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Introduction

Control over protein dimerization events is crucial for the

study of protein function and the interplay between protein
oligomerization state and activity.[1, 2] A variety of protein engi-

neering and small-molecule-based approaches have been
developed to induce or inhibit the dimerization of proteins in

a controllable manner.[3, 4] Keeping perturbations of the natural

protein oligomerization mechanism to a minimum and the use
of the same protein construct for studying different oligomeri-

zation states are key to obtaining reliable insights in the effects
of the protein oligomerization state on protein activity; re-

quirements typically not provided when the dimerization state
is tuned using interface mutations.[5] Caspases are prototypical
examples of enzymes the activity of which is strictly under

control of regulated oligomerization mechanisms.[6, 7] Kept in-
active in a monomeric state, their activity is switched-on upon
signaling through dimerization, resulting in induction of apop-
totic pathways.[8] Studies of caspase dimerization mechanisms

and subsequent enzymatic activation have been recurrent re-
search questions and require well-defined protein constructs

allowing the dissection of the molecular effects of the individu-

al oligomerization states.[7, 9–11] Specifically, caspase-8 (casp-8)

has received significant attention in this respect, but studies
are complicated by its potentially mixed oligomerization state

in dilute solution.[12–14]

Casp-8 is a so-called initiator caspase which features a cata-

lytic domain consisting of a large and a small subunit. Fas

ligand, binding to the Fas death receptor, activates a signaling
event, which activates casp-8 via the death-inducing signaling

complex (DISC).[15, 16] The procaspase-8 is autocleaved at pro-
teolytic sites Asp216, Asp374, and Asp384, thereby generating

the active casp-8.[14] A key step in casp-8 activation is the di-
merization of the monomers after proteolytic cleavage, which
results in a number of conformational changes coupled to

active site activation.[17] Studies using designed casp-8 con-
structs have investigated this molecular mechanism in more
detail.[9] Fusion of casp-8 to a FKBP-rapamycin associated pro-
tein domain allowed a dimeric FK506 small molecule analogue

to induce dimerization of this fusion construct, resulting in in-
creased casp-8 activation.[18, 19] Redesigned casp-8 dimer interfa-

ces enable improved dimerization, while not enhancing apop-
tosis.[20] Structural and biochemical studies on casp-8 have pro-
vided new insights through a fully monomeric engineered

casp-8, which features abolished or, interestingly, only reduced
enzymatic activity.[13, 21] In these studies different casp-8 variants

were used to study either the monomer or the dimer state,
thus limiting the possibility to uncouple point-mutation-

induced allosteric effects from the effects of the dimerization

process on the active site.
Supramolecular chemistry has recently emerged as a power-

ful tool for reversible control over protein function, dimeriza-
tion, and assembly.[22–28] Synthetic host–guest systems have

shown relevant orthogonality to proteins. Especially the syn-
thetic donut-shaped cucurbituril class of host molecules has

Caspase-8 constructs featuring an N-terminal FGG sequence

allow for selective twofold recognition by cucurbit[8]uril, which

leads to an increase of the enzymatic activity in a cucurbit[8]
uril dose-dependent manner. This supramolecular switching

has enabled for the first time the study of the same caspase-8
in its two extreme states; as full monomer and as cucurbit[8]

uril induced dimer. A mutated, fully monomeric caspase-8
(D384A), which is enzymatically inactive towards its natural

substrate caspase-3, could be fully reactivated upon addition

of cucurbit[8]uril. In its monomeric state caspase-8 (D384A) still

processes a small synthetic substrate, but not the natural cas-

pase-3 substrate, highlighting the close interplay between pro-
tein dimerization and active site rearrangement for substrate

selectivity. The ability to switch the caspase-8 activity by a
supramolecular system thus provides a flexible approach to

studying the activity of a protein at different oligomerization
states.
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proven to be a strong and selective protein binding element,

capable of inducing the assembly of proteins into well-defined
dimers and larger oligomers.[29–35] The cucurbit[8]uril variant

can simultaneously bind two N-terminal phenylalanine-glycine-
glycine (FGG) peptide elements.[36] This very small genetically

encodable tag is easily incorporated into proteins and is selec-
tive for cucurbit[8]uril binding,[37] allowing for example to

induce the dimerization of FGG-tagged caspase-9 constructs in

a more efficient manner than by dimerization interface point
mutations.[29, 38] Here, we describe the design and generation of

wild-type casp-8 and monomeric mutants of casp-8 featuring
an N-terminal FGG motif and their cucurbit[8]uril-induced acti-

vation (Scheme 1). The thus generated potential to address dif-
ferent activity states of the same casp-8 protein revealed sub-

strate-specific processing, depending on the assembly state of

the protein.

