of the virus [29,39]. Figure 1 presents a scheme of the virus structure and genome.
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Figure 1. IAV structure and genome. Influenza is an enveloped virus in which structural proteins can be found associated
with the virus envelope, a lipid bilayer derived from the plasma membrane of the host cell. The viral envelope contains
three of the viral transmembrane proteins: hemagglutinin (HA), neuraminidase (NA), and the matrix ion channel M2.
HA and NA proteins are the main proteins at the virus surface and HA is four times more abundant than NA. M2 also
penetrates the envelope but represents a minor component of the envelope, with about 20 molecules per virus particle.
The matrix protein M1 is found beneath the lipid membrane, and forms a rigid single-helical layer shell, the virus capsid.
The nuclear export protein (NEP) is found in the interior of the virus. The IAV genome consists of eight negative-sense
RNA segments that form distinct viral ribonucleoproteins (vRNPs). vRNPs are assembled as virus RNA segments where
the termini of viral RNAs associate with the viral RNA-dependent RNA polymerase complex, PB1, PB2 and PA, while the
rest of the viral RNAs are bound by oligomers of the nucleoprotein, NP. The virus has an asymmetric internal structure,
maintained by vRNPs-vRNPs and M1-vRNPs interactions. Not shown in the figure, the interior of IAV bears a substantial
number of host proteins (ubiquitin, tubulin, actin, annexin, among others). IAV is known to display a number of shapes.
The spherical form of IAVs is typically about 100 nm in diameter. Filamentous forms of IAVs can be over a few µm in length.
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The surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) are the most
abundant proteins present in the lipid bilayer envelope. Based on the antigenic properties
and phylogenetic clustering of HA and NA, IAV can be classified into several subtypes.
There are eighteen different HA (H1-H18) and eleven NA (N1-N11) serotypes. The relative
abundance of each protein within the virus particle varies among virus subtypes and
depends on the genetic background, with the HA/NA ratio being on average 4 to 1 [40].
However, for the IAV/WSN/33 (H1N1) strain it is approximately 10 to 1 [41] and for
IAV/Aichi/68 (H3N2) it is 5 to 1 [39]. HA and NA play a role in the recognition and
binding to the receptor in target cells and release of the virus during budding from the
plasma membrane, respectively [42]. Due to the exposure at the virus surface and their
biological functions, these two proteins are the major antigenic targets of neutralizing
antibodies. In fact, during a natural infection the majority of antibodies will target HA,
with lower amounts targeting NA or even other virus proteins [43].

IAV has two matrix proteins: M1 and M2. They are the main determinants of the
spherical or filamentous virus morphology [44]. M1 is the major structural component of
the virus, forming a rigid shell, the virus capsid. It acts as an adaptor between the lipid en-
velope and the vRNPs, besides being the driving force for virus budding [45–47]. A recent
study solved the structure of assembled M1 within intact virus particles, gave structural
insights on how M1 oligomerizes to form the capsid and how the pH change triggers
the capsid disassembly [48]. Five histidine residues contributed by three sequential M1
monomers form a histidine cluster that can serve as the switch for the pH-mediated M1
disassembly [48]. M2 is an ion channel present in low amounts in the virus envelope,
with approximately 20 to 60 units on each virus particle [49]. M2 forms tetrameric ion chan-
nels that open in response to the endosome low pH, allowing a proton flux into the virus.
Lowering the pH of the virus interior is involved in the HA maturation by changing HA
conformation from a native (nonfusogenic) structure to a fusion-active (fusogenic) [50–52].
The M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly
and genome packaging at the site of virus budding [53,54].

Inside the virus, each gene segment is associated with a trimeric RNA-dependent
RNA polymerase complex consisting of the PB1, PB2, and PA proteins [55]. Multiple
nucleoprotein (NP) molecules bind the viral RNA with high affinity and, together with the
polymerase proteins, forms the vRNPs [56]. The nuclear export protein (NEP), also known
as non-structural protein 2 (NS2) is found inside virus particles in low amounts where it
may interact with M1 [57]. Its main function is the nuclear export of vRNPs.

The non-structural protein 1 (NS1) is abundant in IAV-infected cells but usually not
detected in virus particles [58]. Nevertheless, recent studies reported that a low amount
of NS1 is present in purified virus particles and suggest that NS1 can be incorporated
during assembly [59,60]. Although the relevance of the presence of NS1 in the virus
particles is unknown, its incorporation might have to do with its ability to associate with
the IAV vRNAs and facilitate the genome packaging at the influenza budding sites [60].
NS1 is a non-essential virulence factor that has multiple functions during the viral life
cycle. Its major role is to antagonize type I interferon-mediated antiviral responses [61].
NS1 also controls vRNA splicing and temporal regulation of the RNA synthesis [62,63],
induces or suppresses host apoptotic responses [64,65], and has a role in strain-specific
pathogenesis [66,67], among others.

