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Abstract Transthyretin (TTR) is the carrier protein of thyrox-
ine (T4) and binds to retinol-binding protein (RBP)-retinol
complex. It is mainly synthesized by both liver and choroid
plexuses of the brain. Besides these properties, it has a neuro-
protective role in several contexts such as Alzheimer’s disease
(AD) and cerebral ischemia. Activation of insulin-like growth
factor receptor I (IGF-IR) pathways and increased levels of
TTR are associated with absence of neurodegeneration in an
AD mouse model. In the present study, we verified that
young/adult TTR null mice had decreased levels of IGF-IR
in the hippocampus, but not in choroid plexus when compared
with wild-type age-matched controls. Moreover, we could
also demonstrate that conditional silencing of peripheral
TTR did not have any influence in hippocampal IGF-IR
levels, indicating that TTR effect on IGF-IR levels is due to
TTR mainly synthesized in the choroid plexus. In vitro cellu-
lar studies, using NIH3T3 cell line and primary cultured
hippocampal neurons, we showed that TTR upregulates
IGF-IR at the transcription and translation levels and that is
dependent on receptor internalization. Using a GFP-IGF-IR
fusion protein, we also found that TTR triggers IGF-IR nu-
clear translocation in cultured neurons. We could also see an
enrichment of IGF-IR in the nuclear fraction, after TTR stim-
ulation in NIH3T3 cells, indicating that IGF-IR regulation,
triggered by TTR is induced by nuclear translocation. In

summary, the results provide evidence of a new role of TTR
as a transcription inducer of IGF-IR in central nervous system
(CNS), unveiling a new role in neuroprotection.
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Introduction

Transthyretin (TTR) is a 55,000-Da homotetrameric protein,
carrier of thyroxine (T4) [1] and associates to the retinol-
binding protein (RBP)-retinol complex, both in plasma and
the cerebrospinal fluid (CSF) [2]. The TTR-RBP complex is a
very stable form of retinol transport, allowing its delivery to
cells.

TTR is mainly synthesized by liver and by choroid plexus,
being secreted to blood and CSF, respectively [3, 4]. In CSF,
TTR represents 25 % of total proteins derived from the cho-
roid plexus [5]. Besides its carrier properties, TTR has also
been described as a neuroprotective molecule. TTR prevents
Aβ toxicity [6] and modulates Aβ brain levels [7]. The
neuroprotective role of TTR is extended to other pathologies
besides Alzheimer’s disease (AD); in cerebral ischemia, CSF
TTR enhances survival of endangered neurons [8], and, under
nerve injury conditions, TTR improves nerve regeneration [9].

Insulin-like growth factors (IGFs) are a family of polypep-
tides that have important functions in development, cell dif-
ferentiation, plasticity and survival of the nervous system
(reviewed in [10]). Most biological actions of IGF-I are me-
diated through type I IGF receptor (IGF-IR). IGF-IR is a
ubiquitously glycoprotein that consists of two extracellular
α-domains and two transmembrane β-domains, linked by
disulfide bonds [11–13]. The ligand-binding domain is locat-
ed in the α-subunit and the tyrosine kinase domain is located
in the intracellular region of the β-subunit. Upon ligand
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binding, two main downstream pathways are activated by
IGF-IR, namely MAPK/Ras-Raf-Erk and PI3K/Akt/mTor
pathway [14, 15]. Physiological responses to IGF-IR tyrosine
kinase activation are diverse and include differentiation, pro-
liferation, protection from apoptosis and neurite outgrowth
[15–18].

In an AD mouse model, administration of IGF-I induced
clearance of Aβ from the brain, hypothesized to occur through
the regulation of Aβ transport proteins such as albumin and
TTR [19]. The absence of neurodegeneration in the samemice
model was hypothesized to be related to increased TTR levels
and activation of growth factors signaling pathways [20].
These findings suggest a strong connection between TTR
and IGF-IR. The main objective of this work is to dissect the
relation between these molecules, clarifying their relationship
at the biological level. For that purpose, in vivo and in vitro
studies were performed.

Materials and Methods

Animals

The number of mice handled for this research was approved
by the Institutional and National General Veterinary Board
Ethical Committees according to the National and European
Union rules. Three- and 9-month-old TTR wild-type (+/+) and
TTR null (−/−) mice [21], in a 129/svJ background, were
obtained from the littermate offspring of heterozygous breed-
ing pairs. The animals were maintained under a 12 h light/dark
cycle and fed with regular rodent’s chow and tap water ad
libitum. Genotypes were determined from tail-extracted geno-
mic DNA, using primers for the detection of exon 2 of TTR
(which is disrupted in TTR−/− by insertion of a neomycin
resistance gene) as previously described [21].

Tissue Processing

Mice were sacrificed with a lethal injection of a premixed
solution containing ketamine (75 mg/kg) plus medetomidine
(1 mg/kg). Brains were removed from the skull and dissected
to isolate hippocampus and choroid plexus (lateral ventricles),
and immediately frozen at −80 °C, for biochemical analyses.

TTR Production and Purification

Recombinant mouse and human TTR were produced in a
bacterial expression system using Escherichia coli BL21
[22] and purified as previously described [23]. Briefly, after
growing the bacteria, the protein was isolated and purified by
preparative gel electrophoresis after ion-exchange chromatog-
raphy. Protein concentration was determined using the Lowry
method [24].

Endotoxin Removal

To remove endotoxin, a polymixin B column (Thermo Scien-
tific) was used. Briefly, the column was regenerated with 1 %
sodium deoxycholate (Sigma) and washed with pyrogen-free
buffer to remove detergent. Recombinant TTR was applied to
the column and incubated during 1 h at room temperature.
Aliquots of pyrogen-free buffer were added and the flow-
through was collected. Protein concentration was determined
by the Bradford method [25].

NIH3T3 Cell Culture

NIH3T3 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10 % inactivated fetal
bovine serum (FBS), 100 μg/L streptomycin, 100 U/mL pen-
icillin, 300 μg/mL of L-glutamine and maintained at 37 °C in
a humidified incubator of 5 % CO2/95 % air. Cells, at 80 %
confluency, were serum starved for 2 h, rinsed with
phosphate-buffered saline (PBS), and then stimulated with
TTR (55 μg/mL) in the presence or absence of α-amanitin
(Sigma, 10 μg/mL) during 1 h at 37 °C. For the dynasore
(Sigma, 80 μM) experiments, cells were stimulated with TTR
(55 μg/mL) in the presence or absence of the drug during 4 h
at 37 °C. The inhibitor was pre-incubated 30 min before the
TTR stimulus.

