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Abstract
Understanding patterns of animal space use and range fidelity has important impli-
cations for species and habitat conservation. For species that live in highly seasonal 
environments, such as mountain goats (Oreamnos americanus), spatial use patterns 
are expected to vary in relation to seasonal changes in environmental conditions 
and sex-  or age- specific selection pressures. To address hypotheses about sex, age, 
and seasonality influence on space- use ecology, we collected GPS location data 
from 263 radio- collared mountain goats (males, n = 140; females, n = 123) in coastal 
Alaska during 2005– 2016. Location data were analyzed to derive seasonal and sex- 
specific fixed- kernel home range estimates and to quantify the degree of seasonal 
range and utilization distribution overlap. Overall, we determined that home range 
size was smallest during winter, expanded coincident with the onset of green- up and 
parturition, and was largest during summer. Home range size of males and females 
did not differ significantly during winter, but females had larger home ranges than 
males during summer, a relationship that was switched during the mating season. 
Pairwise comparisons involving individual females across subsequent years indicated 
home ranges were significantly smaller during years when they gave birth to off-
spring. Mountain goats exhibited a strong degree of range fidelity, and 99% (n = 138) 
of individual animals returned to their previous year's seasonal range with an av-
erage annual Bhattacharyya's affinity utilization distribution overlap index of 68%. 
Similarity of seasonal home range utilization distributions varied in relation to sex 
and season in some respects. Home range overlap was highest during the summer 
vegetation growing season, particularly among females. These findings advance our 
understanding about how environmental variation and sex-  and age- related repro-
ductive constraints influence space use and range fidelity among alpine ungulates. 
Documentation of the high degree of range fidelity among mountain goats has im-
portant conservation implications in landscapes increasingly altered by anthropo-
genic activities.
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1  | INTRODUC TION

Understanding how animals utilize critical habitat is important for 
advancing our understanding of species ecology and conservation. 
Technological innovations involving the advances in GPS trans-
mitters, remote sensing, and computer processing have led to the 
development of powerful analytical approaches for delineating wild-
life habitat at population- level scales (Boyce et al., 2002; Cagnacci 
et al., 2010). However, examining how individual animals use given 
habitat patches provides an opportunity to attain a more complete 
understanding about habitat value and possible effects associated 
with anthropogenic alterations (Faille et al., 2010). For example, 
characterizing individual space- use requirements and the extent to 
which such areas are consistently used can provide explicit knowl-
edge about the value of a given habitat patch to an individual animal 
that can be linked to individual performance (Gerber et al., 2019; 
Lafontaine et al., 2017; Severud et al., 2015).

For species that live in highly seasonal environments, space- use 
patterns are likely to vary due to changing environmental condi-
tions as well as sex- specific selection pressures (Bischof et al., 2012; 
Grignolio et al., 2004; Lesage et al., 2000; Lovari et al., 2006; 
Unterthiner et al., 2012; Yan et al., 2017; Zeng et al., 2010). 
Fundamental differences in fitness requirements between male and 
female individuals result in sex- linked ecological variation, a pattern 
that is particularly evident among sexually dimorphic, polygynous 
mammals that display pronounced sex- specific differences in nu-
tritional ecology, social behavior, space use, and life- history strat-
egies (Barboza & Bowyer, 2000; Clutton- Brock et al., 1982; Main 
et al., 1996). Such patterns arise because natural selection acts on 
males and females in separate ways due to fundamental differences 
in their reproductive characteristics (Darwin, 1888). Consequently, 
sex- specific space- use patterns are expected to vary seasonally, 
reflecting differences in reproductive requirements and associated 
trade- offs related to energy balance and predation risk. For exam-
ple, during the parturition season, smaller, more risk- prone females 
with attendant neonates are expected to make space- use decisions 
that prioritize predator avoidance, relative to larger- bodied, less- 
vulnerable males (Bonar et al., 2018; Miquelle et al., 1992; Van Beest 
et al., 2013).

The way in which space is used can have direct implications on 
fitness by influencing individual ability to acquire and conserve en-
ergetic resources and reduce predation risk (Severud et al., 2015). 
The amount of area used can be directly proportional to nutritional 
requirements (i.e., food biomass density) and costs (i.e., locomotory 
constraints), as well as availability of critical habitat features such 
as predator refugia— factors that can vary seasonally in relation to 
environmental conditions. The ability of animals to efficiently uti-
lize resources or reduce predation risk within selected ranges may 
be optimized when individuals attain familiarity with such areas 
(Greenwood, 1980; Schaefer et al., 2000). Specifically, familiarity 
can play an important role in the habitat selection process at a broad-
scale and reinforce finer- scale selection for beneficial attributes 
through positive reinforcement mechanisms (Wolf et al., 2009). As 

such, range fidelity, the seasonal or annual reuse of known ranges, 
has been widely documented in numerous species across three 
phyla (Switzer, 1993) and has been directly linked to measures of in-
dividual fitness. For example, range fidelity has been positively cor-
related with individual survival and reproduction in mammalian and 
avian species (Gerber et al., 2019; Lafontaine et al., 2017; Severud 
et al., 2015).