Results

Engineering casp-8

Wild-type casp-8 exists in equilibrium between a monomeric

and a dimeric state in buffered solutions.[39] The casp-8 vari-
ants, casp-8(D384A) and casp-8(F468A) (Scheme 1) are fully

monomeric in buffered solution, even at high protein concen-
trations.[13] The aspartic acid to alanine mutation prevents the

proteolytic cleavage at amino acid site 384 of casp-8(D384A),
resulting in the small subunit still featuring the central ten

amino acids of the intersubunit linker, which may sterically in-

terfere with the dimer formation of casp-8(D384A).[13, 21] Casp-
8(F468A) is not processed at all, and the phenylalanine to

alanine mutation removes cross-strand intermolecular interac-
tions, thus making casp-8(F468A) incompetent to dimerize.[21]

The catalytic domains (residues 217–479) of wild-type casp-
8(wt) and the monomeric mutants casp-8(D384A) and casp-

8(F468A) were therefore selected to provide insights in the

effects of protein oligomerization state on enzyme activity
modulated with cucurbit[8]uril (Scheme 1).

The crystal structure of the catalytic domain of casp-8 (PDB
ID: 1F9E) reveals the two N termini of a casp-8 dimer to be in

close proximity of around 18 a.[40] Therefore, casp-8(wt), casp-
8(D384A) and casp-8(F468A) were genetically provided with a

four amino acid spacer incorporating an FGG motif or an MGG

motif, as non-cucurbit[8]uril binding reference, at their N termi-
ni, not unlike our previous approach for caspase-9.[29] For effi-

cient expression and purification, these constructs were geneti-
cally fused with an intein domain, as autocleavable N-terminal

tag. After expression, the casp-8 constructs were autocleaved
by intein splicing at room temperature and pH 7. After chro-
matographic isolation, the proteins were analyzed by SDS-

PAGE and LC-ESI-MS, confirming their purity and integrity (Sup-
porting Information).

Casp-8 activity on synthetic substrate

The enzymatic activity of the casp-8 constructs, alone and in

the presence of cucurbit[8]uril, was first determined for the
synthetic substrate N-acetyl-Ile-Glu-Thr-Asp-7-amino-4-(trifluor-
omethyl)coumarin (Ac-IETD-AFC).[9] Active casp-8 cleaves this

substrate at the site C terminus to the aspartic acid, thereby
releasing fluorescent AFC. In the absence of cucurbit[8]uril,

FGGcasp-8(wt) and FGGcasp-8(D384A) featured specific activi-
ties of around 600 and 240 units mg@1, respectively (Table 1).

The activity of the two reference proteins, MGGcasp-8(wt) and

MGGcasp-8(D384A), was the same as for the FGG-tagged con-
structs, showing that the type of amino acid at the N terminus

does not modulate activity. The casp-8(D384A) constructs fea-
tured an around 2.5-fold lower activity than the casp-8(wt) and

thus, though demonstrated to be monomeric,[21] still featured
catalytic activity on the synthetic peptide substrate, in line

Scheme 1. Library of engineered caspase-8 (casp-8) proteins and concept of casp-8 activity regulation by monomer–dimer equilibrium and supramolecular
rescue of dimerization and activity through twofold binding of cucurbit[8]uril to the N-terminal FGG-tags. Casp-8(wt) is fully processed into the two subunits
and the intrinsic monomer–dimer equilibrium is shifted to the active dimer upon cucurbit[8]uril binding; Casp-8(F468A) is not proteolytically processed and
cucurbit[8]uril binding does not induce a functional reorganization. Casp-8(D384A) features only a single cleavage site resulting in the linker sequence remain-
ing attached to the small subunit and inhibition of background dimerization and activity, which can be rescued by cucurbit[8]uril, leading to the formation of
catalytically active dimers.
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with previous literature reports.[13] The monomeric and not
proteolytically processed FGGcasp-8(F468A) did, as expected,

not feature any enzymatic activity on the synthetic substrate.