Primary Hippocampal Neuronal Cultures

Primary cultures of mouse hippocampal neurons were pre-
pared from the hippocampus of E18-E19 TTR−/− or TTR+/+

mice embryos as previously described [26, 27]. Neuronal
cultures were maintained in serum-free neurobasal medium
(Gibco Invitrogen), supplemented with B27 (Gibco
Invitrogen), glutamate (25 μM), glutamine (0.5 mM), and
gentamicin (0.12 mg/mL). Cells were kept at 37 °C in a
humidified incubator with 5 % CO2/95 % air for 7 days, the
time required for maturation of hippocampal neurons [28].
Cells were cultured at a density of 90,000 or 80,000 cells/cm2

on poly-D-lysine-coated six-well microplates (MW6) (for
western blot and real-time PCR experiments) or glass cover-
slips (for immunocytochemistry studies), respectively. For the
dynasore (Sigma, 80 μM) experiments, cells were stimulated
with TTR (55 μg/mL) in the presence or absence of the drug
during 4 h at 37 °C.

Western Blot Analysis

Cultured cells and hippocampus were homogenized in lysis
buffer containing 20 mMMOPS, 2 mMEGTA, 5 mMEDTA,
30 mM sodium fluoride, 60 mM β-glycerophosphate, 20 mM
sodium pyrophosphate, 1 mM sodium orthovanadate, 1 mM
phenylmethylsulphonyl fluoride, 1 % Triton X-100, and 1×

Mol Neurobiol (2015) 51:1468–1479 1469



protease inhibitors mixture (GE Healthcare). Total protein
concentration was determined using the Bradford method.
Fifty micrograms of protein were applied and separated by
10 % SDS-PAGE and transferred to a nitrocellulose Hybond-
Cmembrane (GEHealthcare) using a wet system.Membranes
were dried, blocked 1 h at room temperature in blocking
buffer, 5 % BSA in phosphate-buffered saline Tween-20
(PBST), and then incubated overnight a 4 °C with primary
antibodies diluted in blocking buffer, namely rabbit polyclon-
al IGF-IR (1:1,000; Cell Signaling), β-actin (1:5,000, Sigma),
and α-tubulin (1:10,000, Sigma). Membranes were then incu-
bated with antirabbit IgG-HRP (1:10,000; Binding Site) and
antimouse IgG-HPR (1:5,000; Binding Site), during 1 h at
room temperature. Blots were developed using Immun-Star
WesternC Chemiluminescent kit (BioRad) and exposed to
ECL Hyperfilm (GE Healthcare). Quantitative analyses were
performed using the ImageJ software or ImageLab from
Biorad® Laboratories.

Reverse Transcriptase-Polymerase Chain Reaction

Total RNA was isolated using TRIzol reagent (Invitrogen).
First-strand complementary DNA (cDNA) was synthesized
using the Superscript II kit (Invitrogen). PCR was performed
with the following oligonucleotides to IGF-IR: forward 5′-
TCTTGGATGCGGTGTCCAATAAC-3′ and reverse 5′-
AGGTTGTGTTGTCGTCCGGTGTG-3′; for mouse β-actin:
forward 5′-CTCTTTGATGTCACGCACGATTTC-3′ and
reverse 5′-GTGGGCCGCTCTAGGCACCAA-3′.

Ethidium bromide-stained gels were scanned using GENE
FLASH syngene bio-imaging equipment. The results were
analyzed using the ImageJ software.

mRNA Semiquantification Through Real-Time PCR

Total RNAwas extracted from either 7 days in vitro (7DIV)-
cultured hippocampal neurons or NIH3T3 cells using TRIzol
Reagent (Invitrogen), as previously described [29]. RNA
quality and integrity was assessed using the Experion auto-
mated gel-electrophoresis system (Bio-Rad, Portugal), as pre-
viously described [29]. Samples showing RNA degradation or
contamination by DNA were discarded. RNA concentration
was determined using NanoDrop 1000 (Thermo Scientific).
The samples were aliquoted and stored at −80 °C until further
use. cDNA synthesis was performed using 1 μg of total RNA
and the SuperScript® cDNA synthesis (Invitrogen, Portugal),
as previously described. Samples were stored at −80 °C until
further use.

Oligonucleotides used for IGF-IR real-time PCR were:
forward, 5′GTGACTCGGATGGCTTCGTTATC3′ and re-
verse 5′CTTCATCGCCGCAGACTTTGG3′. 18S RNA was
used as reference gene with the following primers: forward, 5′
AAATCAGTTATGGTTCCTTTGGTC3′, and reverse, 5′

GCTCTAGAATTACCACAGTTATCCAA3′. β-actin was al-
so used as a reference gene with the following primers:
forward, 5′CTAAGGCCAACCGTGAAAAG3′, and reverse,
5′ACCAGAGGCATACAGGGACA3′. The annealing tem-
perature was 60 °C.

For gene expression analysis, 1 μL of 1:10 diluted cDNA
was added to 10 μL of 2× SYBR Green Master Mix (Bio-
Rad) and the final concentration of each primer was 250 nM in
20 μL total volume. The thermocycling reaction was initiated
by activation of Taq DNA polymerase by heating at 95 °C
during 3min, followed by 45 cycles of a 15 s denaturation step
at 95 °C and a 20 s annealing/elongation step at 60 °C. The
fluorescence was measured after the extension step, using the
iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad).
After the thermocycling reaction, the melting step was per-
formed with slow heating, starting at 55 °C and with a rate of
0.5 °C per 10 s, up to 95 °C, with continuous measurement of
fluorescence.

Data analysis was performed using Pfaff method for effi-
ciency correction [30]. Results were normalized with 18S
RNA or β-actin as internal reference gene because it showed
a stable expression in the conditions tested (compared with
other reference genes tested).