2.2. Early Events of Influenza Virus Infection
2.2.1. Receptor Binding and Envelope Fusion with Late Endosome

During the first step of IAV infection of the host cell, attachment, HA binds to the target
cell via sialic acid linkages on host glycoproteins [68,69]. The sialic acid binding specificity
of HA is one of the major determinants for viral tropism and host specificity; changes in
key HA amino acids that control its binding specificity have been identified to contribute
to the spillover of avian viruses to humans, leading to new influenza epidemics [70–73].
In general, human IAVs exhibit a strong preference for binding glycans terminating with
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α2,6-linked sialic acid and replicate in the respiratory tract, whereas avian IAVs have a
preference for α2,3-linked sialic acid [74]. In contrast, bat IAV carries the H17 or H18
HA serotypes which cannot bind to sialic acid; rather, they require the host MHC class II
proteins to infect cells [75,76]. Figure 2 illustrates the main steps of the virus life cycle.
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Figure 2. Overview of the IAV replication cycle. The influenza virus life cycle can be divided into several stages: (1) Virus
binding to the target cell. HA binds to sialic acid found on the surface of the host cell’s membrane. (2) Entry into the host
cell: a clathrin-mediated endocytosis or macropinocytosis takes place. Early endosome containing viruses is transported
by dynein along microtubules to the perinuclear region close to the microtubule-organizing center (MTOC). (3) Fusion of
the virus envelope with the endosomal membrane. Acidification increases progressively from endocytic vesicles to late
endosomes and induces a HA conformational change to a fusion-competent state. M2, an acid-activated viral ion channel,
is required for efficient viral envelope fusion with the endosomal membrane and nucleocapsid release. (4) Uncoating of the
virus capsid by disassembly of the M1 proteins and release of the viral ribonucleoproteins (vRNPs) to the cytosol. (5) Entry of
vRNPs into the nucleus by an active nuclear import pathway. (6) Transcription and replication of the viral genome. The IAV
genome is composed of negative-sense strand RNAs. The genome is first converted into positive-sense RNAs, forming
complementary ribonucleoprotein (cRNP) complexes, that serve as templates to produce viral RNAs. The transcription of
the vRNA generates mature viral messenger RNAs (mRNAs) that have a 5′ methylated cap and a poly(A) tail. (7) Viral
protein translation occurs by free ribosomes or ribosomes on the rough endoplasmic reticulum. Some of these proteins
enter the nucleus where they assemble with viral RNAs. (8) Export of the vRNPs from the nucleus. vRNPs are exported out
of the nucleus via the CRM1 dependent pathway through the nuclear pores. (9) Transport of viral components, assembly
and budding at the host cell plasma membrane. Viral glycoproteins, HA and NA, associate with lipid rafts, membrane
microdomains comprised of densely packed cholesterol and sphingolipids. vRNP complexes are transported as sub-bundles
on Rab11 to recycling endosomes close to ER exit sites toward the plasma membrane and are incorporated as a complex of
eight different vRNPs into budding viruses. Finally, the plasma membrane containing the viral structural proteins at the
assembly site bends releasing infectious virus into the extracellular environment.
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Even though the NA is mainly recognized for its role at the virus budding stage,
where it removes sialic acid bound to the newly synthesized HA and NA on nascent
viruses, it has also been implicated in helping IAV to penetrate the mucus layer and get
access to the receptors at the host cell membrane [77,78]. For this, NA locally cleaves
sialylated O-linked glycans covering mucins and cell glycocalyx, decreasing the number of
sialylated decoys and promoting the motility of IAV towards the receptors on the target cell
surface [79]. The spherical IAV bound to the sialic acid-containing receptor proteins at the
plasma membrane activates an internalization pathway that is by default clathrin-mediated
endocytosis. In addition to this traditional route, IAV may have other entry pathways that
could be dependent on the cell type. For instance, filamentous IAV enters host cells by a
dynamin-independent route, using macropinocytosis as the primary entry mechanism [80].
The intact filamentous IAVs are trafficked to the acidic late-endosomal compartment within
macropinosomes [81]. Similarly, spherical IAV has recently been reported to also use
macropinocytosis [80]. Caveolae have already been described as an alternative route to
clathrin for mediating the entry of IAV in MDCK cells [82]. By combining inhibitory
methods to block both clathrin-mediated endocytosis and uptake by caveolae in HeLa
cells, another study demonstrated that a non-clathrin-dependent, non-caveolae-dependent,
but dynamin-dependent endocytic pathway also exists [83].

The traffic of viruses within endosomes towards the cell nucleus occurs through the
cytoskeleton using actin, myosin and dynein motor protein, and microtubules (MTs) [84,85].
Polarized respiratory epithelium is the target of IAV in vivo, in which it preferentially en-
ters the cells from the apical surface [86–88]. However, most molecular studies on the virus
entry have been carried out using non-polarized cell lines. There are significant differences
between polarized and non-polarized cells regarding receptor distribution, cytoskeletal
structure and the mechanism of endocytosis [85,89]. For instance, IAV seems to depend
much more on the actin dynamics in polarized than non-polarized cells [90]. Following
infection, the cytoskeleton undergoes structural reorganization and the endosomes har-
boring viruses travel in a retrograde traffic towards the microtubule organizing center
(MTOC), in close proximity to the cellular nucleus [91]. The kinetics of virus-containing
endosomes vary according to the cell type and the virus subtypes. It has been reported that
IAV/X31 strain can be found in early endosomes, marked by early endosomal autoantigen
1 (EEA1) [92], Rab5 [93,94], and rabenosyn-5 (Rab5 effector) [95,96], around 5 min after ad-
sorption in dendritic cells [97]. While in Chinese hamster ovary CHO cells, the same virus
already fuses its envelope with late endosomes, usually marked by lysosomal-associated
membrane protein-1 (Lamp1) [98] and Rab7 [93], in the perinuclear region only 8 min after
binding [84]. For IAV/WSN/33 in human lung epithelial A549 cells, co-localization of
virus proteins and early endosomes peaked at 45 min whereas co-localization with late
endosomes only at 120 min [99].