The study of species that inhabit extreme environments offers 
valuable opportunities to understand relationships between extrin-
sic and intrinsic factors influencing spatial use patterns and animal 
ecology. This occurs because selection pressure in such settings is 
often strong resulting in acute effects that often have important 
implications for conservation (Berger, 2018). In this regard, study 
of mountain ungulates, such as mountain goats (Oreamnos ameri-
canus), offers compelling case studies given their somewhat unique 
ecological attributes and specialized adaptations for surviving in 
rugged mountain environments characterized by extreme seasonal 
climates (Figure 1). The species exhibits a strong affinity for steep, 
broken terrain and cliffs in order to mitigate the risk of predation 
by large carnivores such as wolves, mountain lions, and bears (Cote 
et al., 1997; Festa- Bianchet & Côté, 2008; Fox & Streveler, 1986; 
Smith, 1983). Such features are often limited in distribution and re-
sult in concentrated use of specific areas in mountain landscapes 
(Lowrey et al., 2018; Wells et al., 2014; White & Gregovich, 2018). 
Within this context, seasonal variability in food resource availabil-
ity and energetic constraints imposes restrictions on how mountain 
goats use their environment. For example, the heavy, wet snow 
packs common in coastal environments increase the energetic 
costs of locomotion (Dailey & Hobbs, 1989), while decreasing the 
availability of forage (Fox, 1983; White et al., 2009) during winter. 
Such environmentally driven constraints can impose strong selec-
tion pressures illustrated by use of energy minimizing behavioral 
strategies during the winter and conservative life- history charac-
teristics (Festa- Bianchet & Côté, 2008). The timing of reproductive 
effort differs between females and males, with females giving birth 
at the onset of the vegetation growing season and incurring associ-
ated energetic demands through mid- summer (Hamel & Côté, 2009; 
Pettorelli et al., 2007). Polygynous males, on the other hand, widely 

F I G U R E  1   Mountain goat (Oreamnos americanus) in winter 
range. Southeast, Alaska
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seek and procure mating opportunities during the rutting season 
which occurs just prior to winter (Geist, 1965; Mainguy & Côté, 
2008; Richard et al., 2014a). During the rut, males are expected to 
increase movement behavior and expand space use in order to opti-
mize opportunities to find receptive females (Richard et al., 2014a).

The objective of this study was to examine how environmen-
tal seasonality, reproductive constraints, and behavioral factors 
influence space use and range fidelity of mountain goats, a habitat 
specialist that inhabits a highly seasonal mountain environment. 
Specifically, we predicted that space use would be highest during the 
vegetation growing season and lowest during snowy winters. Within 
this context, we expected sex- specific differences such that females 
would exhibit restricted space use during the parturition period but 
would expand through summer as vulnerable neonates attained 
greater mobility, enabling females to more effectively acquire food 
resources. We predicted that space use would expand for males 
during the late- fall breeding season in order to find and procure 
mating opportunities, a behavior that would be positively correlated 
with individual age. Because mountain goats are habitat specialists 
that utilize terrain features, or antipredator refugia, that are limited 
on the landscape, we expected individuals to exhibit a high degree 
of range fidelity. We expected higher range fidelity during critical 
life cycle periods (i.e., females during parturition and males during 
the breeding season), as compared to other times of year, patterns 
that would be generally expected to be more pronounced for older 
animals that had greater familiarity with their local environments.

2  | STUDY ARE A

We studied mountain goats in a 4,100- km2 study area in a mainland 
coastal mountain range in the upper Lynn Canal region of south-
eastern Alaska, near the community of Haines, Alaska (58.4– 59.7N, 
134.8– 136.2W; Figure 2). The maritime climate in this area is char-
acterized by cool, wet summers and relatively warm, snowy winters. 
Total annual precipitation at sea level averages 159 cm, including 
447 cm of snowfall deposited during November– March (Haines 
COOP Weather Station, AK; National Weather Service, 2020). 
Elevations at 800 m typically receive ca. 650 cm of snowfall, annually 
(Eaglecrest Ski Area Juneau, AK; National Weather Service, 2020). 
Winter temperatures at sea level average −3°C (and are rarely less 
than −20°C), whereas summer temperatures average 14°C (and 
rarely exceed 27°C; Haines COOP Weather Station, AK; National 
Weather Service, 2020). Predominant vegetative communities oc-
curring at low- to- moderate elevations (<500 m) include Sitka spruce 
(Picea sitchensis)— western hemlock (Tsuga heterophylla) conifer-
ous forest, mixed- conifer muskeg, and deciduous riparian forests. 
Mountain hemlock (Tsuga mertensiana) dominated “krummholz” 
forest comprises a subalpine, timberline band occupying elevations 
between 500 and 750 m. Alpine plant communities (750– 1,400 m) 
are composed of a mosaic of relatively dry ericaceous heathlands, 
moist meadows dominated by grasses and forbs, and wet fens. 
Avalanche chutes are common in the study area, bisect all plant 

community types, and often terminate at sea level. Mountain goats 
are largely allopatric with other potential interspecific competitors 
such as moose (Alces alces). Sitka black- tailed (Odocoileus hemionus 
sitchensis) deer are rare. Documented predators of mountain goats 
include wolves (Canis lupus), brown bears (Ursus arctos), and black 
bears (Ursus americanus). Wolverines (Gulo gulo) and coyotes (Canis 
latrans) are also present.