Transfection

The expression vector containing IGF-IR fused with a green
fluorescent protein tag (GFP) was kindly provided by Rose-
mary O’Connor (National University of Ireland, Cork, Ire-
land) [31]. The cDNA of IGF-IR was fused into the green
fluorescent protein (GFP) gene in pEGFP-N1 vector (BD
Biosciences Clontech) through EcoRI site. The plasmid se-
quence of pEGFP-N1-IGF-IR was verified by DNA sequenc-
ing reactions. Transfection of cultured hippocampal neurons
with GFP-IGF-IR was performed by the calcium phosphate
coprecipitation method as previously described with minor
modifications [32, 33]. Briefly, 2 μg of plasmid DNA were
diluted in Tris-EDTA (TE) pH 7.3 and mixed with HEPES
calcium chloride pH 7.2 (2.5 M CaCl2, 10 mMHEPES). This
DNA/TE/calcium mix was added to a 2× HEPES-buffered
saline solution (270 mM NaCl, 10 mM KCl, 1.4 mM
Na2HPO4, 11 mM dextrose, and 42 mM HEPES), pH 7.2.
The precipitates were allowed to form for 30 min, with vortex
mixing every 5 min, to ensure that the precipitates had similar
small sizes. Meanwhile, coverslips with cultured neurons
were incubated with cultured conditioned medium with
2 mM of kynurenic acid. The precipitate was added drop wise
to each coverslip and incubated at 37 °C, 5 % CO2, for 3 h.
Cells were then washed with acidic (10 % CO2) equilibrated
culture medium containing 2 mM kynurenic acid and returned
to the 37 °C/5 % CO2 incubator for 15 min. Finally, the
medium was replaced with the initial culture conditioned
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medium, and the cells were further incubated in a 37 °C/5 %
CO2 incubator for 48 h to allow protein expression.

Immunocytochemistry

Cells were fixed in 4 % sucrose/paraformaldehyde and perme-
abilized with 0.3 % Triton X-100 in PBS. Neurons were then
incubated with 5 % bovine serum albumin (BSA) (Sigma) in
PBS+0.1 % Tween 20, for 1 h at 37 °C, to block nonspecific
binding, and incubated with primary antibodies, overnight at
4 °C. Cells were then washed five times with PBS+0.1 %
Tween+0.5 % BSA and incubated with the appropriate sec-
ondary antibodies for 1 h at 37 °C. The coverslips were
mounted in a fluorescent mounting medium (DAKO, Den-
mark) and imaging was performed on a laser scanning Con-
focal Microscope Leica SP2 AOBS SE, using the 40×/63× oil
objective. Primary antibodies used were anti-GFP (1:250,
Santa Cruz) and anti-IGF-IR (1:500, Cell Signaling); as sec-
ondary antibodies, Alexa Fluor 488 and 594 (1:750,
Invitrogen) were employed. The fluorescent dye Hoechst
33342 (0.5 μg/ml, 10″ room temperature) was used to stain
nuclei.

Protein Iodination

TTR was iodinated following the iodogen method [34, 35].
Briefly, to reaction tubes coated with iodogen (Sigma),
100 μl of 0.25 M phosphate buffer and 1 mCi (37 MBq)
of Na125I (NEN) were added, followed by 10–20 μg pro-
tein. The reaction was allowed to proceed in ice bath for
20 min. Labeled protein was separated from free iodide in a
5-ml Sephadex G50 column (Amersham Pharmacia
Biotech).

Radioligand Binding Assays

For binding of 125I-TTR to soluble IGF-IR (sIGF-IR) (Sigma),
96-well plates (Maxisorb Nunc, Rochester, NY, USA) were
coated with 5 μg/well of sIGF-IR (diluted in 0.1 M carbonate
buffer, pH 9.6) overnight at 4 °C. 125I-TTR was incubated
with the plates alone or with 1-, 10-, 100-, and 500-fold molar
excess of unlabeled TTR in binding buffer (0.1 % non-fat dry
milk in minimal essential medium [Gibco, Gaithersburg, MD,
USA]) for 2 h at 37 °C with gentle shaking. Binding was
determined after four washes in ice-cold PBS with 0.05 %
Tween 20. Then, 0.1 ml elution buffer (NaCl 0.1M containing
1 % Nonidet P40) was added for 5 min at 37 °C, and the
contents of the wells were aspirated and counted in a gamma
counter. Specific binding was defined as that observed with
125I labeled protein alone minus 125I labeled protein in the
presence of the different fold molar excess unlabeled.

Binding of 125I-sIGF-IR to TTR immobilized in microtiter
wells (5 μg/well) was performed in the presence of 0, 1, 10,

and 100M excess of TTR; 1, 10, and 100 cold sIGF-IR; 1, 10,
and 40 μg/mL of anti-TTR IgG (α-TTR; Dako) or anti-IGF-
IR IgG (α -IGF-IR, Santa Cruz) or non-immune IgG. Exper-
iments were repeated three independent times, and represen-
tative results are shown.

RNAi Experiment

RNAi for mouse TTR gene silencing was employed as previ-
ously described [8]. TTR or control siRNA was formulated
into a lipid nanoparticle (LNP) delivery system kindly pro-
vided byAlnylam Pharmaceuticals (Boston) [36]. TTR+/+ (n=
6) were injected in the tail vein with mouse TTR siRNA or
with LNP control (LNP alone) at a concentration of 1 mg/kg.
Two days after injection, serumwas collected and mouse TTR
levels were evaluated by Mouse Pre-Albumin ELISA kit
(Alpco) to confirm liver TTR gene silencing RNAi as com-
pared with LNP control animals. Fifteen days after injection, a
second injection was performed in the same conditions as
before. Two days later, animals were sacrificed.

Nuclear Fractionation Protocol

NIH3T3 cells at 80 % of confluency were serum starved for
2 h, rinsed with PBS and then stimulated with TTR (55 μg/
mL) during 1 h at 37 °C. Cells were then scraped on ice with
buffer A (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl,
0.5 mM DTT, 0.05 % NP40, pH 7.9, plus cocktail of
protease/phosphatase inhibitors) and after 10 min centrifuged
for 10 min at 3,000 rpm (4 °C). Supernatant was removed,
which contained the cytosol/membrane fraction and the pellet
was resuspended in buffer B (5 mM HEPES, 1.5 mMMgCl2,
0.2 mM EDTA, 0.5 mM DTT, 26 % glycerol, and pH 7.9),
supplemented with 300 mM NaCl. Pellets were homogenized
and left 30 min on ice, before 30 min of centrifugation at
24,000×g for 20 min. Supernatant was collected, which con-
tains enriched nuclear proteins. Total protein concentration, in
the different fractions, was determined using the Bradford
method and 10 μg of protein, of both fractions, were analyzed
by Western blot.