Upon entry through the endocytic pathway, HA only reaches a fusion-competent form
when the virus has trafficked beyond early endosomes. This happens because a progressive
pH drop by endosomal acidification is needed for HA conformational changes prior to
fusion of the envelope and endosome membranes. The acidification of endosomes occurs
during their maturation and the M2 proton channel in the virus envelope mediates the flux
of protons into the IAV particle upon acid activation (pH ≈ 6) [100]. The drop of pH in
endosomes has at least two main functions during early IAV stages. First, as mentioned
above, the low pH in late endosomes triggers a conformational change in the HA glycopro-
tein that exposes a fusion peptide. Second, it strips away the M1 matrix protein from the
capsid during uncoating.

2.2.2. IAV Capsid Uncoating

The different steps of virus uncoating are regulated by cellular cues which come from
cellular receptors, enzymes, and small chemicals including ions [101]. Here, we summarize
the IAV uncoating process, and detail it further to discuss the role of host proteins in IAV
uncoating (see Section 3). Uncoating refers to the series of events that alter the viral core
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structure leading to disassembly which is essential for the release of the viral genomic
segments into the cytosol. It is a continuous and dynamic event that begins inside acidic
endosomes and is completed in the cytosol by multiple host proteins that interact with viral
core components. Due to the methodological limitations for identifying and visualizing
all the molecules playing a role during uncoating, this process has remained relatively
poorly studied. Yet, recently some important cellular proteins have been described to
be involved in this process. Histone deacetylase 6 (HDAC6), epidermal growth factor
receptor pathway substrate 8 (EPS8), transportin-1 (TRN-1 or TNPO1) have all been shown
to be involved in the IAV core uncoating [102–104] and their role for other viruses begins
to be examined. Catalyzing the capsid opening for a fast genome release may decrease
the probability of the virus genetic material being degraded by cellular RNases as has
been shown for iflaviruses, positive-strand RNA viruses from the family Iflaviridae (order
Picornavirales) [105]. After release of the viral RNPs into the cytosol in the proximity of
the cell nucleus, the vRNPs are imported into the nucleus through nuclear pore complexes
using the nucleoprotein (NP) nuclear localization sequence (NLS) motifs and the importin
α/β-dependent nuclear import pathway.

2.3. Nuclear Import, IAV Genome Replication, and vRNP Export

As mentioned above, the IAV genome has eight segments of single-stranded negative-
sense RNA, each of them is transcribed in the nucleus of the host cell [106]. Three viral
RNAs types are synthesized: viral mRNAs of positive sense (mRNA), viral genomic RNAs
(vRNA) of negative sense, and complementary RNAs (cRNA) of positive sense. The vRNAs
are bound by a RNA-dependent RNA polymerase, forming a viral ribonucleoprotein
(vRNP) complex [107]. Although replication is a primer-independent process, during
transcription of a viral mRNA the viral RNA polymerase relies on host capped RNAs as
cap-donors [108]. As IAV vRNAs are of negative sense, in order for the genome to be
transcribed it first must be converted into a positive sense RNA that serves as template
for the production of new viral RNAs [59]. The cRNA is the replication intermediate,
a full-length complement of the vRNA that works as a template for the synthesis of new
copies of vRNA [107]. The formation of new vRNP complexes results from the binding
of newly synthesized subunit proteins (PB1, PB2 and PA) and NP proteins to the vRNAs.
For further details, the reader is referred to excellent recent reviews [109,110].

The influenza virus infection leads to a slowdown in the synthesis of cellular proteins,
this phenomenon is known as cell shutoff [111–114]. The synthesis rates of vRNAs and
proteins reach a maximum within the first few hours after infection before dropping [115].
One study reported the production of most viral proteins to peak in the first 8–12 h after
infection [114]. The synthesis of the IAV proteins is regulated at the transcriptional level,
and the synthesis rate and accumulation level of the mRNAs differ considerably among
the eight RNA segments [116,117]. For instance, there is an early production of proteins
such as NS1 and NP and a delayed synthesis of M1 [114,118].

Nuclear export of vRNPs is mediated by the cellular protein Crm1, or exportin 1,
a member of the importin β family, and putatively by the viral protein NEP/NS2 [119–123].
The nuclear import relies on importin α, which acts as an adaptor between importin β and
NLS-cargos [124]. M1 shuttles between the cytoplasm and the nucleus and has important
functions in both compartments. In the nucleus, M1 proteins attach to vRNPs forming M1-
vRNP complexes and participate in transport of vRNPs to the cytosol [125]. The NEP/NS2
protein contains a highly conserved nuclear export signal (NES) motif in its amino-terminal
region and mediates the nuclear export of vRNP-M1-NS2 complexes [126]. The export of
vRNP is impaired when cells are infected with a recombinant virus that cannot express
NS2 or have mutations in the NS2 NES [127]. Cytoplasmic M1 proteins inhibit the nuclear
import of vRNP complexes [128,129], and newly synthesized vRNPs associated with M1
protein are unable to re-enter the cell nucleus [128].
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2.4. Late Events of IAV Infection
Trafficking of the vRNPs and IAV Proteins to the Cell Plasma Membrane, Genome
Packaging and Virus Budding

