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Introduction

Chronic cerebral hypoperfusion (CCH) usually results 
from vascular and metabolic diseases including hyperten-
sion, diabetes and atherosclerosis, and is considered as a 
critical risk factor for both vascular dementia (VaD) and 
Alzheimer’s disease (AD).1 Pathologically, CCH triggers 
the formation of amyloid-β (Aβ), tau hyperphosphoryla-
tion and the inflammatory response in the brain, and sub-
sequently leads to white matter damage, neurodegeneration 
and cognitive impairments.2 To date, there is no effective 
treatment for these CCH-related neuropathological 
changes in the brain.

Previously, the renin–angiotensin system (RAS) was 
identified as a crucial component of the circulatory system, 
functioning as a regulator of water and sodium homeosta-
sis.3 In the brain, independent local RAS has been found in 
several regions and structures, and is involved in the 

pathogenesis of several neurological diseases including 
ischaemic stroke, Parkinson’s disease, VaD and AD.4–7 As 
an important component of the brain RAS, angiotensin IV 
(Ang IV) is reported to bind to its receptor AT4R and thus 
restore cognitive function following a variety of central 
insults, including CCH.8,9 However, whether this hexapep-
tide has beneficial effects on CCH-related neuropathologi-
cal changes is less well studied thus far.
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In the present study, we hypothesized that exogenous 
Ang IV infusion might influence CCH-related neuropatho-
logical changes such as Aβ, hyperphosphorylated tau 
(p-tau) and the inflammatory response via a dose-depend-
ent manner. To evaluate this hypothesis, a CCH rat model 
induced by bilateral common carotid artery (CCA) ligation 
was employed. For the first time, we showed that Ang IV 
dose-dependently suppressed inflammation through AT4R 
in the brains of rats with CCH, whereas the levels of Aβ 
and p-tau were unaffected. This beneficial effect of Ang IV 
seemed to be independent from systolic blood pressure 
(SBP). Taken together, these findings suggest that Ang IV/
AT4R may represent a potential therapeutic target for 
CCH-related neurological diseases.

Materials and methods

Reagents

Ang IV and its receptor antagonist divalinal-Ang IV were 
synthesized by Nanjing Maoyuan Biological Technology 
Company. They were dissolved in an artificial cerebrospi-
nal fluid (aCSF, composition in mM: NaCl 130, KCl 2.99, 
CaCl2 0.98, MgCl2·6H2O 0.8, NaHCO3 25, Na2HPO4·12H2O 
0.039 and NaH2PO4·2H2O 0.46) as described.4

Animals

A total of 56 male wistar rats (10–12 weeks old, 300–350 
g) were included in this study. They were purchased from 
the Experimental Animals Center of Nanjing Medical 
University, were housed in a standard animal room with 
a 12 h light/dark cycle, and were given free access to 
food and water. The Animal Care and Management 
Committee of Nanjing First Hospital approved the whole 
study protocol. All animal experiments were conducted 
in accordance with the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health, 
and were reported in accordance with the Animal 
research: Reporting of in vivo experiments (ARRIVE) 
guidelines.10 The number of animals used was minimized 
within the constraints of statistical power.

Surgical procedure

The rat model of CCH was established by bilateral CCA 
ligation surgery, as previously described.6 Rats were 
anaesthetized with 10% chloral hydrate and the bilateral 
CCAs were isolated through a ventral midline incision 
as described.6 Afterward, the bilateral CCAs were ligated 
with a 4-0 surgical silk suture in the CCH group, whereas 
they were not ligated in controls. Throughout the proce-
dure, body temperature was monitored with a rectal 
probe and maintained in the range of 37.0 ± 0.5°C with 
a heating pad.