Addition of cucurbit[8]uril to FGGcasp-8(wt) and FGGcasp-
8(D384A), resulted in significant cucurbit[8]uril concentration-

dependent increase of the enzymatic activity (Table 1,
Figure 1). Both FGGcasp-8(wt) and FGGcasp-8(D384A) in-

creased their enzymatic activity to the same end-level of

around 1000 units mg@1. The activity of FGGcasp-8(wt) was
thus enhanced 1.7-fold by cucurbit[8]uril (Table 1). In contrast,

the intrinsically less active FGGcasp-8(D384A) featured an over
fourfold activity increase upon cucurbit[8]uril addition. The
addition of excess cucurbit[8]uril to both FGGcasp-8(wt) and
FGGcasp-8(D384A) did not further affect the activity of the en-
zymes (Figure 1). Next to showing the absence of nonspecific

cucurbit[8]uril effects, the constant enzymatic activity at large
cucurbit[8]uril excess supports the notion that this supramolec-

ularly induced protein dimerization is cooperative.[41] The bi-

valent interaction of the supramolecular motif and the intrinsic
protein dimerization act in concert to form a stable protein

assembly.[29, 32] The two reference proteins, MGGcasp-8(wt) and
MGGcasp-8(D384A), and the inactive FGGcasp-8(F468A) did

not show responsiveness to cucurbit[8]uril, further supporting
the selective mode of action of cucurbit[8]uril.

Casp-8 activity on natural substrate casp-3

In the apoptotic pathway, the initiator casp-8 is responsible for
cleavage and activation of caspase-3 (casp-3), which subse-
quently causes damage of DNA and apoptosis.[6, 42] The engi-
neered casp-8 constructs were therefore incubated with the

natural substrate casp-3 in the absence and presence of cucur-
bit[8]uril, and their activity was followed over time and ana-
lyzed by SDS-PAGE for casp-3 cleavage (Figure 2 and Table 2).

The FGGcasp-8(wt) required approximately 25 minutes to
cleave half of the casp-3 substrate. Upon addition of cucurbit-

[8]uril, this FGGcasp-8(wt) showed a strong, three- to fourfold,

Table 1. Catalytic efficiencies[a] of casp-8 activity for synthetic substrate.

@Cucurbit[8]uril + Cucurbit[8]uril[b] FE

MGGcasp-8(wt) 713:20 645:14 0.9
FGGcasp-8(wt) 606:17 1024:9 1.7
MGGcasp-8(D384A) 223:3 210:7 0.9
FGGcasp-8(D384A) 238:4 1000:18 4.2
FGGcasp-8(F468A) n.a. n.a. –

[a] U mg@1: one unit cleaves 1.0 nmole of Ac-IETD-AFC substrate per hour
at pH 6.5 at 37 8C; FE: fold enhancement. ; n.a. : not active. [b] Cucurbit[8]-
uril at 1 mm.

Figure 1. Dose-dependent effect of cucurbit[8]uril on the enzymatic activity
of FGGcasp-8(wt) (0.15 mm, black) and FGGcasp-8(D384A) (0.15 mm, light
grey) for the Ac-IETD-AFC substrate. The error bars represent the standard
deviation based on three measurements.

Figure 2. Cleavage activity of FGGcasp-8 (wt) and FGGcasp-8(D384A) (both
at 0.15 mm) for casp-3 (4 mm) in the: A, C) absence, and B, D) presence of
cucurbit[8]uril (1 mm). Casp-3 fl (full length) ; ls (large subunit) ; ss (small sub-
unit).

Table 2. Catalytic efficiencies[a] of casp-8 for natural substrate casp-3.

@Cucurbit[8]uril + Cucurbit[8]uril[b] FE

MGGcasp-8(wt) &25 &25 1
FGGcasp-8(wt) &25 &7 3.5
FGGcasp-8(D384A) >4560 &10 >456

[a] Time required for 50 % cleavage of casp-3 by casp-8 [min]. [b] Cucur-
bit[8]uril at 1 mm. FE: fold enhancement.
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increase in enzymatic activity; this supramolecular complex re-
quired only about 7 minutes to cleave half of the casp-3 sub-

strate (Figure 2 B). The activity enhancement effect of cucurbit-
[8]uril for FGG-casp-8(wt) is thus stronger for the natural sub-

strate than for the small synthetic substrate (Table 1). The mon-
omeric FGGcasp-8(D384A) alone was completely incompetent

to cleave casp-3 (Figure 2 C); even after 76 hours, no casp-3
cleavage could be detected. This is in contrast to the signifi-

