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Abstract

Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be
associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation
tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-
dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present
CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes
for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates ‘‘genomic metabolons’’, i.e.
groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time.
These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step,
they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step
integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of
family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families
which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a
sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote
organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70
distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the
anaerobic allantoin degradation pathway in Escherichia coli K-12.
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Introduction

Approximately 27% of all enzymatic activities recognized by the

IUBMB [www.iubmb.org] are still sequence-orphan metabolic

activities (dubbed ‘‘orphan enzymes’’ for short) in the UniProt

databank [1], a number that has decreased slowly over the past

years [2–4]. It would, of course, be too time-consuming and costly

to conduct wet-lab experiments to test all known activities against

all genes from the exponentially increasing number of sequenced

genomes. Instead, bioinformatics tools have been developed in

order to help annotate newly sequenced genes and to guide

biologists in selecting the right candidate genes for further

experimental testing. These tools can be classified into two types:

1) those transferring existing annotations between genes belonging

to different organisms on the basis of detected homology (inferred

using clues such as high sequence similarity, domain conservation,

or feature-based similarities), and 2) those using ‘‘context-based’’

methods capable of inferring functions from existing gene

annotations in the same organism, on the basis of detected

functional dependence (inferred from clues such as those presented

in the following paragraph). Due to the lack of any sequence data,

tools based on sequence similarity detection cannot be used to

solve the ‘‘orphan enzyme’’ problem, and research has turned to

context-based approaches.

Various indicators of prokaryote genes being functionally

dependent have been devised in the literature. The foremost of

these are collectively termed as ‘‘genomic context’’, and include

gene clustering [5], phylogenetic profiles [6], and gene fusion/

fission [7,8]. ‘‘Metabolic context’’, for its part, refers in an informal

way to the sum of all metabolic knowledge for the genes of a given

genomic context. Many ways of exploiting these contextual

indicators have been imagined. Manual integration of diverse

comparative genomics data sources by expert bioanalysts is an

obvious approach, formalized (amongst others) in [5] and [9].

Such strategies have since been put into application in various

bioinformatics platforms such as IMG [10], MicroScope [11,12],

the SEED [13] and ERGO [14].

Only a few tools based on these context-based methods have

been developed over the past decade with the specific goal of

solving the ‘‘orphan enzyme’’ problem. The PathwayHoleFiller-

GenomicContext [15] is an improvement over a previous method

[16] that allows genomic context similarity measures (gene
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neighbors, gene clusters, gene fusion, or phylogenetic profile

methods, see [17]) as well as metabolic context to be taken into

account in a Bayesian classifier. ADOMETA [18] uses various

scores (based on gene co-expression, phylogenetic profile similar-

ity, gene clustering, and protein interaction data) integrated using

a simple likelihood approach to fill in the missing reactions for

three organisms having specifically reconstructed metabolic

networks. Yaminishi et al. [19] use a kernel approach to integrate

two data sources (gene proximity and phylogenetic profiles) to

build a global network onto which they project an organism’s

known reaction set. They then search manually for candidate

genes corresponding to orphan reactions based on their operon-

like results. Chen et al. [20] combine gene sequence similarity and

gene proximity across many genomes to establish path-based

scores as a functional dependence measure, which is then used to

rank candidate genes for pathway holes, including orphan

enzymatic activities. Other resources can be exploited manually

for finding candidate genes for orphan enzymes using context-

based functional dependency measures, such as the STRING [21].

Inspired by the modus operandi of human expert research

conducted at the Genoscope [22–24], we have developed CanOE

(Candidates for Orphan Enzymes), an automated strategy that

exploits genomic and metabolic contextual information by a

graph-based algorithm. This strategy has been integrated into our

in-lab genome annotation platform, called MicroScope, and uses

its set of expert curated annotations as input, with the objective of

improving the reconstructed metabolic networks from the

MicroCyc component of the platform [11,12]. Its results are

available via a web interface at the following URL: http://www.

genoscope.cns.fr/agc/microscope/metabolism/canoe.php

The principle of our strategy lies in the continuity of previous

works [25–27]. A first step involves searching for groups of genes

corresponding to groups of reactions participating in a same

metabolic process. This is done by looking for groups of adjacent

genes encoding enzymes catalyzing connected reactions, allowing

for gene and reaction gaps. We called the functional units thus

identified ‘‘genomic metabolons’’ (in reference to biological

metabolons [28]), and they form the basis for the proposition of

potential associations (i.e. hypothetical annotations) between gene

gaps and reactions gaps in the second step. The third step

integrates known and potential associations over all available

genomes by building gene families and calculating family-reaction

association scores. Finally, these scores are used to rank candidate

gene-reaction associations. This is particularly interesting when a

reaction gap actually corresponds to an orphan enzymatic activity,

but can also be used as additional support when transferring

annotations on the basis of limited sequence similarity. In this

article, we detail the strategy’s primary data and operational steps,

as well as the evaluation of the performance of our association

scores with a benchmarking test. We present a biological case

study showing the usefulness of our approach, and finally highlight

in which ways our strategy sets itself apart from previous methods.

Materials and Methods

Primary genomic and metabolic data
The first step of our strategy requires three types of input data:

1) a gene graph, modeling gene contiguity in a target genome; 2) a

reaction graph, modeling the global (i.e. pathway- and organism-

independent) metabolic network we wish to work with; and 3) the

set of all already-known gene-reaction associations, i.e. all current

functional annotations in the target genome. These data sources

are detailed hereafter.

Gene graphs are built separately for each genome from the

MicroScope database (1117 available at the time of writing). The

gene graph represents all protein-coding genome features (‘‘genes’’

here) of a single prokaryote organism as vertices. In this work, we

use gene contiguity as an indicator of functional dependence.

