
Autism spectrum disorder is related to endoplasmic
reticulum stress induced by mutations in the synaptic
cell adhesion molecule, CADM1
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Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown molecular pathogenesis. A recent
molecular focus has been the mutated neuroligin 3, neuroligin 3(R451C), in gain-of-function studies and for its role in induced
impairment of synaptic function, but endoplasmic reticulum (ER) stress induced by mutated molecules also deserves
investigation. We previously found two missense mutations, H246N and Y251S, in the gene-encoding synaptic cell adhesion
molecule-1 (CADM1) in ASD patients, including cleavage of the mutated CADM1 and its intracellular accumulation. In this study,
we found that the mutated CADM1 showed slightly reduced homophilic interactions in vitro but that most of its interactions
persist. The mutated CADM1 also showed morphological abnormalities, including shorter dendrites, and impaired
synaptogenesis in neurons. Wild-type CADM1 was partly localized to the ER of C2C5 cells, whereas mutated CADM1 mainly
accumulated in the ER despite different sensitivities toward 4-phenyl butyric acid with chemical chaperone activity and
rapamycin with promotion activity for degradation of the aggregated protein. Modeling analysis suggested a direct relationship
between the mutations and the conformation alteration. Both mutated CADM1 and neuroligin 3(R451C) induced upregulation of
C/EBP-homologous protein (CHOP), an ER stress marker, suggesting that in addition to the trafficking impairment, this CHOP
upregulation may also be involved in ASD pathogenesis.
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Autism spectrum disorder (ASD) is the most common heritable
neurodevelopmental disorder, characterized by impaired social
interactions, communication impairments, and restricted and
repetitive behaviors; over 15 susceptibility loci are currently
estimated,1 but the major mode of inheritance remains
unknown. Genetic testing in individuals with ASD has identified
mutations in the genes encoding several synaptic cell adhesion
molecules, including neuroligin (NLGN) 3 and 4, cell adhesion
molecule-1 (CADM1), and contactin-associated protein-like 2.2–4

NLGNs are postsynaptic cell adhesion proteins that interact with
neurexins on the presynaptic membrane,5 and they are required
for synapse maturation.6 Neurexin–NLGN interactions induce
differentiation of g-aminobutyric acid (GABA) and glutamate
postsynaptic specializations.7 The ASD-related mutant,
NLGN3(R451C), is retained intracellularly, which limits its pre–
post synaptic interactions.8 Some of the mutated NLGN4 also
fails to transport to the cell surface and is instead retained in the
endoplasmic reticulum (ER).9

CADM1 (also known as RA175/SynCAM1) is a membrane
glycoprotein belonging to the immunoglobulin (Ig) superfamily
and is localized to both sides of the synaptic cleft. Its
extracellular domain displays calcium-independent homophi-
lic trans-cell adhesion activity,10,11 and its intracellular domain
associates with calmodulin-associated serine/threonine ki-
nase via individual PDZ-binding domains (PDZ: post synaptic
density protein/Drosophila disc large tumor suppressor/
zonula occludens-1 protein).10 Recently, we identified two
missense mutations, C739A (amino acid: H246N) and
A755C(Y251S), in the CADM1 gene of male Caucasian
patients with ASD and their family members.3 Both mutations
are located in the third Ig (Ig3) domain of CADM1, which is
essential for trans-active interactions. These ASD-related
mutations stimulate the cleavage of CADM1 and induce
defective trafficking to the cell surface.3 These results suggest
an association between impaired synaptogenesis and the
pathogenesis of ASD.
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However, nlgn3-deficient mice do not show the core
symptoms observed in patients with ASD.6 In contrast,
knock-in mice that express NLGN3(R451C), a mutation
implicated in ASD,12 do show behaviors analogous to the
core symptoms of ASD, including impaired social beha-
vior.12,13 This finding suggests that both a loss-of-function and
a gain-of-function mutation are involved in the pathogenesis of
ASD. ER stress is a gain-of-function associated with the
mutated protein.

The ER quality control system recognizes unfolded or
misfolded proteins and activates stress-signaling pathways
termed the unfolded protein response (UPR), via ER stress
sensors.14–16 The PKR-like ER kinase, one of the stress
sensors in the ER, specifically upregulates the translation of
the CAAT/enhancer-binding protein (C/EBP)-homologous
protein (CHOP/Gadd153)17 via phosphorylation of eukaryotic
initiation factor-2 a (eIF2a). It is of interest that CHOP
regulates synaptic function by regulating membrane traffick-
ing18 and that an eIF2a kinase, GCN2, controls synaptic
plasticity, learning, and memory.19,20 However, little is known
regarding the association between ASD-related mutated
molecules and ER stress.