Statistical Analysis

Quantitative data are presented as mean±SEM. Statistical
analysis was carried out using Graphpad Prism 5 software.
Differences among groups were analyzed by one-way
ANOVA (followed by Bonferroni’s multiple comparison test);
comparisons between two groups were made by Student’s t
test. P values of lower than 0.05 were considered significant;
***P<0.001, **P<0.01, and *P<0.05.
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Results

Hippocampus of TTR−/− Animals Have Decreased Levels
of IGF-I Receptor

TTR and IGF-IR connection was not clearly understood, but it
is known that both molecules were decreased in normal aging.
To understand the relationship of TTR and IGF-IR, hippo-
campus of TTR−/− and TTR+/+ mice from different ages, were
homogenized and analyzed by western blot to IGF-IR. At
3 months of age, TTR−/− animals had 22 % decreased levels
of IGF-IR when compared with age matched wild-type litter-
mates (Fig. 1a) but this difference was abolished in 9-month-
old animals (Fig. 1b).

To discern if TTR effect on IGF-IR levels in hippocampus
was due to plasma or CSF TTR, the two main sources of TTR
in the body, a RNAi experiment was performed. It consisted in
the elimination of TTR expression from the liver in young
TTR wild-type mice maintaining choroid plexus TTR
expression.

TTR levels in plasma decreased approximately 83 % in
TTR-LNP-treated animals when compared with LNP control
mice, whereas in CSF TTR no differences were found be-
tween both groups (data not shown). Abolishment of liver
TTR expression did not alter the levels of IGF-IR in the
hippocampus, when compared with control animals
(Fig. 1c). These results suggest that TTR effect on IGF-IR
levels results from CSF TTR action.

Levels of IGF-IR in Choroid plexuses of TTR−/− Animals
are Similar to TTRWild-Type Littermates

Choroid plexus is responsible for TTR synthesis in brain, and
also one of the sites where IGF-IR is most abundant [37], so it
became relevant to evaluate IGF-IR levels in this tissue.
Western blot analysis of choroid plexus of 3 months animals
demonstrated that IGF-IR levels were similar between TTR+/+

and TTR−/− mice (Fig. 2).

TTR Regulates IGF-IR at Transcriptional Level

In order to clarify how TTR influenced IGF-IR levels in the
hippocampus, cellular studies were performed in NIH3T3
cells. Recombinant endotoxin-free human TTR (55 μg/ml)
was added to NIH3T3 cells for 6 h under serum-free

Fig. 1 Hippocampus of young TTR−/− mice have decreased levels of
IGF-IR. Representative images of western blot analysis and quantitative
charts of IGF-IR levels in a hippocampus samples of 3 months TTR+/+

(n=5) and TTR−/− (n=4) mice; b hippocampus samples of 9 months
TTR+/+ (n=4) and TTR−/− (n=5) animals; c hippocampus samples of
control (n=6) and LNP (n=6)-treated mice. Results are presented as
average±SEM. Error bars represent SEM. *P<0.05 in a Student’s t test

Fig. 2 Young TTR null mice have similar levels of IGF-IR in choroid
plexuses when compared TTR wild-type littermates. Representative im-
age of western blot analysis and quantitative charts of IGF-IR levels of
choroid plexus samples of TTR+/+ (n=6) and TTR−/− (n=9) animals at
3 months of age. Results are presented as average±SEM. Error bars
represent SEM
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conditions. This concentration is under physiological values
[38]. Western blot analysis of whole cell extracts showed that
in the presence of TTR, IGF-IR levels increased approximate-
ly 50 % when compared with controls without added TTR
(Fig. 3a).

To discern if the role of TTR occurred at the transcriptional
level, semiquantitative RT-PCR of IGF-IR was performed.
For that purpose, fibroblasts were incubated with TTR
(55 μg/mL) during 4 h under serum-free conditions and
RNAwas extracted from cells and IGF-IR mRNA quantified
by semiquantitative RT-PCR; IGF-IR/β-actin ratios demon-
strated that levels of IGF-IR mRNA increased 30 % in cells
that had been exposed to TTR when compared with controls
(Fig. 3b).

These results suggested that TTR influences transcription
of IGF-IR. To confirm this effect, α-amanitin (inhibitor of

RNA polymerase, 10 μg/mL) was added to cells during 1 h,
before TTR (55 μg/mL) stimulation. After 6 h, cells were
lysed and whole cell extract was separated by SDS-PAGE.
Western blot analysis showed that when in the presence of α-
amanitin, TTR had no longer effect on the regulation of IGF-
IR levels (Fig. 3c). Taken together, these results demonstrated
that TTR upregulates IGF-IR transcription.

The next step was to understand if this regulation
was dependent on receptor endocytosis or just through
intracellular signaling pathways. To address that ques-
tion, we blocked endocytosis, mainly clathrin-mediated
endocytosis, through the inhibitor dynasore (80 μM).
We saw that the inhibitor blocked the upregulation of
IGF-IR mRNA triggered by TTR (Fig. 3d). So this
indicates that this effect is dependent on receptor
endocytosis.

Fig. 3 TTR regulates IGF-IR
levels. a TTR increases IGF-IR
protein levels. Representative
image and respective chart of
western blot analysis of IGF-IR in
serum-starved NIH3T3 cells
incubated with TTR for 6 h. Data
represents the means±SEM of
four independent experiments.
b TTR increases transcription of
IGF-IR. Semiquantitative RT-
PCR of serum-starved NIH3T3
cells exposed to TTR during 4 h.
Data represents the means±SEM
of three independent experiments.
Error bars represent SEM.
*P<0.05 in a Student’s t test. c
Western blot analysis of IGF-IR
when exposed to TTR for 6 h in
the presence or absence of α-
amanitin. d TTR regulation of
IGF-IR levels is dependent on
receptor internalization. Total
RNAwas extracted and IGF-IR
and β-actin mRNAwere
semiquantified through real-time
PCR. Data represents the means±
SEM of six independent
experiments. Data represents the
means±SEM of five independent
experiments. Error bars represent
SEM. *P<0.05; in one-way
ANOVA, with Bonferroni’s post
test
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TTR Regulates IGF-IR Transcription in Cultured
Hippocampal Neurons

Since TTR has been shown to be a neuroprotective molecule,
it would be important to know if the observed effects in the
NIH3T3 cell line were also present in primary neurons. So we
stimulated primary cultured hippocampal neurons, with 7DIV
(alreadymature), with recombinant endotoxin-free human and

mouse TTR. In order to avoid possible TTR contamination by
choroid plexus epithelia (rich in TTR) or in vitro neuronal
TTR production, we used hippocampus of E18-E19 TTR−/−

mice embryos to culture hippocampal neurons. After 7DIV,
we stimulated the cultures with human or mouse TTR
(55 μg/ml) during 4 h. This led to a significant upregulation
of IGF-IR mRNA in both instances as determined by semi-
quantitative real-time PCR (Fig. 4a). At the same time, IGF-IR