Treatment

Eight weeks after bilateral CCA ligation surgery, rats were 
anaesthetized with 10% chloral hydrate and placed in a 
stereotactic frame. The scalp was reflected under sterile 
surgical conditions. A brain-infusion cannula (Brain 
Infusion Kit 2; ALZET Inc.) coupled via vinyl tubing to 
an osmotic pump (Model 2006; ALZET Inc.) was 
implanted into the third cerebral ventricle by surgeons 
who were blinded to the experimental groups. Osmotic 
pumps were placed subcutaneously between the scapulae 
and used to infuse two doses of Ang IV (20 nM, 0.15 µl/h 
and 100 nM, 0.15 µl/h), divalinal-Ang IV (500 nM, 0.15 
µl/h) or aCSF (0.15 µl/h) into the third cerebral ventricle, 
lasting for six weeks. Following this surgery, the wounds 
were carefully closed with sutures. The dose and route of 
administration for Ang IV were chosen based on a previ-
ous study by Paris et al.11

Blood pressure measurement

In this study, SBP was measured by a tail cuff method 
using a non-invasive blood pressure analyser (BP-2000, 
Visitech Systems, Inc.), as previously described.12 
Measurements were performed on week 0 (before sur-
gery), week 8 (eight weeks after bilateral CCAs ligation 
surgery) and week 14 (six weeks after treatment) in rats 
between 08:00 a.m. and 12:00 a.m. Each measurement 
was performed three times to obtain a mean SBP. It is 
worth noting that the SBP was not significantly affected 
by bilateral CCA ligation surgery, osmotic pump implan-
tation, or infusion of Ang IV (20 nM or 100 nM) or dival-
inal-Ang IV (500 nM).

Brain tissue preparation

Rats were killed under deep anaesthesia following six 
weeks of treatment. They (n = 8 per group) were perfused 
transcardially with 0.9% saline (pH 7.4), after which brains 
were removed and stored in liquid nitrogen until use.

Enzyme-linked immunosorbent assay

For the measurement of pro-inflammatory cytokines, 
brains were lysed as described.13 The protein levels of 
tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 
and IL-12 were measured by specific enzyme-linked 
immunosorbent assay (ELISA) kits (R&D Systems Inc.). 
For the measurement of Aβ42, the cerebral cortex and hip-
pocampus were separately homogenized in 10 volumes of 
tris-buffered saline containing 5 mM ethylene diamine 
tetraacetic acid (EDTA), phosphatase inhibitor, EDTA-
free protease inhibitor cocktail and 2 mM 1,10-phenanth-
roline at 4°C. The homogenate was centrifuged for 1 h at 
4°C. Supernatants were collected and the levels of Aβ42 
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were detected by a specific ELISA kit. For the measure-
ment of p-tau (Thr181) levels, the cerebral cortex and hip-
pocampus were separately homogenized and lysed as 
previously described.14 The levels of p-tau (Thr181) were 
assessed by a specific ELISA kit.

Statistical analysis

Data were analysed using GraphPad Prism 6 (GraphPad 
Software, Inc.). One-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc test was employed to ana-
lyse differences among groups. Statistical power was 
estimated using STPLAN version 4.3 software. Data are 
expressed as mean ± SD. P < 0.05 was considered 
significant.

Results

Ang IV does not influence Aβ levels in the 
brains of rats with CCH

As demonstrated by Figure 1(a) and (b), rats with CCH 
exhibited higher levels of Aβ42 in the cerebral cortex and 
hippocampus when compared with controls (for cerebral 
cortex: F (4, 35) = 31.41, 629.3 ± 86.4 vs 115.7 ± 21.2 
pg/mg wet tissue, P < 0.05; for hippocampus: F (4, 35) = 
24.49, 966.8 ± 155.4 vs 123.1 ± 25.9 pg/mg wet tissue, P 
< 0.05). Ang IV infusion (20 nM or 100 nM) did not alter 
the levels of Aβ42 in the cerebral cortex of rats with CCH 
(Figure 1(a)). Meanwhile, the levels of Aβ42 in the hip-
pocampus of controls were not significantly affected by 
Ang IV infusion (20 nM or 100 nM, Figure 1(b)).

Ang IV does not affect p-tau levels in the brains 
of rats with CCH

As illustrated by Figure 2(a) and (b), the levels of p-tau in 
the cerebral cortex and hippocampus of rats with CCH 
were markedly higher than those of controls (for cerebral 
cortex: F (4, 35) = 30.42, 22.3 ± 3.6 vs 1.9 ± 0.3 ng/mg 
wet tissue, P < 0.05; for hippocampus: F (4, 35) = 28.24, 
40.9 ± 8.4 vs 3.2 ± 0.8 ng/mg wet tissue, P < 0.05). 
Infusion of Ang IV (20 nM or 100 nM) did not affect the 
levels of p-tau in the cerebral cortex of rats with CCH 
(Figure 2(a)). Meanwhile, p-tau levels in the hippocampus 
of rats with CCH were not significantly affected by infu-
sion of Ang IV (20 nM or 100 nM, Figure 2(b)).