3  | METHODS

During August– October 2005– 2016, mountain goats were chemi-
cally immobilized using standard helicopter darting techniques 
(Taylor, 2000; White et al., 2012). During handling, all animals were 
carefully examined and monitored following standard veterinary 
procedures (Taylor, 2000) and routine biological samples and mor-
phological data collected. Age of animals was determined by count-
ing horn annuli (Brandborg, 1955; Smith, 1988) and, in some cases, 
cross- validated by examination of tooth eruption patterns (for young 
animals; Brandborg, 1955) and/or cementum analysis of incisors (for 
deceased animals; Matson, 1985). Individuals were subsequently 
classified into 3 a priori age classifications (subadult: 2– 3 years, 
adult: 4– 9 years, senior: 10+ years) based on age- specific patterns 
of physical and sexual maturity and senescence (Festa- Bianchet & 
Côté, 2008; White et al., 2011). All animals were deployed with GPS 
radio- collars (TGW- 3590, TGW- 4500, or TGW- 4590, Telonics Inc., 
Mesa, AZ). Radio- collars were programmed to collect GPS loca-
tion data at 6- hr intervals. Location data were postprocessed and 
filtered for “impossible” points and 2D locations with PDOP (posi-
tion dilution of precision) values greater than 10, following (D'Eon & 
Delparte, 2005; D'Eon et al., 2002). During each location attempt, 
ancillary data about collar activity (i.e., percent of 1- s switch tran-
sitions calculated over a 15- min period following each GPS fix at-
tempt) were simultaneously collected. Seasons were defined by 
using remotely collected activity sensor data as a proxy for defining 
behaviorally mediated changes in seasonal activity patterns, timing 
of migratory movements, or, in the case of kidding season, aerial ob-
servations of newborn neonates (winter: 15 December– 15 April, kid-
ding: 15 May– 15 June, summer: 16 June– 30 September, and rut: 18 
October 18– 23 November; White, 2006; White et al., 2012).

GPS location data were analyzed for each individual by season, 
provided at least 100 GPS locations were available. We estimated 
seasonal home range utilization distributions (95% fixed kernel; 
Worton, 1989) with the href (reference bandwidth) smoothing pa-
rameter using the rhr package (Signer & Balkenhol, 2015) in statis-
tical program R (R Development Core Team, 2017). We used two 
complementary approaches to characterize fidelity to seasonal 
home ranges. First, we examined whether 95% fixed- kernel sea-
sonal home range polygons overlapped from one year to the next. 
Next, we quantified the degree to which spatial use patterns within 
home ranges (i.e., utilization distributions) were similar by comparing 
seasonal home ranges during successive years. Specifically, we used 
Bhattacharyya's affinity (BA) estimator, a computational method 
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that quantifies similarity between paired utilization distributions 
(Bhattacharyya, 1943; Fieberg & Kochanny, 2005). Specifically, BA 
characterizes the utilization distribution overlap by deriving a contin-
uous affinity measurement between 0 and 1 (i.e., 0 = no overlap, and 
1 = complete overlap) (Calenge, 2011). BA estimates were derived 
by comparing a season- specific utilization distribution for a given 
individual during year t + 1, with the corresponding season- specific 
utilization distribution from the prior year (year t), thus providing an 
explicit assessment of the degree to which prior use of a given home 
range was emulated the following year. We used the kerneloverlaphr 
function available in the adehabitatHR package (Calenge, 2011) in 
program R to calculate estimates of BA.

3.1 | Statistical analysis

A generalized linear mixed- effect model was used to examine the 
effects of sex, age class, and season on home range size using the 

glmmPQL function in the MASS package (Venables & Ripley, 2002) 
in program R. Individual animal ID was included as random effect. 
We used a Gamma error distribution with a log link function to ad-
dress both nonlinearity and heteroscedasticity in the response and 
Tukey- adjusted post hoc pairwise comparisons to examine differ-
ences within groups. To determine whether kid status influenced 
home range size, we conducted a paired t test to contrast indi-
vidual adult female goats during a year when they had a kid, with a 
year when they did not. The effect of sex, season, and age class on 
range fidelity (BA) was evaluated using a fractional response regres-
sion model implemented as a generalized linear model with a qua-
sibinomial error distribution (Clark, 2019; Gourieroux et al., 1984; 
Papke & Wooldridge, 1996) using the mgcv package (Wood, 2017) 
in program R. Individual animal and year treated as random effects. 
We used Tukey- adjusted post hoc pairwise comparisons to exam-
ine differences between all categorical combinations (season, age 
class, and sex). Categorical summaries were described by presenting 
mean ± SE.