Fig. 4 TTR regulates IGF-IR
mRNA levels in primary cultured
hippocampal neurons, from both
wild-type and TTR null mice.
Cultured hippocampal neurons
from TTR null mice (a) and wild-
type mice (c) were stimulated
with mouse (n=3) and human
transthyretin (n=4) during 4 h
(55 μg/ml), with culture
conditioned medium. Total RNA
was extracted and IGF-IR and
18S mRNAwere semiquantified
through real-time PCR. In another
set of experiments, cultured
hippocampal neurons from TTR
null mice (b) and wild-type mice
(d) were stimulated with human
TTR (n=3) (55 μg/ml) and/or
IGF-I (n=3) (100 ng/ml) during
6 h, with the culture conditioned
medium. IGF-IR and tubulin
protein levels were determined by
western blot. e Cultured
hippocampal neurons from wild-
type mice were stimulated with
mouse TTR (n=9) (55 μg/ml)
during 14 h, with the culture
conditioned medium. IGF-IR and
α-tubulin protein levels were
determined by Western blot. f
TTR regulation of IGF-IR levels
in cultured hippocampal neurons
is dependent on receptor
internalization. Total RNAwas
extracted and IGF-IR and β-actin
mRNAwere semiquantified
through real-time PCR. Data
represents the means±SEM of
four independent experiments.
Statistical analysis was performed
using one-way ANOVA followed
by Bonferroni’s multiple
comparison tests. *P<0.05,
***P<0.001, compared with
control; **P<0.01 for the
indicated comparison
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protein was also analyzed by western blot. We stimulated
cultured TTR null hippocampal neurons with human TTR
(55 μg/ml) and/or recombinant human IGF (100 ng/ml), for
6 h, since TTR and IGF-I have shown to act synergistically in
IGF-IR signaling (submitted manuscript). We could not see
any significant change in IGF-IR levels at this time point
(Fig. 4b).

To understand if the transcriptional control of IGF-IR by
TTR was only restricted to TTR−/− mice or could also be
observed in normal wild-type animals, we cultured embryonic
hippocampal neurons from wild-type mice and stimulated
them with human or mouse TTR (55 μg/ml) during 4 h. An
even more robust IGF-IR mRNA upregulation could be seen
(Fig. 4c). IGF-IR protein was also analyzed by western blot in
these cultures (Fig. 4d); the results were similar to those
observed in the TTR−/− cultures (where no endogenous TTR
is present, and the observed effect on IGF-IR levels is due to
exogenous TTR), i.e., IGF-IR protein levels did not differ with
TTR addition to the cultures.

Since IGF-IR is a membrane protein, it is expected to take
longer to be delivered from the soma, where it is synthesized,
to the dendrites and axons, in neurons. In order to clarify
whether TTR only upregulates IGF-IR mRNA and not IGF-
IR protein, we stimulated wild-type cultured hippocampal
neurons with TTR for longer periods (14 h), in the probability
of IGF-IR being a protein of slow turn-over. At this time
point, a significant upregulation of IGF-IR protein was ob-
served (Fig. 4e), indicating that TTR upregulates both IGF-IR
protein and mRNA.

In cultured hippocampal neurons, we could also showwhat
was observed in NIH3T3 the cell line, i.e., by blocking endo-
cytosis with the inhibitor dynasore, we abrogated the upregu-
lation of IGF-IR mRNA triggered by TTR (Fig. 4f).

IGF-IR–TTR Interaction

When sIGF-1R was adsorbed to microtiter wells at a constant
concentration and incubated with 125I–TTR, addition of cold
TTR resulted in dose-dependent inhibition of binding
(Fig. 5a); if, on the other hand, TTR was immobilized to the
plates and incubated with 125-sIGF-1R, addition of cold sIGF-
IR, TTR, anti-TTR IgG, or anti-IGF-IR IgG resulted in dose-
dependent inhibition of binding, whereas non-immune rabbit
IgG had no effect (Fig. 5b).

With these results, it seems that TTR interacts with IGF-IR
directly and the increased IGF-IRmRNA and protein, induced
by TTR, might by due to the nuclear translocation of IGF-IR.

TTR Induces Migration of IGF-IR to Nucleus

Since IGF-IR has been shown to translocate to the nucleus and
to regulate gene expression [39, 40], we hypothesized that
TTR interaction with IGF-IR could trigger its translocation to
the nucleus where it can stimulate IGF-IR gene expression. So
to better visualize the putative IGF-IR translocation, we took
advantage of a GFP fusion protein with IGF-IR. The plasmid
pEGFP-N1 was used since it fuses GFP to the C-terminal of
IGF-IR and avoids any possible blocking of the TTR IGF-IR

Fig. 5 TTR interacts with IGF-
IR. Binding of 125I-TTR to sIGF-
IR immobilized in microtiter
wells (5 μg/well). a 125I-TTR was
added to each well in the presence
or absence of the indicated molar
excess of cold TTR. b Binding of
125I-sIGF-IR to TTR immobilized
in microtiter wells (5 μg/well) in
the presence or absence of the
indicated molar excess of TTR,
cold sIGF-IR , anti-TTR IgG (α-
TTR), anti-IGF-IR IgG (α-IGF-
IR), or non-immune IgG (NI IgG)
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interaction in the N-terminal. Control immunocytochemistry
experiments showed that localization of GFP_IGF-IR is
similar to that of the endogenous IGF-IR in cultured hippo-
campal neurons (data not shown). We also demonstrate that
GFP and IGF-IR antibodies recognized the fusion protein as
expected.

To address whether GFP_IGF-IR translocates to the nucle-
us, different mouse TTR incubation periods were tested in
wild-type-cultured hippocampal neurons (7DIV) transfected
with GFP_IGF-IR (48 h transfection), from 10 min to 12 h.
We could localize GFP_IGF-IR staining in the nucleus from
20 to 60 min with mouse TTR incubation periods (55 μg/ml;
Fig. 6b, c). IGF stimulation, either with 100 ng/ml or 1 μg/ml,
for the same periods of time had the same results of control
experiment, where no GFP_IGF-IR was seen in the nucleus
(Fig. 6a, d).