Immediately consecutive genes are thus connected by edges,

ignoring gene transcription direction and intergenic distance, as

bidirectionally-translated operons have been observed [29,30]. We

thus are independent of operon, regulon, stimulon and über-

operon definitions [31], though our metabolons will be still able to

capture some parts of such structures.

The reaction graph represents metabolic reactions as vertices.

We link two reactions by an edge when the product of one is a

substrate of the other. However, to avoid the high connectivity

problems that are common when building such metabolic

networks, we limited such shared compounds to ‘‘main com-

pounds’’, i.e. metabolites deemed biologically relevant to both

reactions in at least one metabolic pathway (for example,

phosphoenolpyruvate, but not water, in the glycolysis pathway).

Main compounds are arbitrarily defined as such by biochemists on

the basis of atom-tracing experiments, molecular structure

conservation, or other data. The modeled reactions were extracted

from MetaCyc 15.0 [32], but any other generalist metabolic

database (preferentially one containing main compound data) can

be used (e.g. Rhea [33], KEGG reactions [34]…). The metabolic

network is global, as it contains all known metabolic reactions and

is not split into separate, disconnected pathways. It is thus not

organism-specific, guaranteeing maximal metabolic freedom.

Finally, we retrieved functional annotations from the Micro-

Scope platform (and in the case of Escherichia coli K-12, additionally

from EcoCyc [35]) to benefit from its high level of expert manual

curation. The MicroCyc component of MicroScope gathers a set

of Pathway Genome DataBases (PGDBs) which were built using

the Pathway Tools software [36] and with the MetaCyc database

[32] as a reference. Gene-reaction associations are extracted from

these PGDBs and used to link elements from the gene graph to

those of the reaction graph. This creates a new graph, called the

Author Summary

The discovery of the various metabolic functions catalyzed
by enzymes encoded by the genes from the exponentially
increasing number of sequenced genomes is one of the
main focuses of bioinformatics tools today. However, most
of these tools rely on already identified enzyme-coding
gene or protein sequence information to predict known
enzymatic activities in new genomes. Therefore, they
cannot be used to reveal metabolic activities without any
corresponding sequenced genes, dubbed ‘‘sequence-
orphan activities’’. In such cases, the best approach is the
bioanalysis of target genes by human expert curators,
manually integrating so-called ‘‘context-based informa-
tion’’ (such as gene co-localization on the genome, or the
presence of incomplete metabolic pathways) to infer novel
functions. Few bioinformatics tools exploit such informa-
tion and render accessible results in an automated way.
Here, we present ‘‘CanOE’’, a strategy that uses contextual
information to propose and rank Candidate genes for
Orphan Enzymes in Bacteria and Archaea. Beyond the
merit of extending our knowledge and comprehension of
prokaryote metabolism, identifying coding genes for
sequence-orphan activities opens new opportunities for
functional annotation (homology-based transfer made
accessible), drug design (new metabolic targets), synthetic
biology (new building blocks) and biotechnology applica-
tions (new biocatalysts).

CanOE: Fishing Candidate Genes for Orphan Enzymes
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‘‘data graph’’, which has two types of vertex (genes and reactions)

and three types of edge (gene-gene edges, reaction-reaction edges,

and gene-reaction edges). The previously described gene-reaction

associations are flagged as ‘‘Known’’, as they correspond to the

current state of biological knowledge. The metabolic network is

thus populated specifically for each organism by reactions known

to be catalyzed within them. It should be noted that multiple

reactions can be linked to a same gene (e.g. bi-functional genes or

enzymes with wide substrate specificity), and conversely, multiple

genes can be linked to a same reaction (e.g. enzymes with several

subunits). Details on graph construction can be found in [Text S1].

Finding candidate genes for orphan enzymes
Two kinds of ‘‘reaction knowledge hole’’ can be formalized in

metabolic networks [37]. The first kind is the gap reaction, i.e. a

missing reaction in an organism-specific metabolic network

reconstruction whose presence appears necessary for the network

to be complete (without spurious dead-end metabolites). Basically,

no experimental results necessarily confirm its presence in an

organism, but metabolic context within the organism suggests it.

The other kind of ‘‘reaction knowledge hole’’ is the orphan
reaction, i.e. an enzymatic activity thought to be present in an

organism (preferably with experimental evidence) but without any

known coding genes. Reactions can be orphans in a specific target

organism (local orphan), or for all known organisms (global
orphan). In this article, we work exclusively with prokaryote

organisms from the MicroScope platform; a reaction is thus

considered as a global orphan when it has no known coding genes

in any of the platform’s prokaryote organisms (even though it may

have coding genes in eukaryote species). In an organism-specific

metabolic network, global orphan reactions (if present) may

appear as gap reactions. On the other hand, gap reactions may be

either local or global orphan reactions.

The CanOE strategy will first detect potential gap reactions by

computing metabolons in a global metabolic network populated

by reactions known to be catalyzed in the target organism. It will

then propose candidate genes for these gap reactions, be they local

orphan reactions or global orphans across all of MicroScope’s

genomes.

Building metabolons. The previously built data graph is

processed by a modified version of the Common Connected

Component Partitioner (C3P) [26,27]. This exact algorithm

partitions the data graph into a set of largest possible subgraphs

(Common Connected Components, CCCs) which verify that a)

their gene graph part is a connected component (i.e. any vertex can

be reached from any other vertex by a path in the graph), b) their

reaction graph part is a connected component, c) each gene is

connected to at least one reaction and vice-versa, and d) that the

final subgraph is built on a maximal number of gene-reaction

associations. Let us note that by construction, a given gene-

reaction association can be present in only a single metabolon,

though a gene or reaction may be present in multiple metabolons

due to it belonging to multiple gene-reaction associations.