Newly synthesized NP and the viral polymerase proteins (PB1, PB2 and PA) form a
complex with vRNA, and the formed vRNP is transported to the plasma membrane or to
the apical site of polarized epithelial cells for genome packaging and virus budding [130].
Similar to what happens during viral entry, the viral egress pathways depend on the
cytoskeleton, transport vesicles, and motor proteins [131]. After nuclear export, vRNPs can
be found colocalized with microtubules and concentrated at the MTOC [132]. The small
GTPase Rab11 mediates the transport of the vRNPs across the cytoplasm to the viral
budding sites at the plasma membrane [133–137]. It mediates the docking of a single vRNP
or vRNP sub-bundles to recycling endosomes close to ER exit sites through direct or indirect
interaction of its active GTP bound form with the viral polymerase complex proteins,
taking the form of liquid viral inclusions [138–142]. Transmission electron tomography of
budded IAV virions shows a distinct organization of vRNPs in which a central segment is
surrounded by seven different segments of various lengths [143].

In addition to the vRNPs, IAV structral proteins (HA, NA, M1, M2) must be trans-
ported to the plasma membrane. Both HA and NA have been shown to possess apical
determinants in their transmembrane domain [144,145]. HA, NA, and M2 transmem-
brane domains contain specific sorting signals that promote their association with sph-
ingoglycolipid rafts at the plasma membrane [146,147]. While the transport of the IAV
membrane-associated proteins has been well characterized, the mechanism by which other
viral core proteins are transported to the budding sites is vague. M1 is synthesized on free
cytosolic polyribosomes and may possess apical determinants or diffuse to the assembly
site, or a combination of these pathways. It was shown that the M1 associates with HA and
NA at the budding site and only a small fraction of the cytoplasmic M1 associates with
cellular membranes in the absence of another viral protein [148]. In contrast, another study
found that M1 hast the ability to associate with the membrane independent of the viral
glycoproteins [45]. It is also possible that M1 may be able to associate with membranes
through electrostatic interactions [149].

Virus assembly is coordinated by M1, which binds to all viral components and the
plasma membrane. Interactions of M1 with other M1 proteins, vRNPs, HA and NA facilitate
concentration of viral components and exclusion of host proteins from the budding site. M1
also interacts with the cytoplasmic tail and transmembrane domain of the glycoproteins
HA and NA and with M2, functioning as a bridge between the viral envelope and the
vRNPs [150,151]. Virus bud formation requires membrane bending at the budding site.
A combination of factors including the increased concentration of viral proteins and the
interaction of M1 with the viral glycoproteins, M1-M1 and M1-vRNPs play an important
role for triggering virus budding [151]. Asymmetry of the lipid bilayer in lipid raft is
likely to cause a curvature of the plasma membrane at the assembly site leading to bud
formation. The matrix M2 transmembrane protein further facilitates virus release from
the infected host cell. M2 is able to both contribute to curvature induction and also sense
curvature to line up in manifolds where local membrane line tension is high [152]. During
viral budding, vRNPs with their polymerase-binding ends at the budding tip are oriented
in a parallel or antiparallel fashion [153]. Eventually, fusion of the opposing membranes
leading to the closure of the bud will take place and newly formed viruses will be released
into the extracellular environment.

3. In Focus: Influenza Virus Capsid Uncoating
3.1. Involvement of Ubiquitin Chains in Influenza Virus Uncoating

Ubiquitin (Ub) is a small 76 amino acids protein with a molecular mass of about
8.6 kDa. It participates in multiple cellular signaling pathways, that are usually involved
in the regulation of protein function and homeostasis. The ubiquitin proteasome system
(UPS) forms a cellular machinery for the degradation of unwanted proteins. The aggre-
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some processing pathway (APP) is an alternative system, whereby misfolded proteins are
accumulated before being degraded by autophagy. Ubiquitination and ubiquitin-like modi-
fication is usurped by many viruses to establish infection, and IAV uses ubiquitin-enhanced
viral uncoating mechanisms [104,154]. How the APP facilitates efficient IAV uncoating is
described below.

Protein ubiquitination is a post-translational modification in which there is an addition
of a Ub molecule to one or more sites, most frequently lysine residues of a target protein.
Proteins can be monoubiquitinated or poly-monoubiquitinated if they have one or more
Ub molecules, respectively. In addition, Ub monomers can be connected to each another
forming chains of varying lengths, linkages, and structures.