In this study, we show that the ASD-related CADM1
mutations, H246N and Y251S, and the NLGN3 mutation,
R451C, cause an UPR response with upregulation of CHOP
as a gain of function.

Results

At first, we examined the trans-interaction between wild-type
and mutated CADM1 molecules in vitro by pull-down
and western blot analysis (Figure 1a). We compared the
trans-interactions between bead-conjugated recombinant
CADM1-His-tag proteins that lacked the transmembrane
domain and either wild-type CADM1 or mutated CADM1
proteins (Figure 1a). Compared with the interaction between
wild-type and wild-type, interactions between the mutant

and wild-type proteins were slightly reduced and most of
their interaction, 83.5% of CADM1(H246N) and 74.6% of
CADM1(Y251S), remained. To evaluate this homophilic
interaction quantitatively, we prepared recombinant extra-
cellular domains of the wild-type and mutated CADM1
proteins and examined their interactions by fluorescence
correlation spectroscopy (Figure 1b). Mutated CADM1 homo-
philic interaction activity was about 20±5% weaker than that
of wild-type CADM1.

We also modeled the chemical structure of CADM1
(Figure 2a) with a model in which the H246 and Y251 residues
are located in the region that corresponds to the NH2-terminal
strand of the Ig3 domain (amino acid sequence 160–324). The
model showed that H246N and Y251S mutations represented
reductions in the size of the side-chains of the NH2-terminal
strand. Mutations also induced a conformational change
(Figure 2b), and compared with H246N, the Y251S mutation
induced a larger conformational change in the region.

To examine the relationship between a mutated CADM1
and the pathogenesis of ASD, we transfected myc-tagged
wild-type CADM1 and H246N- or Y251S-mutated CADM1
sequences into neurons and examined their colocalization
with synaptophysin, a marker of synapse. We excluded
influences of the endogenous Cadm1 by using neurons
isolated from Cadm1-deficient mouse embryos at embryonic
day (E)16. Dendrites of the transfected neurons mainly
showed three types of morphology (Figure 3, Table 1): most
neurons that expressed wild-type CADM1 had long dendrites
(4100 mm) with synaptophysin-positive spines; neurons that
expressed mutated CADM1 either had short dendrites
(o100mm) without synaptophysin or no dendrites at all. Thus,
neurons that expressed mutated CADM1 showed abnormal
dendrites and impaired synaptogenesis.

Compared with the wild-type molecules, the mutated
CADM1 more frequently showed intracellular accumulation.
We examined the intracellular localization of wild-type
CADM1 and CADM1(Y251S) proteins in transfected C2C5

Figure 1 Effects of the mutations on the interaction activity. (a) Interaction between His-tagged wild-type (WT) CADM1 and myc-tagged WT or mutated CADM1.
(left panel) Immunoblot analysis. Myc-WT and mutated (H246N- or Y251S-) CADM1 interacting with His-WT CADM1 were detected by western blot analysis using anti-myc
antibody. Compared with the WT, the mutated CADM1 was not associated with His tagged-CADM1. (right panel) Densitometric analysis. Data from three experiments were
scanned. Band intensities for the bound CADM1(H246N) and (Y251S) were normalized to the bound wild-type CADM1 and presented as the mean±s.d. All experiments
were performed three times, and typical data are shown. Po0.05 compared with wild-type. (b) FCS analysis of the protein–protein interaction between recombinant proteins
of WT CADM1 or those of mutated CADM1. The interaction was detected by FCS using TAMRA-labeled molecules as probe. We examined the interaction between TAMRA-
labeled and non-labeled WT-CADM1, TAMRA-labeled and non-labeled CADM1(H246N), and TAMRA-labeled and non-labeled CADM1(Y251S). All experiments were
performed three times. Results are the mean±s.d. of three different determinations. Po0.05 compared with wild-type
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cells and neurons (Figure 4a). Wild-type CADM1 was
partly colocalized with anti-KDEL, a marker for ER, whereas
CADM1(Y251S) was predominantly accumulated in
the ER. Wild-type CADM1 was also partly colocalized with
beclin, which is localized on the various organelle including
trans-Golgi, mitochondria, and ER,21 whereas the accumu-
lated CADM1(Y251S) was colocalized with ER-localized
beclin (Figure 4b). The beclin was mainly localized on
the ER under ER stress (Figure 4c), suggesting that the
accumulation of CADM1(Y251S) in the ER caused the ER
stress.