Metabolon gene and reaction gaps are technically introduced by

using the g-partial transitive closures of the gene and reaction

graphs, where g is the number of gaps (i.e. the number of

intermediate vertices) allowed. Metabolon gaps are recovered by a

CCC post-processing step, detailed in [Text S2]. Metabolon

reaction gaps determined in this way may correspond to ‘‘gap

reactions’’ as described above, or they can correspond to reactions

catalyzed by genes located elsewhere on the genome. In the

CanOE strategy, the g parameter was empirically fixed to 3 for the

metabolon gene gaps and to 2 for metabolon reaction gaps.

Indeed, the average size of E. coli multi-gene transcription units

defined in RegulonDB [38] is 3.2 genes, and 90.5% of all known

transcription units could be covered by using a gene gap

parameter of 3 even in the worst case scenario (i.e. two genes

separated by 3 gene gaps); furthermore, the mean distance

between any two vertices in our global metabolic network is 1.9

intermediate vertices, and 71.3% of all reaction vertex pairs can be

joined using a reaction gap parameter of 2. Finally, we set the

minimal number of genes, reactions and Known gene-reaction

associations for a CCC to be retained to 2, 2 and 2, respectively.

Each CCC (with recovered gaps) corresponds to one genomic

metabolon, and is saved in the MicroScope database. ‘‘Potential’’
gene-reaction associations are then generated between metabolon

gene and reaction gaps and are held for further analysis in the next

step. In the example metabolon illustrated in [Figure 1], reaction r4

Figure 1. An example metabolon. One genomic metabolon containing a) 6 genes represented by arrows (gA–gF) of which two are gaps (gB and
gE); and b) 5 reactions represented by rectangles (r1–r5) of which one gap (r4). Sequential genes are joined. Reactions are joined together by shared
main compounds, i.e. compounds relevant to at least one biological pathway, represented here as deep blue circles. Gene annotations are
materialized by Known gene-reaction association edges, in green. Potential gene-reaction associations are proposed between gene and reaction
gaps, in dotted pink. For each Potential association, a Minimal Path Length (‘‘MPL’’) is computed. The MPL is defined here as the minimal number of
non-Potential edges that must be walked to join a gene gap to a reaction gap (illustrated in the detail shot). Each Potential association is then
weighted by apotential/MPL, where apotential is arbitrarily set to 0.1.
doi:10.1371/journal.pcbi.1002540.g001

CanOE: Fishing Candidate Genes for Orphan Enzymes
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and gene gB are gaps, and a Potential association is proposed

(materialized by a dotted pink line). The strength of our method lies

in the fact that these associations are generated without use of

sequence data, allowing it to propose candidate genes even for

sequence-orphan reactions.

Weighting and scoring proposed gene-reaction associa-

tions. For each Known or Potential gene-reaction association in

a metabolon, we compute a score based on their Minimal Path

Length (hereafter MPL), which is defined as the length of the

shortest path traversing the metabolon graph between the

concerned gene and the concerned reaction (details given in

[Text S3]). To obtain a meaningful context-based measure of

distance between the two, only Known edges may be traversed

between genes and reactions (all gene-gene and reaction-reaction

edges are allowed); furthermore, if the association for which the

MPL is being calculated is already Known, its own edge is not

traversed, ensuring that the MPL captures a measure of local

gene/reaction colinearity. Establishing the MPL is illustrated in

the focus inset of [Figure 1], between gene gE and reaction r4. The

weight wG,R of a (gene G, reaction R) edge is set to a/MPL, where

a is a constant factor specific to the type of association, intuitively

and arbitrarily set to favor Known associations over Potential ones

(typically: aknown = 1 = 10*apotential). In metabolons with multiple

gene and/or reaction gaps, these weights allow us to prioritize

candidate genes that are topologically close to the metabolon

reaction gap. This biological prior was established by observing

the distribution of the MPL measure for all Known associations,

given in [Figure S1].

Gene-reaction associations are then evaluated using ‘‘gene-level

association scores’’, i.e. scores measuring the strength of the

association of genes to reactions or reactions to genes, given all the

metabolon evidence across a given genome. For a given gene G in

organism O, for a given reaction R, the gene-to-reaction score is the

ratio of the weight of the association (G,R) over all the associations

(G,*) for all reactions across the entire metabolic network:

ScoreG?R~
wG,RP

r

wG,r

Likewise, the reaction-to-gene score is the ratio of the weight of the

association (G,R) over all the associations (*,R) for all genes in the

target Organism O:

ScoreR?G~
wG,RP

g[O

wg,R

These descriptors evaluate the association strength between a given

gene and a given reaction, taking into account other associations

that both belong to. They can thus be used to rank candidate

reactions for given genes, or candidate genes for given reactions. We

will compare them to equivalent family-level descriptors in order to

show that integrating results over all organisms is worthwhile.

Integrating over all organisms. Even if the existence of a

metabolon is good support for a Potential (gene gap, reaction gap)

association, it is difficult to evaluate how credible the proposition is

without checking for its presence in several other organisms. The

next step of our strategy is therefore dedicated to the integration of

metabolon data across all the prokaryote genomes stored in

MicroScope, with the idea that metabolon structures should be

partially or exactly conserved across several organisms. [Step 1 of

Figure 2] is an illustrative example of this approach, representing

three metabolons with common reactions from three different

organisms. The MPL measure is given for Potential associations

and Known associations of interest (e.g. 3 for g1G and r4 in

metabolon M1).

To integrate over all organisms, we built vertical relationships

between genes of different organisms with a home-tailored gene

clustering procedure based on the OrthoMCL algorithm [39]

which uses protein sequence similarity as a metric between genes,

as described in [Text S4]. These families are materialized in the

example from [Step 1 of Figure 2] by the gene labels, e.g. gene g2D

belongs to family D.