Protein ubiquitination involves a series of cellular enzymes in cascade. As depicted
in Figure 3, ubiquitination starts with the Ub-activating enzyme E1, followed by the
Ub-conjugating enzyme E2 and by the Ub ligase E3, which form an isopeptide bond
between the carboxyl terminus of Ub and the amino group of a lysine residue on the target
protein [155]. E3 ligases determine the substrate specificity of the cascade by the covalent
attachment of Ub to substrate proteins, but the E2-conjugating enzyme can also play a role
in the substrate selection [156]. Ub is often linked to substrates as polymeric chains that vary
in both linkage and length, with important consequences for their function [157]. Ub itself
contains seven lysines (K; K6, 11, 27, 29, 33, 48 and 63), all of which can be used by the Ub
ligases to generate the different types of chains on the target proteins [158]. The K48-based
linkages lead mainly to the proteasome-mediated degradation of the ubiquitinated protein,
while K63-based Ub chains control primarily protein endocytosis, as well as trafficking
and enzyme activity [159–162]. K63 is also a signal for targeting misfolded proteins to
the APP [163]. Free poly-Ub chains, referred to as unanchored Ub chains, arise when
deubiquitinases (DUBs) remove a chain from a protein, or they can be generated through
E1/E2/E3 cycles [164]. In contrast to Ub chains bound to target proteins, unanchored Ub
chains have a free C-terminus which can be bound efficiently by a conserved zinc finger
domain found in the DUB isopeptidase T or in HDAC6 [165,166].

Ubiquitination has a vital role in regulating a wide variety of processes in eukaryotes
through multiple mechanisms, including protein degradation, protein trafficking, gene ex-
pression, DNA repair, control of the cell cycle and signaling [167–171]. The versatility of the
Ub system in regulating protein function and cell behavior makes it a particularly attractive
target for pathogens such as viruses [172]. Ub was thought to be exclusively a cellular
protein until a report described a modified form in baculovirus particles [173]. Similarly,
host Ub was reported in purified vaccinia virus and herpes simplex virus particles [174].
Ub was also identified by proteomics in filovirus, such as purified Ebola and Marburg
viruses [175]. More recently, liquid chromatography mass spectrometry proteomic analyses
revealed a great variety of host proteins in purified extracellular viruses [176]. Among these
proteins, Ub (polyubiquitin B and C) was found in Ebola Zaire, Marburg Lake Victoria,
HIV-1, moloney murine leukemia virus (MLV), herpes simplex type-1 (HSV-1), vaccinia
virus (VACV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV), respi-
ratory syncytial virus (RSV) and IAV. Ub has also been reported in HIV-1 cores [177,178].
The importance of these proteins in the different steps of the virus life cycle is unknown but
Ub is long speculated to participate in virus uncoating and replication of particles [174].

Unanchored Ub chains within the IAV structural core are exposed following virus
envelope and endosome fusion at late endosomes close to the nuclear periphery [104,179].
Unanchored Ub chains can also be produced by DUBs that cleave off ubiquitin chains from
substrates targeted to the proteasome. One example of such a DUB is Poh1, a proteasome-
associated DUB that generates K63-linked unanchored ubiquitin [180,181]. The interaction
of unanchored Ub chains with HDAC6 and the interaction of HDAC6 with motor proteins
in microtubules and actin filaments generates physical forces that catalyze the dissociation
of the capsid M1 layer.
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3.2. The Role of HDAC6 in Influenza Virus Uncoating

Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups
from modified lysine residues of histone and non-histone proteins and several classes of
mammalian HDACs exist [182]. Class I HDACs are 400–500 amino acids long and include
HDAC1, HDAC2, HDAC3 and HDAC8. Class II HDACs are approximately 1000 amino
acids long; class IIa comprises HDAC4, HDAC5, HDAC7 and HDAC9, and class IIb com-
prises HDAC6 and HDAC10 [183–185]. The class III HDACs, also known as the sirtuins
(SIRT1–7), are the silent information regulator 2 (Sir2) family of proteins and have a size
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ranging from 300 to 750 amino acids [186,187]. Despite the name, HDAC function is not
limited to histone deacetylation and the regulation of gene transcription. HDAC6 localizes
mainly in the cytosol and targets proteins through one of its deacetylase domains, CD1 or
CD2, or its Ub-binding zinc finger domain, ZnF. In humans, HDAC6 contains a Ser Glu-
repeat domain (SE14), which acts as a cytoplasmic retention signal and mediates its stable
anchorage in the cytoplasm [188] where it deacetylases tubulin [189–191], heat shock pro-
tein 90 (Hsp90) [192–194], β-catenin [195,196], cortactin [197], MYH9, Hsc70, DNAJA1 [198]
or the DEAD box RNA helicase 3, X-linked (DDX3X) [199]. HDAC6 has been associated
with carcinogenesis, neurodegenerative diseases and inflammatory disorders, and has been
exploited as a therapeutic target for pharmacological intervention [200–208].

HDAC6 has also been identified to have antiviral effects which have been linked to its
enzymatic activity. It was found to inhibit IAV release by downregulating the trafficking of
viral components to the plasma membrane via acetylated microtubules [209]. Overexpres-
sion of HDAC6 in cells leads to diminished viral budding due to tubulin deacetylation [210].
More recently, it was shown that HDAC6 regulates viral sensing by deacetylating retinoic
acid inducible gene I, RIG-I [211], a key cytosolic sensor that detects RNA viruses through
its C-terminal region and activates the production of antiviral interferons (IFNs) and pro-
inflammatory cytokines. RIG-I is thought to be the most important sensor of IAV by binding
to the virus genomic panhandle promoter region [212,213]. HDAC6 transiently binds to
RIG-I and removes lysine 909 acetylation in the presence of viral RNAs, thus promoting
RIG-I sensing of viral RNAs. Thus, HDAC6-mediated RIG-I deacetylation is critical for
efficient viral RNA detection and IFN production. HDAC6 also acts as a negative regulator
of IAV infection by deacetylating lysine 664 of the polymerase complex PA subunit, thereby
restricting vRNA transcription and replication.