Ang IV suppresses inflammation in the brains 
of rats with CCH

As demonstrated by Figure 3(a)–(d), rats with CCH dis-
played higher protein levels of pro-inflammatory cytokines 
including TNF-α (F (6, 49) = 35.64, 386.2 ± 42.1 vs 76.9 
± 11.7 pg/mg wet tissue, P < 0.05), IL-1β (F (6, 49) = 
27.43, 783.4 ± 128.3 vs 215.7 ± 38.5 pg/mg wet tissue, P 
< 0.05), IL-6 (F (6, 49) = 38.88, 1124.5 ± 158.2 vs 94.6 
± 18.5 pg/mg wet tissue, P < 0.05) and IL-12 (F (6, 49) = 
39.24, 152.7 ± 32.6 vs 34.8 ± 7.3 pg/mg wet tissue, P < 
0.05) in the brain when compared with controls. Infusion 
of Ang IV (20 nM or 100 nM) significantly reduced the 
protein levels of TNF-α, IL-1β, IL-6 and IL-12 in the 
brains of rats with CCH (Figure 3(a)–(d), all P < 0.05). 
Meanwhile, the reduction of TNF-α, IL-1β, IL-6 and 
IL-12 protein levels caused by Ang IV (100 nM) in the 

Figure 1. Angiotensin IV does not influence amyloid-β levels in brains of rats with chronic cerebral hypoperfusion. (a) The levels 
of amyloid-β42 in the cerebral cortex were detected by enzyme-linked immunosorbent assay. (b) The levels of amyloid-β42 in the 
hippocampus were detected by enzyme-linked immunosorbent assay. Data were analysed by one-way analysis of variance followed 
by Tukey’s post hoc test. Columns represent mean ± SD. n = 8 per group.
*P < 0.05 versus controls.
Aβ: amyloid-β; aCSF: artificial cerebrospinal fluid; Ang IV: angiotensin IV; CCH: chronic cerebral hypoperfusion.
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brains of rats with CCH was completely reversed by infu-
sion of divalinal-Ang IV (500 nM, Figure 3(a)–(d), all P < 
0.05). Of note, neither osmotic pump implantation nor 
divalinal-Ang IV (500 nM) infusion significantly influ-
enced the protein levels of TNF-α, IL-1β, IL-6 or IL-12 in 
the brains of rats with CCH (Figure 3(a)–(d)).

Discussion

Emerging evidence has indicated that CCH is associated 
with an increased inflammatory response in the brain.15,16 
This may be a consequence of Aβ formation and tau 
hyperphosphorylation induced by CCH.17,18 Although the 
inflammatory response is crucial for the brain to remove 
senescent cells and extrinsic pathogenic substances, long-
lasting neuroinflammation is toxic to neurons and syn-
apses, and thus contributes to neurodegeneration, white 
matter damage and cognitive impairments.19–22 In this 
study, we confirmed previous findings by showing higher 
protein levels of pro-inflammatory cytokines including 
TNF-α, IL-1β, IL-6 and IL-12 in the brains of rats with 
CCH. More importantly, we revealed for the first time that 
Ang IV suppressed this inflammatory response via a dose-
dependent manner, which was independent from SBP. The 
anti-inflammatory property of Ang IV has been previously 
validated under various conditions. In a rat model of myo-
cardial ischaemia-reperfusion, Park and colleagues found 
that Ang IV suppressed the inflammatory response in car-
diomyocytes and thus exerted cardioprotective effects.23 In 
a previous study by Kong et al., treatment with a medium 
dose of Ang IV markedly reduced the expression of pro-
inflammatory cytokines in a mouse model of abdominal 

aortic aneurysm induced by angiotensin II.24 More recently, 
in a mouse model of AD, Royea and colleagues revealed 
that the anti-inflammatory effect of losartan was actually 
achieved by Ang IV.25 Meanwhile, in this study, we also 
revealed that the anti-inflammatory property of Ang IV 
was mediated by AT4R, and this finding was consistent 
with previous observations from other groups.23–25 
Nevertheless, Kong and colleagues showed that Ang IV 
may potentially affect the expression of AT2R.24 
Meanwhile, recent evidence suggests that Ang IV may 
exert its function via hepatocyte growth factor (HGF)/c-
Met signalling.26 Interestingly, activation of AT2R or HGF/
c-Met signalling was revealed to suppress the inflammatory 
response in different tissues.27–30 Therefore, whether AT2R 
or HGF/c-Met signalling was involved in the anti-inflam-
matory properties of Ang IV under the context of CCH 
deserves further investigation in the future.