F I G U R E  2   Map of the study area 
illustrating the location where mountain 
goats were studied during 2005– 2016 
in the upper Lynn Canal region, Alaska. 
Red circles denote mountain goat capture 
locations (n = 263)
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4  | RESULTS

During August– October 2005– 2016, 263 mountain goats were cap-
tured and deployed with GPS radio- collars and resulted in compi-
lation of 171,685 GPS locations (GPS fix success = 83%). Seasonal 
home range estimates (95% fixed kernel) were calculated for 123 
females and 140 males (mean number of locations/home range esti-
mate = 241), in many cases across multiple years (mean deployment 
time = 1.7 years). Data were adequate to compare seasonal home 
range and utilization distribution overlap during consecutive years in 
a subset of cases (females, n = 67– 118; males, n = 85– 134, depend-
ing on season).

4.1 | Home range size

The model examining sources of variation in mountain goat home 
range size indicated that season, sex, and age class were all im-
portant predictors (Tables 1 and 2). Home range size was gener-
ally smallest during winter, as compared to other seasons (Table 2). 
Adult males tended to have the smallest winter home ranges 
(mean ± SE = 296 ± 28 ha, n = 152) and were 0.73 times smaller 
than adult females (mean ± SE = 407 ± 46 ha, n = 109, p = .03) 
and 0.57 times smaller than subadult male winter home ranges 
(mean ± SE = 519 ± 115 ha, n = 23, p = .04) than adult males. In 
contrast, during the kidding season, adult female home ranges 
(mean ± SE = 730 ± 92 ha, n = 81) were significantly (0.44 times) 
smaller than adult male home ranges (mean ± SE = 1,654 ± 176 ha, 
n = 116; p < .001). Further, analyses of paired comparisons of indi-
vidual females indicated that adult females had significantly smaller 
home ranges (mean ± SE = 558 ± 189 ha, n = 14) during kidding seasons 
when they had an offspring at heel, as compared to kidding seasons 
when they did not have an offspring (mean ± SE = 1,121 ± 506 ha, 
n = 14; t = 1.74, p = .05; Figure 3). During summer, adult fe-
male home ranges expanded (mean ± SE = 1,303 ± 148 ha, 
n = 105) and were 1.5 times larger than adult male home ranges 
(mean ± SE = 875 ± 82 ha, n = 159, p = .007); subadult male home 
range size (mean ± SE = 1,906 ± 476 ha, n = 18) was significantly 
larger than adult male home range during summer (p = .007; Tables 1 
and 2). During the breeding season, or rut, adult male home ranges 
(mean ± SE = 2,243 ± 213 ha, n = 151) were 2.5 times larger, as com-
pared to summer (p < .001), and were significantly larger than adult 
females (mean ± SE = 606 ± 70 ha, n = 101; p = .008); age- related 
differences were not evident within sex classes during this period 
(Tables 1 and 2).

4.2 | Range fidelity

Overall, seasonal home range overlap of mountain goat home ranges 
showed little variation during consecutive years. Specifically, 97% 
(810/836) of seasonal home ranges, at least partially, overlapped 
with the seasonal home range used during the previous season 

(Table 3). Yet, the specific manner in which utilization distributions 
were spatially emulated from one year to the next varied in relation 
to sex and season and, to a lesser extent, age. Specifically, the frac-
tional response regression model indicated that season and sex were 
the most influential predictors of utilization distribution overlap (BA) 
or range fidelity (Tables 1 and 3 and Figure 4).

Utilization distribution overlap (BA) was highest during sum-
mer, as compared to other seasons, with adult females (BA, 
mean ± SE = 0.85 ± 0.02, n = 88) exhibiting a significantly greater de-
gree of range fidelity than adult males (BA, mean ± SE = 0.78 ± 0.02, 
n = 106; p = .006); old females exhibited lower range fidelity than 
adult females (BA, mean ± SE = 0.72 ± 0.06, n = 14; p = .027) but age 
differences were not otherwise evident within sexes during summer 
(Table 3, Figure 4). A similar pattern of sex- specific differences was 
evident during winter, with females (BA, mean ± SE = 0.71 ± 0.02, 
n = 89) exhibiting a higher degree of range fidelity than males (BA, 
mean ± SE = 0.54 ± 0.03, n = 84; p < .001), though in both cases utiliza-
tion distribution overlap was lower in winter, as compared to summer 
(Table 3). Further, both old females (BA, mean ± SE = 0.57 ± 0.06, 
n = 20) and old males (BA, mean ± SE = 0.40 ± 0.05, n = 22) exhibited 
lower range fidelity in winter, as compared to adults in their respec-
tive sex class (females, p = .034; males, p = .041). Otherwise, males 
and females reused home ranges during the kidding and breeding 
season in a statistically indistinguishable manner (Table 3).