The cells expressing CADM1(Y251S) frequently showed an
abnormal round cell morphology (Figures 4 and 5a). 4-phenyl
butyric acid (4-PBA), a potential chemical chaperone in the
ER22 reduced the intracellular accumulation and the abnormal
morphology of the cells expressing the mutated CAD-
M1(Y251S) (Figure 5a and b). ER-localized beclin has a role
in regulating autophagy.21 Rapamycin, which stimulates the
degradation of the accumulated protein via activation of the
autophagosome,23 inhibited the intracellular accumulation of
CADM1(Y251S) (Figure 5a and b).

We also examined the mutated CADM1-induced CHOP
upregulation downstream of the ER stress.24,25 Both
CADM1(H246N) and CADM1(Y251S) induced CHOP up-
regulation (Figure 6a), and CHOP-positive cells were more
frequently detected in cells that expressed CADM1(H246) and
(Y251S) (Figure 6b). In the cells expressing NLGN3(R451C),
CHOP-positive cells are also more frequently detected
compared with the cells expressing wild-type NLGN3
(Figure 6c). Thus, the mutated CADM1(H246) and (Y251S)
proteins as well as the NLGN3(R451C) protein most likely
stimulated ER stress, causing CHOP upregulation.

Discussion

ER stress and the mutated CADM1. The mutated CADM1
showed the most trans-interaction activity in vitro but
accumulated in the ER and showed impaired trafficking,
suggesting that the impaired synaptic function caused by
defective trafficking of the mutated CADM1 could be related
to the pathogenesis of ASD. However, cadm1-deficient
mice26 as well as nlgn3-deficient mice6 did not show all of
the core symptoms of ASD (Takayanagi et al., submitted
elsewhere); in addition to infertility,26 cadm1-deficient mice
manifested abnormal anxieties and impaired ultrasonic
vocalization but did not show the impaired social interaction
and restricted stereotyped behaviors. In contrast with cadm1
in the testis, the loss of synaptic function of cadm1 in cadm1-
deficient mice could be partly compensated by other
members of the Cadm family. This possibility suggests that
the loss of function of CADM1 or NLGN3 is one of the factors
but not a sufficient factor alone to cause ASD. The gain of
function of their mutated molecules could be another feature
related to the pathogenesis of ASD.27

The ER stress is a gain of function associated with the
mutated proteins.25 The misfolded and unfolded proteins are
checked under the surveillance of the ER quality control
system in the ER, followed by processing by the
ER-associated degradation (ERAD) system, but if degrada-
tion is not sufficient, they are accumulated and cause ER
stress with UPR.25 ER stress is the signal elicited by the
quality control system in the initial stages of the UPR.
Rapamycin inhibits ER stress by stimulating the activation of
autophagosome formation,25,28 which also contributes to
the degradation of the accumulated mutated proteins on the
ER membrane in cooperation with ubiquitin/proteasome-
mediated ERAD.23,29 The sensitivity of CADM1(Y251S) to
the rapamycin suggests that ubiquitin/proteasome-mediated
ERAD is not sufficient for its degradation. This inference is
also supported by the altered conformation and the sensitivity
to 4-PBA. Furthermore, the mutated CADM1 as well as
NLGN3(R451C) caused CHOP upregulation, suggesting
that the mutated CADM1 as well as NLGN3(R451C) were
retained in the ER, causing ER stress with CHOP upregulation
as the UPR. This will be one of the important issues in
the future.

Relationship between ER stress and the pathogenesis of
ASD. Chronic and excess ER stress leads to neuronal
cell death and may be related to the pathogenesis of

Figure 2 The modeled structure of mutated CADM1. (a) The Ig3 domain of
CADM1, which was built using the Ig3 domain of NCAM as a template
and registered in MODBASE.39 The NH2- and COOH-terminal strands of the
model are red and yellow, respectively. The residues shown as sticks are possibly
involved in the trans-interaction. The mutant residues, H246 and Y251, are in
cyan. (b) The superimposed models of wild-type (black), H246N mutant
(green), and Y251S mutant (blue) CADM1 using MOLMOL.40 The amino acid
sequence, PQVHIQMTYP, shows the altered region in the Y251S mutant compared
with the wild-type
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neurodegenerative diseases.30 However, little is known about
the relationship between ER stress and the pathogenesis of
ASD. Other studies have shown that tuberous sclerosis com-
plex (TSC), a neurogenetic disorder caused by a loss-of-
function mutation in either the TSC-1 or TSC-2 genes, may
also be related to ER stress. TSC frequently results in
prominent central nervous system manifestations, including
epilepsy, mental retardation, and ASD.31,32 TSC-deficient
cells have shown constitutive activation of mammalian target
of rapamycin and proved to be highly susceptible to ER
stress.33 Thus, a wide variety of mutations that cause ER
stress may be linked to the pathogenesis of ASD.