We analyzed the combined Gene Ontology annotations [40] of

any Interpro domains [41] the families contained. Whenever

possible, gene families that could be established as non-metabolic

(i.e. not encoding enzymes participating in metabolism) according

to the GO terms were flagged as such (for details see [Text S5]).

All Potential gene-reaction associations from these families were

then removed from further analysis, as we are only concerned with

metabolic reactions. This was particularly useful in eliminating

candidate associations from large conserved protein families like

ABC transporters and various regulators which are commonly

included within metabolic operons.

In some cases, CanOE may find in one metabolon a Potential

association between a given reaction and a gene belonging to a family,

within which another member is already known to be associated to

this reaction. For example, in metabolon M3 of [Figure 2], gene g3F

has a proposed Potential association with reaction r5, whereas g2F,

another gene from family F, is already associated to r5 by a Known

association in metabolon M2. We consider this sufficient evidence to

transfer the annotation from g2F to g3F, labeling the (g3F, r5)

association as ‘‘Inferred’’ rather than Potential (materialized by a

solid blue arc in Step 2). Inferred associations are weighted like

Known associations (ainferred =aknown). At the same time, g3F and r5

cease to be gaps in metabolon M3, thus removing any other Potential

associations concerning them (these are (g3F, r4) and (g3D, r5),

materialized by red crosses in step 2). This is useful in eliminating

some false positive Potential associations generated by CanOE. We

argue that this annotation transfer is safer than traditional transfer on

the basis of sequence similarity, as we have here the additional

condition that the metabolic context must be sufficiently conserved to

be able to propose the corresponding Potential association.

In order to quantify the support for a family-reaction

association, we calculated three family-level descriptors reminis-

cent of the previously-defined gene-level association scores, that

take into account all Known, Inferred and Potential gene-reaction

associations across all organisms. For a given association between

family F and reaction R, the Coverage (Coverage F,R) is the fraction

of the genes from the family associated with the given reaction,

whatever the association category:

CoverageF ,R~

P

g[F

d(g,R)

Fj j

Where d(g,t) is 1 when gene g is associated to reaction t (by

Known, Potential or Inferred associations), and is 0 otherwise; |F|

is the number of genes in family F. The Family-to-Reaction

association score (Score FRR) is the fraction of the weight of all gene-

reaction associations possessed by the family F that involve the

given reaction R:

ScoreF?R~

P

g[F

wg,R

P

r

P

g[F

wg,r

CanOE: Fishing Candidate Genes for Orphan Enzymes
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Figure 2. The CanOE strategy. Step 1: CanOE locates three metabolons (M1, M2 and M3) located in 3 different prokaryote genomes (org1, org2,
org3). Relevant minimal path lengths (MinPathLengths, MPL) are given for their associations. For example, gene g3D has a Potential association with
reaction r4, with a corresponding MPL of 3. Non-metabolic genes are gray and are not candidates for Potential associations. Gene families are

CanOE: Fishing Candidate Genes for Orphan Enzymes
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The Reaction-to-Family association score (Score RRF) is the

fraction of the weight of all gene-reaction associations possessed by

the reaction R that involve the given family F:

ScoreR?F ~

P

g[F

wg,R

P

f

P

g[F

wg,R
~

P

g[F

wg,R

P

g

wg,R

Examples of reaction-to-family association scores are given [Step 2

of Figure 2].

Each of these scores reflects the strength of the association

between a given reaction and a given family: the Coverage gives a

general idea of the association by counting the number of

members of the family that are associated the reaction; the two

selectivity scores are finer and capture the asymmetry of family-

reaction associations. It is important to note that these family-level

descriptors differ from the gene-level descriptors in three ways: 1)

they use Known, Potential and Inferred gene-reaction associa-

tions, whereas gene-level descriptors only use Known and

Potential associations; 2) less Potential associations are available

to family-level descriptors as the inference step has removed some

of them; and most importantly 3) family-level descriptor values are

not calculated per genome but for all MicroScope-available

genomes.

Candidate gene ranking. Family-level association scores

integrate information across several organisms about the associ-

ation strength between member genes and target reactions. Our

objective is to make both gene- and family-level scores available to

bioanalysts annotating genes as indicators of how likely their target

genes encode enzymes catalyzing the target reactions. It is then

possible to rank candidate reactions for a given gene, or candidate

genes for a given reaction, in each organism using either gene-level

or family-level scores. [Step 3 of Figure 2] shows the ranking of

candidate genes according to the reaction-to-family association

score, for each (organism, reaction) couple. In order to evaluate

how informative the generated ranks were, we carried out the

following benchmarking experiment.

Benchmarking
In our benchmarking experiment, we considered the set of all

metabolic reactions having at least one Known gene-reaction

association involved in a metabolon (since the method does not

make predictions for genes and reactions not involved in

metabolons). For each reaction from this set, we removed all the

gene-reaction associations involving that reaction in all organisms

(effectively rendering it a sequence-orphan reaction), and recalcu-

lated all gene- and family-level association scores, for which we

consider the rank of the genuine gene-reaction associations.

Results were pooled across all reactions from the set.

A recovered gene-reaction association is considered as a positive

hit when its rank (according to a chosen score) is below a certain

threshold k. All recovered associations can be declared as positive

hits by taking k = ‘.

For a level of k, we defined true positive associations (TP) as the

number of genuine gene-reaction associations that were recovered

in the experiment in respect to the original CanOE run, false

negative associations (FN) as those that were not recovered, and

false positives (FP) as Potential associations that were proposed that

did not correspond to Known associations in the original run. We

then classically compute the recall (or sensitivity) as the fraction of

recovered associations (TP/(TP+FN)) and the precision as the

fraction of correctly predicted associations (TP/(TP+FP)).