5  | DISCUSSION

Mountain goats exhibited sex- , age- , and season- specific variation in 
space use and range fidelity highlighting the role that environmental 
conditions, reproductive constraints, and associated social behavior 
play in influencing movement ecology in mountain- adapted habitat 
specialists. In general, space use expanded during the vegetative 
growing season and constricted during the winter. Mountain goats 
inhabit winter environments characterized by relatively extreme 
snow conditions that constrain food resource availability and in-
crease costs of locomotion. Consequently, mountain goats employ 
relatively extreme energy conservation strategies characterized 
by restricted movement and space use during winter (i.e., roughly 
30% the size of summer home ranges), a finding consistent with 
previous studies of mountain goats (Keim, 2004; Poole et al., 2009; 
White, 2006) and other ecologically comparable mountain ungulate 
species (Grignolio et al., 2007; Poole et al., 2016; Simmons, 1982). 
Such results contrast with relationships documented in other large 
herbivore species, where winter home range constriction is more 
variable and less pronounced or absent (Mysterud et al., 2001). 
During the summer vegetative growing season, mobility and avail-
ability of food resources increase and mountain goats significantly 
expand space use, a strategy expected to promote accumulation of 
endogenous energetic reserves necessary for growth, reproduction, 
and overwinter survival (Parker et al., 2009). Overall, the expres-
sion of seasonal variability in space use in response to changing en-
vironmental conditions is common among northern ungulates (Van 
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Beest et al., 2011), yet the relatively high degree of seasonal change 
in space use between summer and winter among mountain goats 
is notable and provides insight about how seasonality influences 
movement patterns among habitat specialists inhabiting mountain 
landscapes.

5.1 | Sex-  and season- specific effects on home 
range size

Variation in sex- specific reproductive characteristics influenced 
space- use strategies among mountain goats. Home range sizes were 
small and did not differ among sexes during winter. However, simi-
lar to other northern ungulates in predator- rich systems (Grignolio 

et al., 2004; Severud et al., 2015; Testa et al., 2000; Van Beest 
et al., 2011), female home ranges during the parturition season were 
smaller than males, particularly among those that had attendant ne-
onates. In coastal Alaska, mountain goats typically migrate between 
low elevation winter ranges to higher- elevation alpine summer habi-
tats (White et al., 2012). For females, migration immediately pre-
cedes parturition, with females giving birth in spatially isolated (and 
putatively safer; i.e., Bergerud et al., 1984) alpine habitats between 
mid- May to early- June, often prior to alpine green- up in snow- 
covered settings. Males, lacking reproductive constraints of parturi-
tion, conduct slower and somewhat delayed altitudinal migrations, 
potentially to more closely track green waves (Bischof et al., 2012) of 
emergent vegetation. As a consequence, male home ranges during 
the kidding season are large because they occur during the spring 

Coefficients

(a) Home range size (b) Home range fidelity

Estimate SE p- value Estimate SE p- value

Intercept 6.594 0.125 <.001 0.869 0.159 <.001

senior 0.165 0.282 .559 −0.332 0.292 .255

subadult 0.329 0.369 .372 0.112 0.622 .858

rut 0.817 0.164 <.001 −0.356 0.188 .058

summer −0.187 0.143 .190 0.899 0.205 <.001

winter 0.579 0.141 <.001 0.027 0.187 .884

male −0.585 0.140 <.001 −0.074 0.200 .710

senior * rut −0.529 0.400 .186 0.137 0.404 .736

subadult * rut −0.628 0.558 .261 −0.461 0.700 .510

senior * summer 0.377 0.363 .299 −0.434 0.424 .307

subadult * 
summer

−0.300 0.409 .463 −0.248 0.781 .751

senior * winter −0.022 0.357 .952 −0.215 0.378 .571

subadult * 
winter

−0.292 0.426 .493 −0.193 0.710 .786

senior * male −0.032 0.352 .929 0.284 0.397 .474

subadult * male −0.310 0.407 .446 −0.749 0.753 .320

rut * male 0.492 0.185 .008 0.332 0.248 .181

summer * male −1.215 0.183 <.001 −0.417 0.263 .113

winter * male −1.134 0.183 <.001 −0.667 0.245 .007

senior * rut * 
male

0.326 0.504 .518 0.067 0.538 .901

subadult * rut * 
male

0.939 0.616 .128 0.545 0.945 .565

senior * summer 
* male

0.535 0.495 .281 0.172 0.549 .755

subadult * 
summer * male

1.370 0.633 .031 −0.788 0.431 .141

senior * winter 
* male

0.873 0.499 .081 −0.328 0.513 .523

subadult * 
winter * male

1.168 0.611 .056 1.434 0.972 .140

Note: Intercept represents the baseline values (adult females during the kidding seasons). All other 
parameter estimates are relative to these baseline values.

TA B L E  1   The parameter estimates, 
standard error, and statistical significance 
of the covariates used in the models for 
describing mountain goat (a) home range 
size and (b) home range fidelity (utilization 
distribution overlap; BA) in relation to sex, 
age class, and season during 2005– 2016 
in upper Lynn Canal, Alaska
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TA B L E  2   Mountain goat home range (95% fixed kernel) estimates in relation to sex, age category, and season during 2005– 2016 in upper 
Lynn Canal, AK

Age Sex Season

Home range size (ha)