HDAC6, through its ZnF domain, associates with unanchored Ub chains [165,214,215].
As shown in Figure 3, Ub chains can be generated through E1/E2/E3 cycles and unan-
chored Ub chains are present in monoubiquitin, or ubiquitin derived from proteasomal
degradation or the catalytic action of DUBs on pre-existing Ub chains. HDAC6 ZnF
binds Ub with high affinity by recognizing its unanchored C-terminal sequence (-RLRGG-
COOH) [216,217] and can recruit misfolded proteins with entangled Ub chains. In addition,
HDAC6 interacts with the motor protein dynein and dynactin, the protein complex that
links cargo to dynein. In this way, HDAC6 acts as a scaffold that mediates the transport of
misfolded protein aggregates along microtubules and promotes formation of the aggresome
compartment, which is a crucial pathway to attenuate misfolded protein-induced stress.

Inflammasome complexes are formed in response to pathogen-associated molecules
and, for NLR family pyrin domain-containing protein 3 (NLRP3)- and pyrin-mediated
inflammasomes, their assembly and downstream functions occur at the MTOC [218].
Similar to the formation of aggresomes, HDAC6 ZnF is required for the interaction with
NLRP3 and pyrin inflammasome components and transport of these proteins using the
microtubule retrograde transport by dynein for their activation in macrophages [218].
Given the importance of HDAC6 for viral uncoating, one might wonder how formation of
novel IAV particles can take place in cells that contain HDAC6. The observation that in
IAV-infected cells the C terminus of HDAC6 (encompassing the ZnF domain) gets cleaved
off by Caspase-3 at late stages of the infection may help to solve this conundrum [219].

Ablation of class I HDACs in mice is lethal or leads to severe physiological dysfunc-
tion [220–222]. In contrast, mice lacking HDAC6 are viable and develop normally, despite
having elevated tubulin acetylation in multiple organs [223]. The role of HDAC6 for effi-
cient IAV uncoating was discovered by the observation that in mouse embryonic fibroblast
cells lacking HDAC6, the IAV endocytic uptake, acid-induced HA maturation or fusion of
virus envelope and late endosome were not affected. In contrast, virus capsid uncoating
and the nuclear import of vRNPs were reduced in these cells in comparison to the wild
type [104]. During infection, virus proteins and RNAs are detected by pathogen recognition
receptors (PRR). This activates protein kinase R (PKR) that mediates the phosphorylation of
eukaryotic initiation factor-α (eIF2α) on serine 51 to initiate the assembly of virus-induced
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stress granules concomitant with repression of cellular proteins translation [224]. By mim-
icking a misfolded protein aggregate, IAV hijacks the APP to its benefit [104]. The role of
HDAC6 and Ub for IAV capsid uncoating can be visualized in Figure 4.
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Figure 4. IAV capsid uncoating, genome release and nuclear import. Endosome acidification occurs progressively from the
cell periphery toward the microtubule-organizing center (MTOC). Late endosomal acidification (pH~6) triggers change of
the homotrimeric glycoprotein HA mediating fusion between the viral envelope and the endosome membrane. Influx of
protons and efflux of potassium from the virus core happen through the acid-activated viral ion channel M2. The pH drop
triggers the activation of a histidine cluster in the virus capsid, contributed by three sequential M1 monomers, and promotes
the capsid disassembly. Further the vRNPs dissociate from the M1 proteins. Free ubiquitin (Ub) chains derived from virus
particles activate the aggresome processing pathway (APP) and recruit HDAC6 through its Ub-binding zinc finger domain
(HDAC6 ZnF). Deubiquitinases (DUBs) could be involved in unanchored Ub formation. HDAC6 binds to M1 and to NP
from vRNPs. HDAC6 by a region between its catalytic domains also binds motor proteins in microtubules and myosin
II in actin microfilaments generating physical forces that help dissociate the M1 proteins, disassembling the virus capsid.
The epidermal growth factor receptor pathway substrate 8 (EPS8) and transportin-1 (TNPO1) interact with M1 from the
capsid and vRNPs, contributing to the disaggregation of the vRNP-associated M1 and vRNP debundling in the cytosol.
In this way, vRNPs are transported by importin α/β to the nucleus as individual rod-shaped structures. PDB: TNPO1
(2Z5J), EPS8 (2E8M), importin α (4B18), DUB (6K9P).

Moreover, HDAC6 knockout mice intratracheally infected with IAV showed reduced
lung viral titers compared to wild type mice, whereas the antiviral immune responses were
comparable ([104] and our unpublished results). This showed that the pro-viral role of
HDAC6 ZnF domain during IAV uncoating influenced the infection outcome. In contrast,
another recent study in which another strain of HDAC6 knockout mice was infected
with IAV showed them to be more susceptible to PR8 H1N1 infection than their wild
type counterpart [225]. In this work, it was argued that the absence of HDAC6 leads to a
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blunted innate response and concomitantly increased susceptibility of mice to IAV infection.
The reason for these differences is not known but might possibly reflect the presence of
different microbiomes in the two strains. In the future, targeted mutation of the HDAC6
ZnF or CD in mice is desired to fully understand the in vivo pro-viral and antiviral effects
of HDAC6, respectively.