Lastly, some minor issues should be mentioned. First, 
in the present study, we did not elucidate the precise cel-
lular mechanisms by which Ang IV suppressed inflamma-
tion in the brain with CCH. Since AT4R has been identified 
in rat astrocytes,31 we speculated that Ang IV may exert its 
anti-inflammatory function by inhibition of the astrocyte-
mediated inflammatory response. This speculation needs 
to be verified in the future. Second, in this study, although 
Ang IV infusion significantly suppressed inflammation in 
the brains of rats with CCH, it did not affect AD-like neu-
ropathology including Aβ42 and p-tau. These findings 
were in accordance with a previous study from Royea and 
colleagues showing that Ang IV did not influence AD-like 
neuropathology in a mouse model of AD,25 suggesting that 
this hexapeptide may not be involved in the formation or 

Figure 2. Angiotensin IV does not affect p-tau levels in brains of rats with chronic cerebral hypoperfusion. (a) The levels of 
p-tau (Thr181) in the cerebral cortex were detected by enzyme-linked immunosorbent assay. (b) The levels of p-tau (Thr181) in the 
hippocampus were detected by enzyme-linked immunosorbent assay. Data were analysed by one-way analysis of variance followed 
by Tukey’s post hoc test. Columns represent mean ± SD. n = 8 per group. *P < 0.05 vs controls. aCSF: artificial cerebrospinal 
fluid; Ang IV: angiotensin IV; CCH: chronic cerebral hypoperfusion.
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degradation of these neuropathological changes. However, 
it is also possible that the six-week central infusion of Ang 
IV is not enough to cause obvious alterations in Aβ42 and 
p-tau levels. Unfortunately, the limited working duration 
of osmotic pumps suitable for rats (maximum six weeks, 
Model: 2006D) prevented us from observing longer effects 
of Ang IV. Third, we delivered Ang IV to the brain via an 

intracerebroventricular infusion strategy because this pep-
tide cannot readily penetrate the blood brain barrier (BBB) 
and is rapidly degraded by several proteases in the periph-
eral tissues.32 This property largely restricts the application 
of Ang IV in animal and clinical research. In view of this 
fact, artificial synthetic Ang IV analogues with oral effi-
cacy, extended half-life and increased BBB penetrability 

Figure 3. Angiotensin IV suppresses inflammation in the brains of rats with chronic cerebral hypoperfusion. (a) The protein 
levels of tumour necrosis factor-α in the brain were detected by enzyme-linked immunosorbent assay. (b) The protein levels of 
interleukin-1β in the brain were detected by enzyme-linked immunosorbent assay. (c) The protein levels of interleukin-6 in the 
brain were detected by enzyme-linked immunosorbent assay. (d) The protein levels of interleukin-12 in the brain were detected 
by enzyme-linked immunosorbent assay. Data were analysed by one-way analysis of variance followed by Tukey’s post hoc test. 
Columns represent mean ± SD. n = 8 per group.
*P < 0.05 versus controls. #P < 0.05 versus CCH+aCSF group. &P < 0.05 versus CCH+Ang IV (100 nM) group.
aCSF: artificial cerebrospinal fluid; Ang IV: angiotensin IV; CCH: chronic cerebral hypoperfusion; IL: interleukin; TNF: tumour necrosis factor.
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such as Nle1-AngIV and Dihexa will be employed in our 
future studies.33,34

In conclusion, this study provided the first evidence 
that Ang IV dose-dependently suppresses inflammation 
through AT4R in the brains of rats with CCH, whereas the 
levels of Aβ42 and p-tau were unaffected. Meanwhile, the 
anti-inflammatory effect of Ang IV seemed to be inde-
pendent from SBP. These findings suggest that Ang IV/
AT4R may represent a potential therapeutic target for 
CCH-related neurological diseases.
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