GroupMean SE Lower Upper n

Subadult Female Kid 1,015 360 503 2,039 9 CDEFGHI

Summer 1,352 380 781 2,345 15 BCDEF

Rut 624 149 392 1,002 21 GHIJK

Winter 415 96 262 659 22 JKL

Male Kid 1,227 505 545 2,752 6 BCDEFGH

Summer 1,906 476 1,164 3,134 18 ABCD

Rut 3,151 744 1,978 5,014 20 A

Winter 519 115 334 804 23 IJK

Adult Female Kid 730 92 573 935 81 GHI

Summer 1,303 148 1,043 1,636 105 CDE

Rut 606 70 483 758 101 HIJ

Winter 407 46 327 508 109 K

Male Kid 1,654 176 1,339 2,039 116 C

Summer 875 82 728 1,054 159 FG

Rut 2,243 213 1,863 2,697 151 AB

Winter 296 28 245 358 152 L

Old Female Kid 861 226 513 1,451 16 EFGHI

Summer 1,503 380 916 2,465 18 BCDE

Rut 1,042 271 626 1,737 18 CDEFGH

Winter 465 115 284 758 20 IJKL

Male Kid 1,149 310 672 1,959 15 CDEFG

Summer 1,015 230 652 1,588 22 DEFG

Rut 3,149 727 1,998 4,964 21 A

Winter 478 113 299 758 20 IJKL

Note: All groups (sex, season, and age class) that share the same letter are not significantly different at alpha = 0.05 (Tukey- adjusted post hoc 
pairwise comparisons).

F I G U R E  3   Home range size (95% fixed 
kernel; hectares) of adult female mountain 
goats during the kidding season in relation 
to kid status during 2005– 2016 in Upper 
Lynn Canal, Alaska. Analyses include only 
paired cases involving individuals that had 
a kid one year and did not have a kid in 
the preceding or subsequent year (p = .05, 
t = 1.74, n = 14)
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migratory period and often encapsulate portions of winter and sum-
mer range. During the postkidding summer period, female home 
ranges expand and exceed the size of male home ranges. Following 
an initial period of neonate vulnerability and spatial constriction as-
sociated with birth events, expansion of female home ranges during 
summer coincides with the need to cope with increased energetic 
demands associated with lactation and recovery fat and protein 
reserves depleted over winter (Parker et al., 2009) and also reduce 
the risk of predation. Indeed, space- use expansion among females 
during summer is expected to result in more dispersed and less pre-
dictable use of the landscape, characteristics that are expected to 
reduce the risk of predation among mountain goats (Festa- Bianchet 
& Côté, 2008) and other large herbivores in circumboreal regions 
(Bergerud et al., 1984; Bowyer et al., 1999). Overall, these findings 
reinforce the important role that neonate vulnerability and energetic 
costs of lactation play in regulating seasonal variation in home range 
size.

The mating season imposes sex- specific constraints on moun-
tain goats and resulted in different space- use strategies during the 
rut. Successful breeding among polygynous male mountain goats 
involves finding and breeding with receptive females during an 
abbreviated 4-  to 6- week period during late autumn to early win-
ter. Reproductive success among males is linked to body mass and 
age class, with larger (and older) males typically being more socially 
dominant and successful breeders, as compared to younger animals 
(Mainguy & Côté, 2008). Our results indicated that males substan-
tially expanded home ranges during the rut, consistent with the need 
to find multiple receptive females across relatively broad mountain 
landscapes where densities can be variable and patchily distributed. 
Females, on the other hand, reduced home ranges size during the 
rut, as compared to summer. Such behavior may facilitate the ability 
of males to find receptive mates during the rutting season by con-
centrating use in relatively restricted areas, as has been documented 
in white- tailed deer (Beier & McCullough, 1990).

TA B L E  3   Mountain goat home range and utilization distribution overlap (BA) estimates in relation to sex and season during 2005– 2016 in 
upper Lynn Canal, Alaska

