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Abstract

Summary: LAST-TRAIN improves sequence alignment accuracy by inferring substitution and gap

scores that fit the frequencies of substitutions, insertions, and deletions in a given dataset. We

have applied it to mapping DNA reads from IonTorrent and PacBio RS, and we show that it reduces

reference bias for Oxford Nanopore reads.

Availability and Implementation: the source code is freely available at http://last.cbrc.jp/

Contact: mhamada@waseda.jp or mcfrith@edu.k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The classic approach to pair-wise sequence alignment is to seek

alignments that maximize a score, which is a sum of substitution

and gap scores. This is equivalent to seeking alignments with

maximum likelihood, using a statistical model with probabilities

for each kind of substitution (e.g. c!t), insertion, and deletion.

This approach was developed several decades ago, mainly for pro-

teins, but also for nucleotide sequences (Chiaromonte et al., 2002;

States et al., 1991). It is arguably least suited to homology search,

because different homologs of one protein have different levels of di-

vergence, so that one set of parameters cannot be optimal for all

homologs.

Here, we are interested in aligning nucleotide sequences that dif-

fer mainly by sequencing error. Compared to homology search, it is

more likely that a single set of substitution and gap probabilities will

be a universal good fit, for one version of one sequencing technol-

ogy, applied to one type of DNA. On the other hand, these probabil-

ities may be quite different for different technologies, and even for

different versions of the same technology. Moreover, these

probabilities will differ for unusual types of DNA, such as 80%-AT

Plasmodium genomes or PAR-CLIP data (Kerpedjiev et al., 2014).

Thus, it would be useful to have a tool that automatically deter-

mines suitable parameters for a given dataset.

Although the score/model-based approach to alignment is well-

known and classic, it has been surprisingly neglected in recent high-

throughput DNA aligners (Kerpedjiev et al., 2014). It is likely that

accuracy is maximized by using scores that fit the substitution and

gap frequencies in the data.

In this study, we introduce a novel tool, LAST-TRAIN, to train

alignment parameters from sequence data. We use it to train param-

eters for PacBio RS, IonTorrent and Nanopore. Finally, we show

that it mitigates reference bias (haplotypes appearing in the reference

genome tend to be over-estimated) for Oxford Nanopore reads.

2 Methods

LAST-TRAIN’s input is query (e.g. DNA reads) and reference (e.g. a

genome) sequence datasets. It uses a standard iterative approach: it
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first aligns the sequences using some initial score parameters, then

infers better score parameters from the alignments, then re-aligns

and repeats until the parameters stop changing (Durbin et al.,

1998). It achieves adequate speed by an X-drop heuristic (Altschul

et al., 1997; Zhang et al., 1998), it depletes paralogs using LAST-

SPLIT (Frith and Kawaguchi, 2015), and it allows different insertion

and deletion parameters and non-strand-symmetric substitution par-

ameters. Details are in the Supplementary Material S1.

3 Results

3.1 Mitigating reference bias in haplotype phasing
Long-read DNA sequencing is a promising way to determine phas-

ing between DNA variants. Most human cells have two copies, ma-

ternal and paternal, of each chromosome (except Y). Suppose that a

patient has two variants in different exons of one gene, where each

variant destroys the gene’s function but is present in just one

chromosome (maternal or paternal). It is important to know

whether they are in the same chromosome.

A previous study attempted to determine the haplotypes of

CYP2D6, a gene that affects metabolism of clinical drugs, in human

sample NA12878, by PCR amplification of the relevant genomic re-

gion followed by Oxford Nanopore sequencing (Ammar et al.,

2015). This sample is known to have the two haplotypes

CYP2D6*3 and CYP2D6*4, shown in Supplementary Table S14

(Numanagi et al., 2015; Twist et al., 2016), however the original

study found a prominent third haplotype. A later re-analysis (Laver

et al., 2016) suggested two reasons for this. First, chimeric cross-

overs between the two variants appeared during PCR amplification,

producing two false haplotypes. Second, because one of the false

haplotypes matches the reference genome, it was prominently de-

tected after aligning the DNA reads to the reference. The latter phe-

nomenon is termed reference alignment bias.