In order to gauge how indicative our family-reaction descriptors

are of gene-reaction association strength, we examined the

evolution of the recall and the precision while varying the rank

threshold k (i.e. keeping only the k-best associations for each gene),

thus generating a precision-recall curve for each score.

Results

General results
The genomes of 1,090 prokaryotes from the MicroScope

platform produced a total of 61,670 metabolons, leading to an

approximate average of 57 metabolons per organism (see [Figure

S2]). E. coli K-12, at 105 metabolons, is comparatively rich. A brief

analysis showed that 78 of these metabolons (74%) shared at least

two genes with operons defined by RegulonDB [38]. All in all, the

density of genomic metabolons is consistent with previous findings,

given the current state of functional annotation amongst bacterial

genomes [25].

These organisms contained a total of 4,646,851 genes, of which

1,088,330 (32.6%) had metabolic annotations (i.e. genes coding for

enzymes represented in the MicroCyc database). The metabolons

themselves covered 215,968 of these genes (19.8%). When

considering the well-annotated genome of E. coli K-12, 1,441

out of 4,414 genes (30.7%) were annotated with metabolic

activities, and 399 of these (27.7%) were in a metabolon. The

per-organism gene coverage of the metabolons varies between

2.5% and 7.5% as shown in [Figure S3]. The distributions per

phylum are given in [Figure S4]. The genes were grouped into

8,629 gene families by our clustering method, of which 616 (7.1%)

were declared non metabolic.

Our local installation of the MetaCyc database (version 15.0)

contains 9,531 reaction instances. Using pathway-specific main

compound definitions, reaction-reaction edges were added

between these. A total of 5,157 reactions were connected in this

way in our global metabolic network. Of these, an impressive

2,839 (55.1%) are sequence-orphan activities across all Micro-

Scope prokaryote genomes. 1,626 (31.5%) reactions were found in

at least one metabolon, showing that the coding genes of almost

two thirds of available reactions are never clustered throughout

prokaryote genomes, and thus cannot be captured by metabolons

based on simple gene neighborhood. Furthermore, only 104

(6.4%) of these were global orphans, showing that well-known

metabolic reactions are generally surrounded by other well-known

reactions. Finally, at the time of writing, 72 of these had potential

gene candidates, and 50 of these had candidate genes belonging to

materialized by gene names (e.g. genes g1D, g2D and g3D all belong to family D). Step 2: The table summarizes how metabolons are integrated over
all organisms. Separate gene-reaction associations are counted for each gene family- reaction pair, and are weighted by the ratio of a constant
association type-specific a factor over the inverse of their MPLs. If a family contains Known (solid green curve) and Potential (dashed pink curve)
gene-reaction associations with a same reaction, the Potential associations are transformed into ‘‘Inferred’’ associations (solid blue curve), and other
now impossible associations are removed (red crosses). Association scores can then be calculated for each family-reaction pair. Here, reaction-to-
family scores are given as the fraction of weighted associations that a given family has for a given reaction, over all the weighted associations the
given reaction has. For example, family G (to which gene g1G belongs to) has a R = .F score of (2*0.1/3+0.1/4)/(5*0.1/3+0.1/4+0) = 0.348 for reaction
r4. Step 3: Finally, gene-reaction associations are ranked for each reaction in each organism according to their corresponding family-level score. Gene
g1G is thus the second-best candidate for reaction r4 in organism 1, but is the best candidate for reaction r8.
doi:10.1371/journal.pcbi.1002540.g002
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a gene family, allowing the calculation of the family-level

association scores. Only one prokaryote orphan reaction was

found with candidate genes in E. coli K-12, and is described in the

case study section. The list of all proposed candidate genes for all

found global orphan enzymatic activities is available from the

CanOE main web page by simply selecting the ‘‘Consult global

orphan reactions’’ radio button and clicking ‘‘Go!’’. A manual

bioanalysis of these cases is summarized in [Text S6]. We

determined that 31 of the global orphan reactions may have

plausible candidate gene predictions. Of particular interest, 20 of

these have good CanOE-independent supporting evidence (e.g.

circumstantial literature, sequence similarities with enzymes of

related reactions, predicted domains…).

Benchmarking results
To evaluate the CanOE strategy in a systematic way, we

undertook a benchmarking experiment allowing us to a) quantify

how well Known gene-reaction associations were recovered after

having been removed from the input data, and b) show how

informative our gene- and family-level scores are. 1,469 of the

MetaCyc reactions that had been observed in metabolons were

sequentially rendered orphan in our benchmarking experiment.

The global (i.e. for a rank cut-off of k = ‘) gene-level recall is

80.5%, meaning that over four out of five Known gene-reaction

associations that were removed by the orphan experiments were

successfully recovered. The global gene-level precision is 45.2%,

meaning that a little less than half of all Potential associations

generated in the experiments are indeed true associations. At the

family level, the global recall is 80.6% and the precision is 45.4%,

showing a very slight global improvement imputable to family-wise

association redefinition.

However, more importantly, we show in the precision-recall

curves of [Figure 3] that the family-level ScoreRRF rank

outperforms the gene-level ScoreRRG rank. We can observe that

the precision can be increased with minimal impact on the recall

by keeping no more than the best 3 or 4 candidates according to

the former, when the recall is more heavily impacted for less

precision improvement in the latter. Individual TP, FP, FN counts

can be found in [Table 1, Table 2]. This illustrates a definite

advantage of exploiting integration over all available organisms to

help rank proposed gene-reaction associations, even if the maximal

precision and recall values (obtained when considering all

propositions) hardly differ. The precision-recall curve and its

associated tables for ScoreFRR and ScoreGRR can be found in

Figure 3. Precision-recall curves for reaction-to-gene and reaction-to-family association score ranks. Evolution of recall and precision
when applying an increasing rank cutoff (values indicated by colors) to the reaction-to-gene (dashed lines) and reaction-to-family (solid lines)
association scores. Values hardly vary after the 10 first ranks, indicating that almost all true hits have at worst rank 10, though good performances are
observed amongst the first 4 ranks.
doi:10.1371/journal.pcbi.1002540.g003
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[Figure S5, Table S1, Table S2], showing that it is also

informative, though with a lower performance. To be comparable

to self-rank tests as in [42], we show the fraction of recovered TP

associations as a function of a maximal rank cutoff in [Figure S6].