Age Sex Season

Home range overlap Utilization distribution overlap

Cases % Mean SE Lower Upper n Group

Subadult Female Kid 3 100 0.71 0.12 0.43 0.89 3 ABCDE

Summer 7 100 0.83 0.07 0.66 0.93 7 BCDE

Rut 9 100 0.54 0.08 0.39 0.69 9 ABCD

Winter 9 100 0.70 0.07 0.54 0.82 9 ABCDE

Male Kid

Summer 3 100 0.60 0.13 0.34 0.82 3 ABCDE

Rut 4 100 0.59 0.12 0.35 0.79 4 ABCDE

Winter 4 100 0.70 0.11 0.46 0.86 4 ABCDE

Adult Female Kid 48 100 0.70 0.03 0.63 0.76 48 BC

Summer 88 100 0.85 0.02 0.81 0.88 88 CD

Rut 71 93 0.63 0.03 0.58 0.68 76 A

Winter 89 100 0.71 0.02 0.67 0.76 89 BC

Male Kid 64 97 0.68 0.03 0.62 0.73 66 BCD

Summer 106 100 0.78 0.02 0.74 0.81 106 BC

Rut 87 100 0.68 0.02 0.63 0.73 87 AB

Winter 72 86 0.54 0.03 0.49 0.59 84 DE

Old Female Kid 16 100 0.62 0.06 0.50 0.73 16 BCDE

Summer 14 100 0.72 0.06 0.59 0.82 14 CDE

Rut 13 93 0.56 0.07 0.43 0.69 14 ABCD

Winter 20 100 0.57 0.06 0.46 0.67 20 CDE

Male Kid 19 100 0.68 0.05 0.57 0.77 19 BCD

Summer 25 100 0.72 0.04 0.63 0.80 25 ABCD

Rut 23 100 0.72 0.05 0.62 0.80 23 ABCD

Winter 16 73 0.40 0.05 0.30 0.50 22 E

Note: Home range overlap summarizes whether a seasonal home range overlapped with the previous season. Utilization distribution overlap 
characterizes the similarity of seasonal home range utilization distributions for given individual during consecutive years, calculated using 
Bhattacharyya's affinity (BA) estimator. All groups (sex, season, and age class) that share the same letter are not significantly different at alpha = 0.05 
(Tukey- adjusted post hoc pairwise comparisons).
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5.2 | Seasonal patterns of home range fidelity

Range fidelity has been proposed to confer ecological benefits 
because increased familiarity with an area is predicted to en-
hance acquisition of nutritional resources and reduce predation 
risk (Greenwood, 1980; Schaefer et al., 2000), though predictable 
prey behavior may increase predation risk in some settings (Bowyer 
et al., 1999). Quantitative assessment of range fidelity by statisti-
cally comparing similarity of utilization distributions, using methods 
such as Bhattacharyya's affinity (BA) estimator, offers an informa-
tive means for characterizing the ecological underpinnings of 
range fidelity and has been used in a diversity of systems (Caillaud 
et al., 2014; Clapp & Beck, 2015; Hartman et al., 2015; Kochanny 
et al., 2009; Naveda- Rodríguez et al., 2018; Robert et al., 2012; 
Sansom et al., 2018; Watson et al., 2014). Our findings indicate that 
at a broadscale mountain goats exhibit a high degree of range fidelity 
such that in nearly all cases (i.e., 99%, n = 138) individuals had over-
lapping seasonal home ranges from one year to the next, a finding 
comparable to earlier, less detailed study of the species (Keim, 2004; 
Schoen & Kirchoff, 1982; Swenson, 1985). The average annual BA 
overlap for all individuals during all seasons was 68% (n = 138). This 

finding is notable considering that migratory mountain goats in the 
Lynn Canal region of our study area exhibited annually recurrent 
use of largely the same 3– 4 km2 winter home ranges despite having 
as much as 106 km2 of winter range available (White, 2006; White 
et al., 2012; White and Gregovich, 2017; Figure S1). Within this con-
text, finer resolution utilization distribution similarity (BA) analyses 
indicated mountain goat males and females exhibit similar degrees 
of range fidelity during most of the year, though notable exceptions 
were evident. For example, females exhibited higher range fidel-
ity during summer and winter, relative to males. Because females 
typically incur increased energetic demands associated with lacta-
tion during summer and also greater predation risk during summer 
and winter, relative to males, higher range fidelity is likely linked to 
benefits associated with increased knowledge about distribution 
of nutritional resources and predation- risk refugia, similar to find-
ings documented in other northern ungulates (Forrester et al., 2015; 
Peignier et al., 2019; Wittmer et al., 2006).

Seasonal variation in environmental conditions and reproductive 
requirements also exert a strong influence on range fidelity behav-
ior. Similar to previous studies on caribou (Peignier et al., 2019) and 
deer (Hellickson et al., 2008; Igota et al., 2004), we documented 

F I G U R E  4   Maps depicting examples of sex-  and season- specific variation in mountain goat space use and site fidelity in upper Lynn 
Canal, Alaska during 2005– 2016. (a) home range size of a representative male and female mountain goat during the rut, (b) differences in 
summer versus winter home ranges for a male and female mountain goat, (c) kidding season home range size of a female mountain goat 
during a year when it had a kid versus a year when it did not, (d) overlapping home ranges of a male mountain goat during 4 successive 
summer seasons illustrating site fidelity

(a)

(b)

(c)

(d)
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lower range fidelity in winter relative to summer in mountain goats. 
This finding lends support to the hypotheses that variation in envi-
ronmental conditions influences range fidelity behavior by altering 
predictability of key resources (Peignier et al., 2019). In high- mid lat-
itude environments, this dynamic may be most pronounced when 
winter snow buries food resources and alters the distribution, avail-
ability, and, ultimately, predictability of food resource distribution 
for herbivores (Fox, 1983; Gilbert et al., 2017; Peignier et al., 2019; 
White et al., 2009), a relationship that can be further complicated 
by the highly variable intra-  and interannual frequency of winter 
snow events (Littell et al., 2018) that influence locomotory capa-
bilities (Dailey & Hobbs, 1989) and movement dynamics (Richard 
et al., 2014b). Within this context, social and behavioral dynamics 
may further influence winter range fidelity via seasonal carry- over 
effects. For example, male mountain goats exhibited the lowest 
degree of range fidelity in winter, a finding that may have been re-
lated to wide ranging and sometimes exploratory movements that 
occurred during the preceding rut period. Such movements may re-
sult in males ending up in unpredictable locations at the end of the 
rut, a moment that coincides with the onset of winter, and results in 
increased variability in range fidelity; especially if deep, locomotion- 
inhibiting snow events occur in early winter and limit their ability to 
return to previously used seasonal core use wintering areas.