3.3. Epidermal Growth Factor Receptor Pathway Substrate 8

The epidermal growth factor receptor pathway substrate 8 (EPS8) is an adaptor
protein involved in signaling via the epidermal growth factor receptor (EGFR) [226,227].
EPS8 also directly binds to actin filaments controlling the rate of polymerization and
depolymerization by capping the fast-growing ends of actin filaments [228–231]. EPS8
regulates intracellular trafficking of membrane receptors through its direct interaction with
the GTPase-activating protein RN-tre, which controls the activity of Rab5, or by interacting
with the clathrin-mediated endocytosis machinery.

A screen for host factors involved in IAV infection by correlating WSN H1N1 infec-
tivity with gene expression profiles of 59 distinct cell lines identified EPS8 as the highest
confidence pro-viral host gene [102]. Knocking out EPS8 in human A549 lung cells de-
creased viral titers in the infected-cell supernatant by 10-fold in multicycle replication
assays. The loss of EPS8 did not affect virus attachment, uptake or fusion. EPS8 physically
associates with incoming virus components possibly through interactions with NP, the viral
polymerase, M1, or bridged by other cellular uncoating factors (Figure 4). EPS8 might
interact with vRNPs by binding to NP as the viral nucleoprotein specifically co-precipitated
with EPS8. Additionally, the import of vRNPs was significantly delayed in cells lacking
EPS8 in comparison to WT cells, leading to a reduction in viral gene expression [102].
EGFR signaling, which promotes IAV entry [232], was unaffected by EPS8 depletion [102].
Although mechanistic details are missing, one can speculate that EPS8 regulates actin
filaments to enhance IAV uncoating [102].

3.4. SPOPL/Cullin 3 Ubiquitin Ligase Complex and EPS15

The maturation of late endosomes/multivesicular bodies entails the spatial and func-
tional separation of the organelles from early endosomes, preparing them as a feeder
pathway to lysosomes [233]. Cellular processes that promote endosome maturation play a
critical role in influenza uncoating. Cullin3 (CUL3)-based E3 ubiquitin ligases regulate en-
docytic trafficking of cargo to lysosomes and endosome maturation. Transfer of cargo from
early endosomes to lysosomes depends on an endosomal maturation process regulated by
a variety of protein- and lipid-based events. They include a small GTPase Rab5-to-Rab7
switch, a PtdIns(3)P to PtdIns(3,5)P2 conversion, and changes in the luminal ion concentra-
tions, such as decrease in pH and increase in K+ concentration [233,234]. Using a siRNA
screen against 130 human Bric-a-Brac/Tramtrack/Broad (BTB) domain proteins in A549
cells, it was found that the Speckle-type POZ protein-like (SPOPL) was crucial for EPS15
ubiquitination by the Cullin RING E3 ubiquitin ligase 3 (CRL3)SPOPL complex. EPS15,
an endocytic adaptor that associates with ESCRT0 proteins HRS and STAM, was necessary
for endosome maturation and IAV capsid disassembly [235]. The depletion of SPOP and
SPOPL gave a similar phenotype to Cul3 depletion [236], showing retention of viral com-
ponents in the endocytic system and inhibition of infection. Ubiquitin-modifying enzymes
that regulate endosome maturation play a yet incompletely understood but important
facilitator role in the successful uncoating of IAVs.

3.5. Transportin 1

In eukaryotic cells, transcription and translation are physically separated by the nu-
clear membrane; transcription occurs only within the nucleus, and translation occurs only
outside the nucleus in the cytoplasm. The nuclear membrane, also known as nuclear enve-
lope, is a phospholipid bilayer that encloses the cell nucleus and is penetrated by nuclear
pore complexes. Small molecules (usually less than 60 kDa) diffuse freely through the
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nuclear pores [237,238]. Alternatively, proteins may shuttle between the cytoplasm and the
nucleus in an active way that is mediated by nuclear localization signals (NLSs) or nuclear
export signals (NESs). In this way, larger molecules are selected by nuclear transport
receptors (also called karyopherins) that carry their cargoes from one compartment to the
other by crossing the nuclear envelope at the level of the nuclear pore complexes [239,240].
Importins mediate the nuclear import of cargos and transportin 1 (TNPO1, also known as
importin-β2, KPNB2) is one of the best-characterized nuclear import receptors [241].

Many viruses depend on nuclear proteins for replication and their viral genome must
enter the nucleus of the host cell. This is the case of most DNA viruses and some RNA
viruses, including orthomyxoviruses and retroviruses. Therefore, it is expected that the life
cycle of these viruses is dependent on transporters (e.g., importins, exportins, transportins)
and regulators (e.g., Ran GTPase). Great effort has been put on deciphering viral nuclear
transport mechanisms [242–245]. In the context of IAV infection, a study using RNAi for
targeting, among other proteins, nuclear pore proteins identified TNPO1 as an important
host factor involved in uncoating. Depletion of TNPO1 in different cells reduced the
number of infected cells and the production of new viruses [103]. It was shown that TNPO1
was important not only for the vRNPs nuclear import, but also for the M1 uncoating and
vRNP debundling in the cytosol [103]. Moreover, the role of TNPO1 in uncoating was
associated with its recognition of a nuclear localization signal as it binds to the exposed M1
N-terminal PY-NLS motif only after capsid acidification. As shown in Figure 4, by recog-
nizing and binding the M1 NLS, TNPO1 promotes the removal of vRNP-associated M1,
which leads to dissociation of vRNPs from each other and facilitates further nuclear import
by importin α and β via the classical NLS-mediated import pathway. It is noteworthy that
as endosomes mature, both decrease in pH and increase in K+ concentration in the lumen
of late endosomes take place, which is important for sufficient priming of the viral core for
uncoating [234]. A high K+ concentration, in particular, promotes dissociation of bundled
vRNPs from each other in an in vitro uncoating assay [234]. The segmented nature of IAV
vRNPs not only promotes reassortment during co-infection [246] but may also allow the
segments to be transported in and out of the nuclear pore individually.