Over 99% of TPs are found amongst the first 5 ranks,

outperforming ADOMETA [18], consistent with results obtained

by Chen et al. [20], though possible ranks go up to around 80.

We conclude that these descriptors are sufficiently informative

for use by biologists, biochemists and bioanalysts in determining

which candidates are the best bets to test experimentally when

considering potential annotations with orphan reactions.

Case study
To illustrate the usefulness of our method, we investigated a

predicted metabolon in E. coli K-12 containing a prokaryote

orphan reaction with candidate genes [Figure 4]. This metabolon

is composed of 6 reactions covering the complete pathway for the

anaerobic degradation of allantoin, in which two reactions are

orphans in E. coli according to the EcoCyc resource [35]: oxamate

carbamoyltransferase (OXTCase, global prokaryote orphan) and

carbamate kinase (CKase, local orphan). In the CanOE

metabolon [Figure 4], the CKase is shown to be catalyzed by

the ECK0514/ybcF gene: this association is absent from EcoCyc,

despite the latter being a heavily-curated resource, but is

supported by the MicroScope annotation of this gene which

shares more than 50% amino acid identity with an experimentally-

validated CKase from Pseudomonas aeruginosa (P13982 UniProt

entry). This first point demonstrates how the CanOE strategy can

aid bioanalysts to confirm putative annotations for local orphan

reactions by automatically mining the wealth of a metabolic

context.

The second missing activity in E. coli K-12 (the OXTCase) has

yet to be associated to any genes in any organism and is thus a

global orphan activity, despite its presence having been biochem-

ically demonstrated in Streptococcus allantoicus [43], and even

reported in E. coli [44,45]. The CanOE metabolon bearing this

reaction [Figure 4] contained 5 gap genes (ECK0506-507 and

ECK0511 to 0513) that could serve as candidate genes. The first

one, ECK0506/ybbY, belongs to an Intepro family defined by the

presence of a permease domain and is annotated as a putative

purine permease according to the UniProt resource [1]. This gene

was declared non-metabolic by CanOE and thence not considered

as a potential candidate for the OXTCase activity. However, the

purine permease function is quite consistent with trans-membrane

transport of allantoin or another intermediate of purine metab-

olism, of which allantoin degradation is a part.

The second gene, ECK0507/glxK, was experimentally demon-

strated to encode a glycerate kinase involved in the aerobic

degradation of allantoin via glyoxylate metabolism [45]. This gene

was a non-gap member of a neighboring CanOE metabolon

(genes ECK0500 to ECK0507) that contains three known gene-

reaction associations involved in glyoxylate degradation.

ECK0507 was thus not be considered by our strategy as a

candidate for OXTCase activity either. It may be interesting to

note that the genes behind both the anaerobic and aerobic

degradation of allantoin are neighbors in E. coli K12’s genome.

The remaining three candidate genes (ECK0511 to ECK0513)

were ranked at the family-level using CanOE-generated family-level

scores; values are given in [Table 3]. ECK0513/ylbF and

ECK0512/ylbE belong to two distinct Pfam families harboring

domains of unknown function (DUF2877 and DUF1116, respec-

tively) which are conserved over half a thousand proteins from other

organisms; either could be good candidates. We have noticed that

the gene sequence of ECK0512/ylbE presents a frameshift which is

absent in all other sequenced E. coli strains and may be due,

according to UniProt, to a sequencing error. The sequence analysis

of the third candidate gene (ECK0511/fdrA) gave more clues about

its potential molecular function. Indeed, this gene belongs to a

family defined by the presence of a conserved domain (PF00549

Pfam domain), many members of which are annotated as CoA-

ligase enzymes. The reaction mechanism of the OXTCase activity

resembles in no way that of a CoA-ligase activity, suggesting that

this gene does not catalyze the former activity. We hypothesize that,

if the Pfam assignation is correct, this gene encodes a CoA-ligase

which transfers a coenzyme A group to the oxamate produced by

the OXTCase enzyme for its degradation by a yet-unknown

catabolic pathway (oxamate is currently a dead-end metabolite in

the E. coli metabolic network).

Table 1. Precision and recalls for the benchmarking of the reaction-to-gene association score.

k True Positives False Positives False Negatives Recall Precision

1 104 347 77 941 71 563 59,32% 57,24%

2 126 146 104 762 49 764 71,71% 54,63%

3 133 976 120 372 41 934 76,16% 52,67%

‘ 141 394 131 562 34 516 80,38% 51,80%

doi:10.1371/journal.pcbi.1002540.t001

Table 2. Precision and recalls for the benchmarking of the reaction-to-family association score.

k True Positives False Positives False Negatives Recall Precision

1 118 172 39 019 58 990 66,70% 75,18%

2 133 782 84 178 43 380 75,51% 61,38%

3 138 426 109 390 38 736 78,14% 55,86%

‘ 142 545 131 562 34 617 80,46% 52,00%

doi:10.1371/journal.pcbi.1002540.t002
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None of the three candidate genes (ECK0511 to 0513) share

any significant sequence similarities with known carbamoyltrans-

ferases. Thus, the candidate genes proposed by CanOE suggest

that the OXTCase activity may be catalyzed by a previously-

unknown family of carbamoyltransferases. This hypothesis is

consistent with a recent study which did not observe any

OXTCase activity for gene ECK2866/ygeW, the last E. coli K-

12 member of the known carbamoyltransferase family whose

function remains to be elucidated [46]. Starting with the best-

ranked CanOE candidate (ECK0513/ylbF), protein expressions

and biochemical assays are currently under way.