We reasoned that, if our trained parameters produce more accur-

ate alignments, they should reduce reference bias. Following Ammar

et al. (2015), we used high-quality (2D) reads (SRA1748415): 7540

reads with average length 3486. First, we trained alignment param-

eters using these reads and human reference genome hg19, leading

to the following parameters; the substitution score matrix is

A C G T

A 7 �11 �8 �16

C �7 5 �8 �7

G �5 �8 5 �8

T �19 �12 �13 7

and the gap costs are 12 þ 3k for a length-k deletion and 15 þ 3k

for a length-k insertion.

Second, the haplotypes for two target polymorphism sites

(Supplementary Materials S14) were predicted in the following (dir-

ect and simple) manner. (i) The best alignment was taken for each

read after mapping the read to the reference genome (hg19). (Note

that multiple maps are expected because there is a paralog of

CYP2D6, whose similarity is about 94%.) (ii) Among the obtained

alignments, alignments covering both of the target polymorphism

sites in CYP2D6 were taken and then the count and frequency of

each haplotype were computed from those alignments.

The results are shown in Table 1, indicating that reference bias is

lessened by aligning with trained parameters, compared to

GraphMap (v0.3.0) (Sovic et al., 2016), BLASR (Chaisson and

Tesler, 2012) and LAST with manually-determined parameters.

Specifically, the frequency of the chimeric reference haplotype is

reduced, whereas the frequency of the chimeric non-reference haplo-

type is increased.

In addition, we performed probabilistic alignment (Hamada

et al., 2011) with trained parameters, because probabilistic align-

ment tends to estimate columns in the alignment more accurately

than conventional alignment. Specifically, we used LAMA align-

ment (lastal option ‘-j6’) with c ¼ 2 (Hamada et al., 2011). In this

case, we choose the best alignment using ‘forward’ scores (from

summing the probabilities of all alignments in the X-drop algorithm)

instead of conventional scores (from the single best alignment).

Table 1 suggests that trained parameters with LAMA alignment im-

prove the results further (lower frequency of TT:CC).

3.2 Further results
We applied LAST-TRAIN to PacBio, IonTorrent, and Oxford

Nanopore DNA reads using several available datasets

(Supplementary Materials S2). It successfully recovers known

Table 1. Results of haplotype phasing with Nanopore long reads (NA12878)

GraphMap BLASR LAST LAST þ LAST-TRAIN

Manual (q ¼ 1) Manual (q ¼ 2) Training TrainingþLAMA

Haplotype Polymorphism Count Freq Count Freq Count Freq Count Freq Count Freq Count Freq

TT: CT CYP2D6*4 207 11.9% 227 18.4% 340 20.1% 182 21.2% 327 27.3% 343 27.4%

TT: CC (reference bias) 225 13.0% 329 26.6% 326 19.3% 164 19.1% 160 13.4% 134 10.7%

T�: CT 70 4.0% 31 2.5% 65 3.8% 36 4.2% 75 6.3% 78 6.2%

T�: CC CYP2D6*3 226 13.0% 281 22.8% 232 13.7% 199 23.1% 199 16.6% 217 17.3%

Other 1006 58.1% 367 29.7% 726 43.1% 279 32.4% 436 36.4% 480 38.3%

Total 1734 100.0% 1235 100.0% 1689 100.0% 860 100.0% 1197 100.0% 1252 100.0%

In the first column, TX:CY indicates the phased haplotype where the 1st position (rs35742686) is ‘X’ (‘T’ in the reference genome) and the 2nd position

(rs3892097) is ‘Y’ (‘C’ in the reference genome). See also Supplementary Table S14. The high frequency for TT:CC (the identical haplotype to the reference gen-

ome) is known as reference bias (Laver et al., 2016). The values for ‘BLASR’ were computed from the mapping results in Ammar et al. (2015), where BLASR was

used for mapping Nanopore reads to the reference genome. The column ‘training þ LAMA’ shows the results of probabilistic alignment (Hamada et al., 2011)

using forward scores with the trained parameters by LAST-TRAIN. See Supplementary Materials S7 for the detailed command line options for every tool.
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features, such as PacBio having more insertions than deletions

(Supplementary Materials S4), and we established that a query sam-

ple size of 1–10 million bases is sufficient (Supplementary Materials

S3). Moreover, evaluation on simulated datasets indicates that

trained parameters slightly improved alignment accuracy

(Supplementary Materials S5). Notice that all the trained parameters

and their statistics are shown in supplementary information

(Supplementary Materials S9). Finally, the Supplement has discus-

sion of: last-train versus MarginAlign (Jain et al., 2015), resisting

the temptation of over-alignment, and use of sequence quality data

(Supplementary Materials S8).
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