We could also show, using NIH3T3 cells, that 1 h after
TTR stimulus, there is an enrichment of IGF-IR protein at the
nucleus, through Western blot (Fig. 6e). At the same time,
there is a corresponding downregulation of the IGF-IR protein
levels at the membrane/cytosol fraction.

Discussion

This is the first report that describes TTR as a positive regu-
lator of IGF-IR levels in the hippocampus. This finding was
demonstrated by studies in TTR null vs wild-type mice and
in vitro-cultured cells. We also found that internalization
followed by IGF-IR nuclear translocation seems to underline
this regulation triggered by TTR.

Analysis of IGF-IR levels in hippocampal samples showed
that TTR null mice had decreased levels when compared with
TTR wild-type littermates at 3 months of age. Silencing of
TTR expression in the liver only did not induce any difference
in IGF-IR levels in the hippocampus when compared with
nontreated controls. This result suggests that TTR effect on
IGF-IR levels in the hippocampus was due to CSF TTR. The
presence of TTR in CSF is mainly derived from synthesis and
secretion by choroid plexus. In this epithelium, IGF-IR levels
were similar between wild-type and TTR null animals; thus,
besides molecular differences between cell types, we hypoth-
esized that the difference observed in hippocampal IGF-IR
levels between TTR wild-type and TTR null mice is related to

Fig. 6 IGF-IR translocates to the nucleus after TTR stimulation. Cul-
tured hippocampal neurons (7DIV) were transfected with GFP-IGF-IR
for 48 h (a control) and then stimulated with wild-type mouse
transthyretin for 1 h (55 μg/mL) (b, c) or with IGF-I for 1 h (1 μg/mL)
(d). Cells were then fixed, permeabilized, and incubated with primary
antibodies against GFP (green), IGF-IR (red), and Hoechst 33342 (blue).
Confocal z-stack images of the transfected GFP-IGF-IR are shown on the
left (a–d) and a transversal selection of the nucleus is shown on the right.
The pixel intensities for GFP, IGF-IR, and Hoechst 33342 labeled along
the stacks are shown in the graphs. Nuclear colocalization with Hoechst

of GFP-IGF-IR is only shown with IGF-IR labeling to prevent Hoechst
emission contamination of the green (GFP) spectra. Images represent at
least four independent experiments. e TTR increases the IGF-IR levels in
the nuclear fraction of NIH3T3 cells, after stimulus.Western blot analysis
of IGF-IR, in the nuclear vs cytosol/membrane fraction (10 μg total
protein in both fractions), when exposed to TTR for 1 h. Data represents
the means±SEM of four independent experiments. Error bars represent
SEM. *P<0.05 in Student’s t test. Representative image illustrates the
four independent experiments
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the action of exogenous circulating CSF TTR. We excluded
the hypothesis of possible TTR synthesis in the hippocampus,
since the residual levels that were found by some authors in
hippocampus can be attributed to choroid plexus contamina-
tion during experimental procedures [41].

Analysis of IGF-IR levels in the hippocampus of 9-month-
old animals did not reveal any differences. TTR levels in CSF
decrease with age—18 month-old animals had a 30 % reduc-
tion in CSF TTR when compared with 5-month-old animals
[42]. It is reasonable to speculate that the decrease of TTR
could be a factor to abolish difference in IGF-IR levels be-
tween TTR wild-type and TTR null mice at this age.

Using NIH3T3 mouse embryonic fibroblast cell line, we
started to dissect how TTR regulates IGF-IR. We showed that
TTR regulates both transcriptional and translational levels of
IGF-IR. To clear whether these results are also relevant in
neuronal cells, we used primary cultured hippocampal neurons.
TTR upregulation at the transcriptional and translational
levels was also seen, not only in TTR null mice but also in
wild-type hippocampal neurons, corroborating the notion that
the observed TTR effects are described to exogenous TTR and
not related to TTR synthesis. This allows us to speculate that
TTR action over IGF-IR levels in neurons explains in part
some of the neuroprotective properties that have been attrib-
uted to TTR in different models of cerebral ischemia [43] or
AD [7].

IGF-I decreases IGF-IR mRNA in muscle and neuroblas-
toma cell lines. The decrease was attributable to transcription-
al activity and not due to changes in mRNA stability [44].
On the other hand, in vivo, increased postnatal levels of
IGF-I have been associated to lower levels of IGF-IR
mRNA [45]. We have analyzed IGF-I levels in plasma
and did not find any differences between TTR wild-type
and TTR null mice (submitted manuscript), indicating
that regulation of IGF-IR levels by TTR is unlikely related to
IGF-I levels. Corroborating this, we also observed that IGF-I
stimulus in cultured hippocampal neurons did not affect its
own receptor levels (Fig. 4b, d), as well as its nuclear translo-
cation (Fig. 6d).

TTR null mice are healthy and fertile, although they present
lower levels of plasma retinol and thyroid hormone [21]. In
brain, a slight difference on T4 levels is observed between
TTR wild-type and TTR null mice [46]. Some studies associ-
ate retinol and T4 with IGF-IR levels. Retinol deficiency was
associated with increased IGF-IR expression in some tissues
of Japanese quail [47], whereas administration of retinoic acid
upregulates IGF-I receptors in lungs [48]. IGF-IR levels can
be regulated by thyroid hormone in the pituitary gland [49] as
well as in cardiac tissue [50]. However, in our in vitro exper-
iments, increased IGF-IR protein and mRNA levels were
obtained under serum-free conditions and in the presence of
recombinant TTR, where no ligands were present, suggesting
that upregulation of IGF-IR levels is dependent on TTR and

not due to the action, so far described, of the ligands
transported by this protein.

Several transcription factors are described as regulators of
IGF-IR transcription. Sp1 and E2F1 are examples of transcrip-
tion factors that are potent transactivators of the IGF-IR gene
[51, 52], whereas breast cancer gene-1 (BRCA1), p53 and
Wilms’ tumor protein-1 (WT1) are negative regulators of
IGF-IR gene [53]. IGF-IR can also be a transcription factor.
Despite the fact of being a transmembrane receptor, IGF-IR
can translocate to the nucleus through a clathrin-mediated
endocytosis, a process that can be regulated by IGF-I [40,
54]. We demonstrated that upregulation of IGF-IR by TTR
was blocked in NIH3T3 and cultured hippocampal neurons
when dynasore, an inhibitor of clathrin-mediated endocytosis
was present. Using GFP fusion protein with IGF-IR we could
demonstrate that IGF-IR can translocate to the nucleus, upon
TTR incubation. We could see the receptor in the nucleus
between 20 and 60 min after TTR stimulation in cultured
hippocampal neurons. In NIH3T3 cells, we could also rein-
force this result by showing that 1 h after a TTR stimulus,
IGF-IR significantly accumulates in enriched fractions of
nucleus vs cytosol/membrane fractions, clearly indicating that
TTR regulates IGF-IR levels, through its own nuclear trans-
location. Stimulus by IGF-I only did not produce the same
effect, although it has been described in other cells and
models, as above referred to. This could be due to the fact
that these cells are tumoral cells with already a lot of IGF-IR in
the nucleus in control conditions.