Needless to say, given that the genomic metabolon-defining step

of the CanOE strategy is based on the modus operandi of bioanalysts,

any respectable bioanalyst could propose candidates genes for

reaction gaps after a manual examination of our metabolons.

However, the added value of CanOE results are multiple: 1)

metabolons are established by an automated procedure, and are

distinguished as functional units of a target genome, saving the

bioanalyst the effort of locating and building it in his mind; 2)

Potential gene-reaction associations are also generated automat-

ically, akin to the hypotheses a bioanalyst formulates during his

work; 3) results are integrated across a thousand genomes, a very

difficult task for a human to undertake, in the form of a few scores

and ranks that can be easily interpreted; 4) all CanOE results are

available to the bioanalyst community via a MicroScope platform

web interface, making them easily exploitable.

Discussion

Due to its independence to sequence similarity in its first step and

its usage of genomic and metabolic contexts, our CanOE strategy is

capable of detecting reaction gaps and proposing candidate genes

for them, even in the case of orphan reactions. Calculated

metabolons have a relatively good genome coverage (approximately

5% of genes, out of an estimated possible maximum of 30%) and

even better metabolic network coverage (1,628 out of 5,157, i.e.

55%). Results are integrated over more than 1,000 prokaryote

organisms. We show in a benchmarking experiment that our family-

based association scores are informative for the selection of the most

promising gene candidates for orphan enzymatic activities; indeed,

when keeping the 3 best-ranked associations, precision is 52% for a

recall of 76.5%. Out of 72 global orphans with CanOE-proposed

candidate genes, 20 of these seemed particularly promising after

manual bioanalysis. Even the highly-curated E. coli K-12 genome

yielded one orphan reaction with candidate genes, for which

biochemical testing is under way.

Other methods exploiting genomic and sometimes metabolic

context have been designed in previous works to propose

candidate genes for orphan enzymatic activities. Most of them

[15,19,20] are pathway-dependent in that they require the

presence of a predicted pathway (i.e. in which at least one reaction

is assigned to one gene in the target organism) to propose

candidate genes for the remaining unassigned reactions of that

pathway. ADOMETA [18], on the other hand, is not a pathway-

dependent method, but orphan reactions must be explicitly

described in the organism-specific metabolic reconstructions to

be used as targets for candidate genes. Furthermore, ADOMETA

requires a filtering step to reduce their metabolic network

connectivity: they remove reaction-reaction edges corresponding

to the 15 most connected compounds, taking the risk of losing

important edges. In comparison to these methods, CanOE uses

main compounds defined in metabolic pathways to create a

Figure 4. E. coli K-12 anaerobic allantoin degradation metabolon. Case study metabolon for the anaerobic degradation of allantoin in E. coli
K-12. Genes are shown as arrows with their MicroScope labels, reactions are shown as rectangles with their MicroCyc names and EC numbers. The
orphan activity, oxamate carbamoyltransferase, is shown as a yellow box. Main compounds of interest are shown for reference and readability.
Oxamate carbamoyltransferase is the only reaction gap in this metabolon. Ranks based on reaction-to-family association scores are shown for the
possible three candidate genes for it (ECK0506 is a non-metabolic gene, and ECK0507 is already annotated with a Known association in another
metabolon, hence they cannot be candidates for this activity).
doi:10.1371/journal.pcbi.1002540.g004

Table 3. Candidate genes for oxamate carbamoyltransferase activity in E. coli K-12.

Gene label Family ID/Size Coverage F,R Score FRR/rank Score RRF/rank

ECK0511 647/133 100,00% 0.9699/2nd 0.334/2nd

ECK0512 639/130 100,00% 0.9701/3rd 0.252/3rd

ECK0513 618/129 100,00% 0.9705/1st 0.344/1st

doi:10.1371/journal.pcbi.1002540.t003

CanOE: Fishing Candidate Genes for Orphan Enzymes

PLoS Computational Biology | www.ploscompbiol.org 9 May 2012 | Volume 8 | Issue 5 | e1002540



sparser and more biologically relevant global network. This

network is thus pathway-dependent in its scope (no reactions not

assigned to a pathway are included in it), but is independent in its

use (i.e., metabolons can cross multiple pathways). This scope

currently limits us to 2,839 of all MetaCyc prokaryote orphan

reactions, though this should improve as additional metabolic data

is integrated into the MetaCyc database. Also of note is the fact

that our strategy predicts gap reactions under the constraint of

necessarily anchoring a metabolic context by at least two known

reactions to two co-localized genes, making the approach more

robust in respect to the quality of the organism’s predicted

metabolic network.

Unlike previous methods, CanOE is an approach that explicitly

integrates its results across several organisms in order to refine and

rank its predictions. In the approach developed by Yamanishi et al.

[19], candidates are not prioritized, and results across a small

number of organisms must be integrated manually. Methods like

ADOMETA and the STRING [18,21] do propose functional

association scores that can be used to rank candidates on a per-

organism basis; the PathwayHoleFiller-GC method [15] gives an

association probability extracted from a Bayesian network.

However, even though phylogenetic profile similarity measures

are used as input, the results of these methods do not explicitly take

into account results across many genomes. Making our family-

level selectivity scores available at gene level allows CanOE to

have greater power distinguishing false positive associations by

favoring conserved associations, as we have shown in our

benchmarking experiment.