ASD may be the result of abnormal membrane trafficking
of the synaptic functional molecules induced by ER stress.
CHOP interacts with the heterodimeric receptors GABAB1aR/
GABAB2R and inhibits the formation of heterodimeric

complexes; this results in intracellular accumulation and
reduced cell surface expression of receptors.18 In ASD
patients, the GABAB1R level is significantly decreased in
Brodmann area 9 and Brodmann area 40 of the cerebrum
and cerebellum, whereas the GABAB2R level is significantly
reduced in the cerebellum.34 Therefore, it is possible that
relatively low levels of ER stress may alter the intracellular
transport of GABABR to the cell surface by upregulation
of CHOP without affecting the cell death of the neurons
in the brain.

Abnormal morphology of neurons expressing mutated
molecules may be due to the ER stress and ER stress-
associated the abnormal membrane trafficking. At present,
however, it is not clear whether the mutated molecules-
mediated ER stress is linked with ER stress-mediated
autophagosome activation in the pathogenesis of ASD.

Figure 3 Localization of wild-type and mutated CADM1 in the neurons. Isolated neurons from cadm1-deficient mice embryos (E16) were transfected with wild-type and
mutated CADM1 (H246N or Y251S). Their localization at the synapse was examined by immunostaining with anti-SynCAM (Cadm1; red), anti-synaptophysin (green), and
Hoechst (blue). Closed arrowheads: CADM1 with no synaptophysin; arrows, neurons with short or no dendrites. Scale bars: 25 mm

Table 1 Percentages of the neurons expressing three types of dendrites in the neurons transfected with wild-type or mutated CADM1

Typesa (8 DIVb) Wild-type H246N Y251S

Neurons with long dendrites, 41000mm 63.6±6.0% 30.0±2.9% 9.1±1.8%
Neurons with short dendrites, o1000mm 27.3±2.6% 40.0±3.8% 36.4±3.5%
Neuron with no dendrites, o100mm 9.1±0.8% 30.0±2.2% 54.5±4.3%

The schematic illustration and evaluation of the length of the dendrites are described in Supplementary Figure S1. a Total dendritic length/cell. bDIV¼days in vitro

Figure 4 The localization of wild-type and mutated CADM1. (a) C2C5 cells and neurons were transfected with wild-type and mutated CADM1 (Y251S) for 26 h. After
fixation, cells were immunostained with anti-SynCAM (Cadm1, green), anti-KDEL (red). (b) Transfected C2C5 cells were immunostained with anti-SynCAM (green), anti-beclin
(red), and Hoechst (blue). (c) C2C5 cells were also treated with or without thapsigargin (Thap, 1 mM) for 24 h and were detected by anti-KDEL (green), anti-beclin (red), and
Hoechst (blue). Scale bars: 20mm
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Figure 5 The effects of 4-phenyl butyric acid (4-PBA) or rapamycin on the intracellular accumulation of the mutated CADM1 in C2C5 cells. (a) The accumulation of the mutated
CADM1 (Y251S) in the presence or absence of 4-PBA (7.5 mM) or rapamycin (10mg/ml). C2C5 cells were transfected with wild-type and CADM1(Y251S) for 28 h and then fixed
with paraformaldehyde and immunostained with anti-SynCAM (Cadm1). Scale bars: 50mm. (b) The cell population showing accumulation of wild-type and mutated CADM1 (Y251S)
in the presence or absence of 4-PBA or rapamycin. Three experiments were done. Bars indicate s.d.

Figure 6 The expression of CHOP in the cells expressing the mutated CADM1 and the mutated neuroligin 3. (a) The mutated CADM1-induced upregulation of CHOP.
C2C5 cells were transfected with wild-type, CADM1 (H246N), or (Y251S) cDNA and incubated for 24 h. The upregulation of CHOP was analyzed by immunoblot analysis using
anti-CHOP. (b) The percentage of the CHOP-positive cells in the cells expressing wild-type or mutated CADM1s. (c) The percentage of the CHOP-positive cells in the cells
expressing wild-type or R451C-mutated neuroligin (NLGN) 3. Scale bars: 5mm. Bars indicate s.d.
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Regulation of the mutated molecule-mediated ER stress will
be another important issue in the future. Knock-in mice that
express the mutated cadm1 related to the human CADM1
(H246N) or (Y251S) will provide more insight into the
relationship between the ER stress and the pathogenesis
of ASD.