4. Perspectives in the Field of Virus Host Interaction and Capsid Uncoating

Due to their nature, viruses need to constantly interact with their host cells. They are
always trying to either counteract or exploit different cellular mechanisms and pathways
to their advantage. Better understanding the molecular requirements viruses have on host
cells or the immune mechanisms used by the cells to escape infection is important for the
development of novel approaches to fight viral infections.

Despite the availability of licensed vaccines, IAV is estimated to be responsible for
290,000 to 650,000 worldwide flu-associated deaths annually [247] and is of major public
health interest due to its pandemic potential and constant threat to animals and humans.
This review focused on the IAV life cycle highlighting the interactions with the cell host
proteins. Capsid uncoating is a dynamic process that has remained relatively poorly stud-
ied. However, in recent years, progress in this field has been made with the identification
of cellular proteins and pathway involved in IAV uncoating.

Enveloped viruses carry several host proteins in their structural core after budding
has taken place. One of these proteins is Ub, which in the form of unanchored Ub chains,
can recruit cellular proteins in the infected cells, such as HDAC6. Similarly to what happens
to the aggresome and inflammasome pathways, Ub chains recruit HDAC6 that acts as a
scaffold protein, interacting with virus proteins from the capsid and virus genome as well as
with cytoskeletal motor proteins. These interactions generate physical forces that catalyze
the dissociation of the capsid M1 layer underneath the viral envelope. In parallel, EPS8,
TNPO1 and possibly other cellular proteins and kinases such as G protein-coupled receptor
kinase (GRK2) [248], as well as endosome maturation, together contribute to generate the
cellular environment that ultimately leads to uncoating and release of individual vRNPs at
the perinuclear area.
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Considering that other viruses could use a similar mechanism during their virus cycle,
it is important to investigate if the HDAC6-mediated APP is involved in uncoating of
other enveloped viruses that also have Ub in their viral mature particles. Similar to IAV,
other important viruses including HIV-1, Ebola, rabies, HSV-1, VACV, HCMV, VSV, RSV,
also carry Ub in their particles [175–178]. The identification of additional host proteins in
viral particles could give hints to the possible pathways used by viruses during their life
cycle. Considering that host proteins incorporated by viral particles might play crucial
roles, as Ub does, it is important to realize that different host cells may influence the
composition of the host protein profile inside virus particles. This was reported for HIV,
in which the host protein profile in mature particles was found to be different depending on
the cell host from which it originated [177]. This might be even more important for viruses
that transition from one host species to another during their life cycle. Arboviruses (Zika,
dengue, yellow fever, chikungunya, tick borne encephalitis etc.) are examples of viruses
that infect mammals and arthropods during their life cycle. IAV, Ebola and SARS-CoV
are other zoonotic viruses that jump from animals to humans and can be at the origin
of pandemics.

TNPO1 also plays a role in the uncoating of HIV. Similar to the mechanism of IAV
uncoating, TNPO1 binds to HIV capsids, triggers their uncoating and promotes viral nu-
clear import [249]. Given that some of the host proteins that play a fundamental role in
IAV uncoating have been since then shown to participate in the uncoating of other viruses,
it is interesting to think about the potential of interfering with this step of the virus life
cycle by targeting one or more of these host proteins. Indeed, targeting host processes
has a potential advantage of being less likely to give rise to viral resistant variants and to
be of broad use for different viruses. Studies in this direction led to the development of
the only host-targeting antiviral agent among the 20 approved antiretroviral used to treat
HIV patients: maraviroc, a virus entry inhibitor that targets the chemokine receptor CCR5
expressed on the surface of white blood cells [250,251]. However, apart from immunomod-
ulators, almost all antiviral drugs currently approved or under development target viral
proteins. For IAV, NA inhibitors, M2 channel blockers, and PA endonuclease inhibitors
are the three classes of inhibitors approved for treatment [252,253]. The administration
of inhibitors of the M2 ion channel has been discouraged by the CDC due to widespread
pre-existing viral resistance among H3N2 and H1N1 strains [253]. This highlights the need
for new antiviral strategies with novel mechanisms of action and reduced drug resistance
potential. Thus, if one identifies host proteins that are fundamental for the uncoating or
replication of multiple viruses, these would have the potential to become novel targets for
a broad-spectrum antiviral drug. While the main disadvantage of host-targeted antivirals
is the higher risk for host toxicity, an advantage is that the host-targets/proteins can be
studied before a new virus emerges. In addition, a host-targeted approach often offers
a higher barrier to the appearance of viral drug resistance [254]. The development and
approval of such new antivirals could be of great use for viral pandemic preparedness and
complement vaccines.
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