Through binding displacement experiments, we obtained
evidence for TTR–IGF-IR binding; the detailed characteristics
of the binding need further studies (submitted manuscript).

Apoptotic neuronal cell death is characteristic of neurode-
generative disorders, and the IGF-IR role is becoming more
relevant to protect from apoptosis [55, 56]. Increased IGF-IR
levels induced by TTR, described here for the first time, is an
important finding that might be very useful to control IGF-IR
levels in many different pathological situations, unraveling
possible mechanistic roles of how TTR can be neuroprotec-
tive. It is also of the upmost importance search of TTR
as inducer of IGF-IR signaling pathways (submitted
manuscript).

Acknowledgments This work was supported by FEDER funds
through the Operational Competitiveness Programe – COMPETE, by
national funding from the Portuguese Foundation for Science and Tech-
nology (FCT) under projects FCOMP-01-0124-FEDER-022718 (PEST-
c/SAU/LA0002/2011) and PTDC/SAU-OSM/64093/2006, a PhD fel-
lowship (SFRH/BD/35982/2007) to Marta Vieira, and postdoctoral fel-
lowship (SFRH/BPD/84178/2012) to João Gomes. We thank Sónia
Moreira for support on radioligand binding assays.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Mol Neurobiol (2015) 51:1468–1479 1477



References

1. Woeber KA, Ingbar SH (1968) The contribution of thyroxine-
binding prealbumin to the binding of thyroxine in human serum, as
assessed by immunoadsorption. J Clin Invest 47(7):1710–1721

2. Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the
transport protein for vitamin A in human plasma. J Clin Invest 47(9):
2025–2044

3. Aleshire SL et al (1983) Localization of human prealbumin in cho-
roid plexus epithelium. J Histochem Cytochem 31(5):608–612

4. Soprano DR et al (1985) Demonstration of transthyretin mRNA in
the brain and other extrahepatic tissues in the rat. J Biol Chem
260(21):11793–11798

5. Aldred AR, Brack CM, Schreiber G (1995) The cerebral expression
of plasma protein genes in different species. Comp Biochem Physiol
B Biochem Mol Biol 111(1):1–15

6. Costa R et al (2008) Transthyretin binding to A-beta peptide—impact
on A-beta fibrillogenesis and toxicity. FEBS Lett 582(6):936–942

7. Oliveira SM, et al (2011) Gender-dependent transthyretin modulation
of brain amyloid-beta levels: evidence from a mouse model of
Alzheimer’s disease. J Alzheimers Dis

8. Santos SD et al (2010) CSF transthyretin neuroprotection in a mouse
model of brain ischemia. J Neurochem 115(6):1434–1444

9. Fleming CE, Saraiva MJ, Sousa MM (2007) Transthyretin enhances
nerve regeneration. J Neurochem 103(2):831–839

10. Benarroch EE (2012) Insulin-like growth factors in the brain and their
potential clinical implications. Neurology 79(21):2148–2153

11. Rubin R, Baserga R (1995) Insulin-like growth factor-I receptor. Its
role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest
73(3):311–331

12. Adams TE et al (2000) Structure and function of the type 1 insulin-
like growth factor receptor. Cell Mol Life Sci 57(7):1050–1093

13. NavarroM, Baserga R (2001) Limited redundancy of survival signals
from the type 1 insulin-like growth factor receptor. Endocrinology
142(3):1073–1081

14. Peruzzi F et al (1999) Multiple signaling pathways of the insulin-like
growth factor 1 receptor in protection from apoptosis. Mol Cell Biol
19(10):7203–7215

15. Arnaldez FI, Helman LJ (2012) Targeting the insulin growth factor
receptor 1. Hematol Oncol Clin N Am 26(3):527–542, vii-viii

16. Kim B et al (1997) Insulin-like growth factor-I-mediated neurite
outgrowth in vitro requires mitogen-activated protein kinase activa-
tion. J Biol Chem 272(34):21268–21273

17. Shelton JG et al (2004) Synergy between PI3K/Akt and Raf/MEK/
ERK pathways in IGF-1R mediated cell cycle progression and
prevention of apoptosis in hematopoietic cells. Cell Cycle 3(3):372–
379

18. Sosa L et al (2006) IGF-1 receptor is essential for the establishment of
hippocampal neuronal polarity. Nat Neurosci 9(8):993–995

19. Carro E et al (2002) Serum insulin-like growth factor I regulates brain
amyloid-beta levels. Nat Med 8(12):1390–1397

20. Stein TD, Johnson JA (2002) Lack of neurodegeneration in trans-
genic mice overexpressing mutant amyloid precursor protein is asso-
ciated with increased levels of transthyretin and the activation of cell
survival pathways. J Neurosci 22(17):7380–7388

21. Episkopou Vet al (1993) Disruption of the transthyretin gene results
in mice with depressed levels of plasma retinol and thyroid hormone.
Proc Natl Acad Sci U S A 90(6):2375–2379

22. FuruyaH et al (1991) Production of recombinant human transthyretin
with biological activities toward the understanding of the molecular
basis of familial amyloidotic polyneuropathy (FAP). Biochemistry
30(9):2415–2421

23. Almeida MR et al (1997) Thyroxine binding to transthyretin Met
119. Comparative studies of different heterozygotic carriers and
structural analysis. Endocrine 6(3):309–315

24. Lowry OH et al (1951) Protein measurement with the Folin phenol
reagent. J Biol Chem 193(1):265–275

25. Hammond JB, Kruger NJ (1988) The bradford method for protein
quantitation. Methods Mol Biol 3:25–32

26. Almeida RD et al (2005) Neuroprotection by BDNF against
glutamate-induced apoptotic cell death is mediated by ERK and
PI3-kinase pathways. Cell Death Differ 12(10):1329–1343

27. Gomes JR et al (2011) Cleavage of the vesicular GABA transporter
under excitotoxic conditions is followed by accumulation of the
truncated transporter in nonsynaptic sites. J Neurosci 31(12):4622–
4635