Materials and Methods
Protein–protein interaction assay. His-tagged recombinant protein wild-
type-CADM1 (48–334 a.a. including three Ig domains) lacking the transmembrane
domain were prepared using silkworm cells (Katakura Industries Co., Tokyo,
Japan).35 His-tagged CADM1 (48–334 a.a.) was purified by Ni-column according to
the manufacturer’s protocol (Qiagen Science, Germantown, MD, USA).

Wild-type or mutated CADM1 in a pcDNA vector was transfected into COS cells
using Lipofectamine 2000 (Invitrogen). After incubation for 28 h, the cells were lysed
with PBS containing 1% Triton X-100, and then centrifuged at 12 000 r.p.m. for
20 min, COS-cell extracts. His-tagged recombinant Cadm1 (48–334) protein (2 mg
protein) was incubated with the extracts (500mg protein) from COS cells expressing
wild-type, H246N-, or Y251S-mutated Cadm1 (48–334) -myc at 41C overnight.
The complexes were isolated from the incubation mixture by binding with the
Ni-column and detected by immunoblot analysis using anti-myc (Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA) and evaluated by densitometric analysis.
Data from three experiments were scanned and analyzed for quantification with
Image J software (National Institutes of Health).

Fluorescence correlation spectroscopy (FCS). TAMRA-labeled
recombinant protein (mutated or wild-type Cadm1 (48–334 a.a. including three Ig
domains)) lacking the transmembrane domain was prepared using the in vitro Pin-
point Fluorescence Labeling Kit 543).36 TAMRA-labeled and non-labeled
recombinant protein were purified using the RTS 100, E. coli HY Kit (Roche,
Basel, Switzerland). FCS measurements were performed using an MF20 single
molecule fluorescence detection system (Olympus, Tokyo, Japan). A helium–neon
laser (543 nm) was used for the detection of TAMRA-labeled recombinant protein.
TAMRA-labeled recombinant mutated or wild-type Cadm1 (4 nM) was mixed with
non-labeled recombinant mutated or wild-type Cadm1 (0–40 nM) and added to the
mixture in PBS with 0.05% Tween 20. After the mixtures were incubated at 371C for
1 h, an aliquot (50ml) of each sample was transferred to a microplate (24� 16 wells,
Olympus). A standard solution (MF-D543PX, Olympus) was used to derive the
optical parameters necessary for a proper measurement. All measurements were
carried out in more than duplicate and with 10 scans, each lasting 10 s at room
temperature. The obtained data were fitted according to an autocorrelation function
embodied in the accompanying software.

Modeling the structure of mutated CADM1. The structure of the Ig2
and Ig3 domains of wild-type and mutant CADM1 were built by SWISS-MODEL37

using the crystal structure of MuSK (PDB entry: 2IEP) as a template and the amino
acid sequence from 163–327 of CADM1. For the modeling of the H246N and Y251S
mutants of CADM1, the input sequences were modified corresponding to their
mutations.

Transfection of the wild-type and mutated CADM1-myc into
neurons. Neurons were isolated from the brains of cadm1-deficient mice at
embryonic day 16 as described.38 Neurons were cultured using Neurobasal medium
with 2% B27 supplement (Invitrogen, Carlsbad, CA, USA) and L-glutamine
(0.5 mM). Cultures were incubated at 371C in a humidified atmosphere containing
5% CO2. After 6 days in vitro (DIV), neurons were transfected with wild-type or
mutated (H246N) or (Y251S) myc-tagged CADM1 using the calcium phosphate
method and incubated for 2 DIV.

Immunostaining. For the immunostaining assay for intracellular localization of
CADM1 and synaptophysin in the neurons and C2C5 cells, cells were transfected
with wild-type and H246N- or Y251S-mutated pcDNA–CADM1 in the presence
or absence of 4-PBA (7.5 mM) or rapamycin (10mg/ml), and fixed in 4%
paraformaldehyde, washed with PBS, and then incubated with mouse anti-
synaptophysin (Sigma, St Louis, MO, USA), mouse anti-KDEL (Stressgen
Biotechnologies Corp., Victoria, BC, Canada), rabbit anti-beclin (Cell Signaling
Technology, Beverly, MA, USA), mouse anti-CHOP (Santa Cruz), or chicken

anti-SynCAM1 (Cadm1) (MBL, Nagoya, Japan) overnight at 41C. Alexa Fluor 488-
and Alexa Fluor 568-conjugated secondary antibodies against chicken and mouse
or rabbit IgG were purchased from Molecular Probes (Eugene, OR, USA). Nuclei
were detected by Hoechst 33342 staining (Molecular Probes). The reactivity
was viewed using a confocal laser-scanning microscope (CSU-10, Yokogawa,
Yokokawa Electric Co., Tokyo, Japan).
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