5.3 | Effects of age on range fidelity

Older animals are expected to exhibit higher range fidelity due to 
increased experience and local knowledge of their surroundings, 
especially if past experience resulted in beneficial fitness- linked 
outcomes such as increased reproductive success (Cameron & 
Linklater, 2007; Greenwood & Harvey, 1982; Testa et al., 2000). In 
our study, we documented limited support for age- related effects on 
range fidelity in mountain goats, similar to previous investigations of 
black- tailed deer (Forrester et al., 2015). For example, we anticipated 
that during the rut, prime- aged and older males would exhibit in-
creased range fidelity, relative to subadults, due to social dominance 
and previous mating experience. Instead, our findings revealed that 
range fidelity during the rut was relatively low, as compared to sum-
mer, and may reflect trade- offs associated with optimizing success 
of mating opportunities in this polygynous species. Specifically, in 
some instances males, provided they are socially dominant, may be 
able to maximize breeding opportunities by concentrating use in 
areas of high female density; however, in most cases wide- ranging 
exploratory movements are likely required to successfully procure 
mating opportunities with heterogeneously distributed receptive 
females across geographically complex landscapes. Consequently, 
previous experience and range fidelity may not foster substantial 
fitness benefits under such conditions, in contrast to cases where 
the distribution of prospective mates is highly predictable in space 
and time (i.e., Cameron & Linklater, 2007). In other seasonal con-
texts, age- specific patterns in range fidelity were likewise weak 
and suggest that previous experience may not exert strong fitness 

benefits, perhaps because knowledge regarding the distribution of 
key resources may be acquired relative quickly, a plausible hypoth-
esis given the relatively small home ranges used.

5.4 | Modeling considerations, 
constraints, and inference

Familiarity with a local environment can represent an important ele-
ment of habitat selection at broad spatial scales, and when coupled 
with positive reinforcement associated with selection for beneficial 
habitat attributes, a finer scale provides a mechanistic underpin-
ning for range fidelity behavior (Wolf et al., 2009). Yet, disentan-
gling resource selection behavior from range fidelity can be complex 
and incorporating explicit knowledge about resource selection and 
distribution of available resources, or habitat patches, can facilitate 
an enhanced understanding of range fidelity behavior (Lafontaine 
et al., 2017; van Moorter et al., 2009, 2013). For example, if habi-
tat is extremely limited in availability, reuse of a given site may be 
mandatory and independent of previous experience or familiarity. 
To address these considerations, we used a study area- specific re-
source selection function model to illustrate how habitat availabil-
ity was not constrained, based on the movement capabilities and 
space- use requirements of mountain goats (White, 2006; White 
et al. 2012; White and Gregovich, 2017; Figure S1). Specifically, we 
determined that mountain goats annually reused winter ranges 97% 
of the time, even though home ranges constituted as little as 4% of 
the available habitat. Thus, the chance of an animal randomly reus-
ing a home range based on factors unrelated to previous experience 
or familiarity appears exceedingly small. While these results provide 
convincing evidence of range fidelity in our study, implementation of 
statistical approaches involving direct integration of resource selec-
tion and range fidelity processes may represent a promising comple-
mentary pathway for advancing our knowledge of range fidelity in 
the future (Lafontaine et al., 2017). For example, the utilization dis-
tribution overlap method used in this study provided a quantitative 
and relatively precise means for assessing how distributional pat-
terns within seasonally reused home ranges were emulated from one 
year to the next. While current formulations of resource selection 
modeling approaches do not explicitly quantify and integrate utiliza-
tion distribution overlap information, they can expand our knowl-
edge of range fidelity behavior by evaluating the relative strength 
of fidelity versus. habitat characteristics in the context of broader 
investigation of resource selection behavior and prediction of a spe-
cies distribution.

5.5 | Conservation implications

The combined effects of having relatively small home ranges, es-
pecially during the critical winter and parturition season, and high 
range fidelity have important conservation implications for habitat 
specialists such as mountain goats. While a high degree of fidelity to 
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seasonal home ranges does not necessarily imply a lack of behavioral 
flexibility, it is important to recognize that mountain goats exhibit an 
explicit recognition of important features in their local landscapes. 
Disruption or physical alteration of seasonal home ranges is likely 
to compromise an individual animal's ability to optimally utilize key 
resources such as forage patches or predator- escape refugia, es-
pecially if they are limited in supply. Our analyses of range fidelity 
indicate that mountain goats perceive their environment and make 
space- use decisions at both broad (i.e., returning to the same sea-
sonal home range) and fine scales (i.e., reusing home ranges in a simi-
lar degree of spatial intensity) of spatial resolution. For a species that 
endure relatively extreme climatic conditions and is highly special-
ized to avoid the risk of predation by using spatially limited, discrete 
terrain features, it is important to recognize that anthropogenic im-
pacts such as habitat alteration may disrupt range fidelity behavior 
(Faille et al., 2010; Richard & Côté, 2016) and capabilities, resulting 
in deleterious effects at the individual-  and population- level scales.
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