28. Brewer GJ et al (1993) Optimized survival of hippocampal neurons
in B27-supplemented neurobasal, a new serum-free medium combi-
nation. J Neurosci Res 35(5):567–576

29. Santos AR, Duarte CB (2008) Validation of internal control genes for
expression studies: effects of the neurotrophin BDNF on hippocam-
pal neurons. J Neurosci Res 86(16):3684–3692

30. Pfaffl MW (2001) A new mathematical model for relative quantifi-
cation in real-time RT-PCR. Nucleic Acids Res 29(9):e45

31. Buckley DA et al (2002) Identification of an IGF-1R kinase regula-
tory phosphatase using the fission yeast Schizosaccharomyces
pombe and a GFP tagged IGF-1R in mammalian cells. Mol Pathol
55(1):46–54

32. Jiang M, Deng L, Chen G (2004) High Ca(2+)-phosphate transfec-
tion efficiency enables single neuron gene analysis. Gene Ther
11(17):1303–1311

33. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat
Protoc 1(5):2406–2415

34. Fraker PJ, Speck JC Jr (1978) Protein and cell membrane iodin-
ations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-
3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun 80(4):
849–857

35. Caplan, S. and M. Baniyash, Radioiodination of cellular proteins.
Current protocols in cell biology/editorial board, Bonifacino [et al.],
2002. Chapter 7: p. Unit 7 10

36. Semple SC et al (2010) Rational design of cationic lipids for siRNA
delivery. Nat Biotechnol 28(2):172–176

37. Fernandez AM, Torres-Aleman I (2012) The many faces of insulin-
like peptide signalling in the brain. Nat Rev Neurosci 13(4):225–239

38. Sousa MM et al (2000) Transthyretin in high density lipoproteins:
association with apolipoprotein A-I. J Lipid Res 41:58–65

39. Sarfstein R et al (2012) Insulin-like growth factor-I receptor (IGF-IR)
translocates to nucleus and autoregulates IGF-IR gene expression in
breast cancer cells. J Biol Chem 287(4):2766–2776

40. Aleksic T et al (2010) Type 1 insulin-like growth factor receptor
translocates to the nucleus of human tumor cells. Cancer Res
70(16):6412–6419

41. Sousa JC et al (2007) Transthyretin and Alzheimer’s disease: where
in the brain? Neurobiol Aging 28(5):713–718

42. Sousa JC et al (2007) Transthyretin influences spatial reference
memory. Neurobiol Learn Mem 88(3):381–385

43. Santos SD et al (2010) CSF transthyretin neuroprotection in a mouse
model of brain ischemia. J Neurochem 115(6):1434–1444

44. Hernandez-Sanchez C et al (1997) Differential regulation of insulin-
like growth factor-I (IGF-I) receptor gene expression by IGF-I and
basic fibroblastic growth factor. J Biol Chem 272(8):4663–4670

45. Werner H et al (1989) Developmental regulation of the rat insulin-like
growth factor I receptor gene. Proc Natl Acad Sci U S A 86(19):
7451–7455

46. Sousa JC et al (2005) Transthyretin is not necessary for thyroid
hormone metabolism in conditions of increased hormone demand. J
Endocrinol 187(2):257–266

47. Fu Z, Noguchi T, Kato H (2001) Vitamin A deficiency reduces insulin-
like growth factor (IGF)-I gene expression and increases IGF-I receptor
and insulin receptor gene expression in tissues of Japanese quail
(Coturnix coturnix japonica). J Nutr 131(4):1189–1194

1478 Mol Neurobiol (2015) 51:1468–1479



48. Ruttenstock EM et al (2011) Prenatal administration of retinoic acid
upregulates connective tissue growth factor in the nitrofen CDH
model. Pediatr Surg Int 27(6):573–577

49. Matsuo K et al (1990) Thyroid hormone regulates rat pituitary
insulin-like growth factor-I receptors. Endocrinology 126(1):550–
554

50. Araujo AS et al (2007) Oxidative stress activates insulin-like growth
factor I receptor protein expression, mediating cardiac hypertrophy
induced by thyroxine. Mol Cell Biochem 303(1–2):89–95

51. Beitner-Johnson D et al (1995) Regulation of insulin-like growth
factor I receptor gene expression by Sp1: physical and functional
interactions of Sp1 at GC boxes and at a CTelement. Mol Endocrinol
9(9):1147–1156

52. Schayek H et al (2010) Transcription factor E2F1 is a potent
transactivator of the insulin-like growth factor-I receptor (IGF-IR)
gene. Growth Horm IGF Res 20(1):68–72

53. Sarfstein R et al (2006) Transcriptional regulation of the insulin-like
growth factor-I receptor gene in breast cancer. Mol Cell Endocrinol
252(1–2):241–246

54. Chen CW, Roy D (1996) Up-regulation of nuclear IGF-I receptor by
short term exposure of stilbene estrogen, diethylstilbestrol. Mol Cell
Endocrinol 118(1–2):1–8

55. Kooijman R (2006) Regulation of apoptosis by insulin-like growth
factor (IGF)-I. Cytokine Growth Factor Rev 17(4):305–323

56. Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta
Diabetol 48(1):1–9

Mol Neurobiol (2015) 51:1468–1479 1479


	Transthyretin Induces Insulin-like Growth Factor I Nuclear Translocation Regulating Its Levels in the Hippocampus
	Abstract
	Introduction
	Materials and Methods
	Animals
	Tissue Processing
	TTR Production and Purification
	Endotoxin Removal
	NIH3T3 Cell Culture
	Primary Hippocampal Neuronal Cultures
	Western Blot Analysis
	Reverse Transcriptase-Polymerase Chain Reaction
	mRNA Semiquantification Through Real-Time PCR
	Transfection
	Immunocytochemistry
	Protein Iodination
	Radioligand Binding Assays
	RNAi Experiment
	Nuclear Fractionation Protocol
	Statistical Analysis

	Results
	Hippocampus of TTR−/− Animals Have Decreased Levels of IGF-I Receptor
	Levels of IGF-IR in Choroid plexuses of TTR−/− Animals are Similar to TTR Wild-Type Littermates
	TTR Regulates IGF-IR at Transcriptional Level
	TTR Regulates IGF-IR Transcription in Cultured Hippocampal Neurons
	IGF-IR–TTR Interaction
	TTR Induces Migration of IGF-IR to Nucleus

	Discussion
	References