cant activity of this monomeric construct for the synthetic sub-

strate Ac-IETD-AFC. Interestingly, addition of cucurbit[8]uril to
the inactive FGGcasp-8(D384A) fully reinstated the enzymatic

activity for the natural casp-3 substrate. The cucurbit[8]uril-
induced FGGcasp-8(D384A) dimer required only about 10 min

to cleave half of the casp-3 substrate (Figure 2 D). The resulting
FGGcasp-8(D384A) is, within the error of this assay, just as
active as the wild-type FGGcasp-8(wt) in the presence of cucur-

bit[8]uril. The MGGcasp-8(wt) was similarly active as FGGcasp-
8(wt), but in contrast did not show any response in activity
upon addition of cucurbit[8]uril (Table 2 and Figure S4 in the
Supporting Information).

Discussion

Dimerization has been demonstrated as a crucial prerequisite
for casp-8 activation.[6, 12, 39] The excision of the ten amino acids

(374–384) of the intersubunit linker of casp-8(wt) provides an
advantage for the arrangement of two subunits in close prox-

imity and stabilization of the active site loop, resulting in enzy-

matic activity of casp-8(wt). The mutant casp-8(F468A) exists
completely as a monomer even at high concentration[13] and

does not show catalytic activity. The incompetence for dimeri-
zation of casp-8(F468A) is explained by the absence of a cross-

strand intermolecular interaction, resulting in the absence of
self-proteolytic processing.[21] The lack of enzymatic activity of

casp-8(F468A) is thus connected to its impaired dimerization

capacities, supporting the notion of enzyme active-site rear-
rangement upon dimerization. In surprising contrast, the mu-

tated casp-8(D384A) is still enzymatically active for the synthet-
ic substrate, even though casp-8(D384A) has been demonstrat-

ed to exist in monomeric form in buffered solution. These con-
flicting results are difficult to reason or further interrogate
using the existing point-mutated casp-8 analogues; point mu-
tations in the catalytic protein domain could lead to a plethora

of molecular effects, including loss of dimerization affinity and
impaired active site rearrangement. The complexity of the
mechanism of casp-8 activation is further illustrated by the
processing of the synthetic Ac-IETD-AFC substrate by casp-
8(D384A), but inactivity of the same enzyme towards the natu-

ral casp-3 substrate. An orthogonal means to modulate casp-8
dimerization, uncoupled from active site rearrangement, would

help to shed light on the molecular processes involved.
Cucurbit[8]uril-induced protein dimerization[26, 29, 32, 34, 37] pro-

vides an important biochemical tool to study the correlation

between dimerization and catalytic activity of casp-8. Addition
of cucurbit[8]uril to FGGcasp-8(wt) and FGGcasp-8(D384A) in-

creases the enzymatic activity of both proteins for the synthet-
ic substrate to the same end-value (Figure 1). The cucurbit[8]-

uril probably stabilizes an intrinsic protein interaction by an
increase of the local concentration due to the supramolecular

binding of the appended FGG motifs. This facilitated dimeriza-
tion is significantly different from engineering of the dimeriza-

tion interface of proteins, which typically leads to a permanent
change in dimerization affinity.[2]

The selectivity of cucurbit[8]uril binding only to the FGG
N terminus is exemplified by the absence of an effect of cucur-
bit[8]uril on either MGGcasp-8(wt) or MGGcasp-8(D384A). Inter-

estingly, the maximum activity of the cucurbit[8]uril-induced
FGGcasp-8(D384A) dimer reaches the same level as that of cu-

curbit[8]uril-induced FGGcasp-8(wt) dimer. This demonstrates
the ability of cucurbit[8]uril to enable the rearrangement of
the active site of casp-8 to full enzymatic activity. Addition of
cucurbit[8]uril to FGGcasp-8(F468A) did not induce any enzy-

matic activity, showing that cucurbit[8]uril binding alone is not
sufficient for casp-8 activation. For the FGGcasp-8(F468A), the
point mutation not only affects the capacity for dimerization,

but also hinders effective active-site rearrangement. These
results support the hypothesis that the self-proteolysis process

and the cross-strand intermolecular interaction are both criti-
cally important for activation of casp-8.[21]

Notable differences for the different casp-8 variants were ob-

served regarding the cleavage of the synthetic and the natural
substrates. The cucurbit[8]uril-dependent enhancement of the