In the CanOE strategy presented here, we exploit the simplest

of genomic context indicators, gene neighborhood, the use of

which relies on the observation that genes involved in a same

biochemical process tend to cluster on prokaryote genomes,

forming operons or regulons. We chose this indicator as it is the

most visible and easiest to interpret, and has been shown to

outperform other genomic context indicators [47]. It does,

however, have some shortcomings. In our graph-based algorithm,

gene gaps are located, by construction, between non-gap genes

within the metabolon; therefore, genes flanking the metabolon are

not proposed, excluding possible interesting candidates. However,

systematically proposing all metabolon-flanking genes as candi-

dates leads to many false positive propositions. So far, we argue

that our necessity of anchoring a metabolon between at least two

genes is a guarantee of the quality of the metabolon; in the worst

cases, the manual bioanalysis of a metabolon in situ on the genome

may reveal interesting candidates nearby.

Another limitation of our approach is that genes participating in

a same biological process might not be clustered on the

chromosome because they are linked by other, more complex

regulatory mechanisms. In this case, CanOE will obviously not be

able to find a metabolon, and hence be unable to propose

candidate associations. The previous works discussed above have

the advantage of being able to propose candidate genes that are

not clustered on the chromosome thanks to their use of other

functional dependence measures (such as gene co-regulation,

phylogenetic profile similarity, co-citation…). We plan to include

additional genomic context indicators within our strategy to

extend its scope, if they prove to be informative. For example, it

would be possible to use phylogenetic profiles calculated across all

organisms, linking genes with high similarities. This modification

would allow metabolons to span groups of genes scattered

throughout the genome, capturing larger biological processes

and opening up new possibilities for gene candidates.

Our metabolons currently cover over 1,060 prokaryote organ-

isms, which is much more than previous strategies achieved

[18,19,25], and results are integrated a posteriori using gene families.

The actual use of gene families for functional annotation remains

debatable [48]. Here, we argue that our gene families are not

designed to serve as accurate representations of true ortholog

families, but only as a means of reinforcing CanOE-proposed

associations across several genomes, associations which were, after

all, generated based on data other than sequence similarity. Another

possibility would be to directly integrate gene-reaction association

scores and gene-gene sequence similarity scores rather than use gene

families, if computational tractability problems can be overcome.

CanOE results are of interest to the bioanalyst community at four

different levels. Firstly, the many metabolons generated by CanOE

are independent functional units of a target genome, and each can

be represented as easily interpreted graphs. As such, they can be

used as an aid to annotation. Secondly, a large fraction of these

metabolons are exploited to automatically generate potential gene-

reaction association hypotheses, with informative cross-organism

integrated scores and ranks to further guide manual annotation.

Thirdly, some of these are automatically transformed into Inferred

associations, thus helping with automated functional transfer.

Finally, a small number of the generated associations concern

reactions that are sequence-orphan activities, and are thus of

paramount interest; being automatically created, bioanalysts can

focus on these specific cases. The web interface allows MicroScope

platform users to exploit CanOE results to each of these aims.

Altogether, these four levels should help metabolons become a

reference in annotating prokaryote genomes. Indeed, it is our hope

that this strategy will be employed in wider, systematic enzymatic

activity screenings; interacting with projects such as COMBREX

[49] and the Enzyme Function Initiative [50] should be productive.

Iteratively computing gene-reaction association predictions before

validating or invalidating them in wet-lab assays should gradually

help cover the metabolism of any prokaryote genome.

Supporting Information

Figure S1 MinPathLength distribution. The number of

Known associations for each distinct MinPathLength value (with

an imposed maximum of 10) are shown. Note that MPL values of

2 are only possible for Known associations involving multifunc-

tional genes or reactions catalyzed by several gene products (i.e.

enzymes with several subunits).

(TIFF)

Figure S2 Per-organism metabolon count distribution.
Distribution of metabolon counts per organism. Global average is

approximately 56 metabolons per organism. E.coli K-12 is very

metabolon-heavy with 105 metabolons.

(EPS)

Figure S3 Per-organism gene coverage distribution.
Distribution of the per-organism fraction of metabolon genes over

all genes. Global average is 4.8%. In contrast, 9% of E. coli K-12

genes are in a metabolon.

(EPS)

Figure S4 Distribution of prokaryote organisms from
the MicroScope database per phylum. The number of

MicroScope organisms for each phylum is given. The green

fraction of each bar represents the number of organisms that were

found to contain metabolons.

(TIFF)

Figure S5 Precision-recall curves for gene-to-reaction
and family-to-reaction association score ranks. Evolution

of recall and precision when applying an increasing rank cutoff

(values indicated by colors) to the gene-to-reaction (dashed lines)
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and family-to-reaction (solid lines) association scores. Values

hardly vary after the 10 first ranks.

(EPS)

Figure S6 ‘‘Self-rank’’ cumulative True Positives. Evo-

lution of ratio of true positives over maximal number of true

positives when applying an increasing rank cutoff to the reaction-

to-family association score. Increase in this fraction is hardly visible

after the 20 first ranks, indicating that almost all true positives have

at worst rank 20 according to this score, though a vast majority

(97.1%) have at worst rank 3.

(EPS)

Table S1 Precision and recalls for the benchmarking of
the gene-to-reaction association score.
(XLS)

Table S2 Precision and recalls for the benchmarking of
the family-to-reaction association score.
(XLS)

Text S1 Gene and metabolic graph building.
(RTF)

Text S2 Gap recovery procedure.
(RTF)

Text S3 MinPathLength procedure.

(RTF)

Text S4 Gene family construction procedure.

(RTF)

Text S5 Non-metabolic family flagging procedure.

(RTF)

Text S6 Bioanalysis of CanOE gene candidates for
global orphan enzymes.
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