FGGcasp-8(wt) construct was stronger for the natural substrate
casp-3 than for the small synthetic substrate, indicating a

different affinity for the substrates between casp-8 monomer
and dimer. This effect was most pronounced for the FGGcasp-

8(D384A) construct. While this protein is still substantially

active towards the synthetic substrate in its monomeric state,
it does not show any enzymatic activity towards the natural

substrate casp-3. Binding of cucurbit[8]uril however reinstates
full activity towards the casp-3 substrate. These results can be

reasoned considering the size and structure of the two differ-
ent substrates. The small synthetic peptide substrate (Ac-IETD-

AFC) might easily access the active site pocket of monomeric

casp-8, wild type or D384A mutant. In contrast, the large,
folded structure of casp-3 does not bind to the active site

pocket of the monomeric form of casp-8. These results suggest
differences in substrate processing by caspases and provide an
explanation for the previously observed, unexpected, catalytic
activity of monomeric casp-8(D384A).[13] Apparently, the cucur-

bit[8]uril binding and resulting dimerization of FGGcasp-
8(D384A) rearranges the loop of the active site which allows
casp-3 to access the active site pocket. Correct casp-8 dimeri-

zation is thus closely coupled to activity and plays a key role in
reorganization of the active site for enzymatic activation.

Conclusion

Cucurbit[8]uril selectively induces enzymatic activity of casp-8
variants having an N-terminal FGG tag, probably by facilitating

protein dimerization. Differences were observed for a number
of mutant casp-8 variants with respect to activity in monomer

versus dimer state and regarding activity towards synthetic
and natural substrate. Casp-8(D384A) in its monomeric form
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cleaves the synthetic substrate, but is incompetent to cleave
the natural casp-3 substrate. Cucurbit[8]uril binding to the N-

terminal FGG motifs of casp-8(D384A) fully reactivates the
enzymatic activity to the level of the wild-type casp-8. These

results imply that casp-8 dimerization is tightly coupled with
active site rearrangement. Classical protein engineering ap-

proaches by introduction of point mutations lead to caspase
proteins that can only be studied in a single state, that is,

monomeric[13] or dimeric.[43] The application of cucurbit[8]uril

now allows the study of these caspases in different states.
Cucurbit[8]uril and the very small genetically encoded FGG
peptide tag thus provide a powerful approach to studying the
molecular mechanism of enzyme dimerization and activation.
Further research into the cucurbit[8]uril-FGG approach will
hopefully address entries to control homo- versus hetero-dime-

rization and cellular applicability. It can be envisioned that this

concept can then also be applied to other relevant protein
activation events in biologically relevant processes.[2, 44]
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Rev. 2016, 45, 24 – 39.

[2] H. Garcia Seisdedos, J. Villegas, E. Levy, Angew. Chem. Int. Ed. 2018,
https://doi.org/10.1002/anie.201806092.

[3] L.-G. Milroy, T. N. Grossmann, S. Hennig, L. Brunsveld, C. Ottmann,
Chem. Rev. 2014, 114, 4695 – 4748.

[4] A. Fegan, B. White, J. C. T. Carlson, C. R. Wagner, Chem. Rev. 2010, 110,
3315 – 3336.

[5] W. E. Stites, Chem. Rev. 1997, 97, 1233 – 1250.
[6] K. M. Boatright, G. S. Salvesen, Curr. Opin. Cell Biol. 2003, 15, 725 – 731.
[7] Q. Hu, D. Wu, W. Chen, Z. Yan, C. Yan, T. He, Q. Liang, Y. Shi, Proc. Natl.

Acad. Sci. USA 2014, 111, 16254 – 16261.
[8] Y. Shi, Mol. Cell 2002, 9, 459 – 470.
[9] A. Oberst, C. Pop, A. G. Tremblay, V. Blais, J.-B. Denault, G. S. Salvesen,

D. R. Green, J. Biol. Chem. 2010, 285, 16632 – 16642.
[10] A. C. Clark, Chem. Rev. 2016, 116, 6666 – 6706.
[11] A. den Hamer, L. J. M. Lemmens, M. A. D. Nijenhuis, C. Ottmann, M.

Merkx, T. F. A. de Greef, L. Brunsveld, ChemBioChem 2017, 18, 331 – 335.
[12] C. Pop, P. Fitzgerald, D. R. Green, G. S. Salvesen, Biochemistry 2007, 46,

4398 – 4407.
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