
serious challenges for classification algorithms based on low-level 
statistical properties (see Figure 7 in Torralba and Oliva, 2003 for 
an example). Image inversion therefore represents a powerful tool 
for gauging the impact of semantic processing on visual sensitivity 
(Valentine, 1988; Yovel and Kanwisher, 2005), but so far it has been 
exploited in relation to tasks and experimental protocols that were 
not designed to target the properties of local sensors in human 
vision (Yin, 1969; Wright and Roberts, 1996).

Our goal was to combine low-level characterizations of human 
feature detectors afforded by behavioral reverse correlation 
(Ahumada, 2002; Neri and Levi, 2006) with the higher-level manip-
ulation of image semantics introduced by inversion (Valentine, 
1988). To this end we embedded artificially generated edges within 
natural scenes and perturbed their local properties via a controlled 
noise source, allowing us to deploy well-established techniques for 
characterizing human perceptual filters to the domain of natural 
image statistics. We chose this methodology because, as we demon-
strate by combining data from several experimental manipulations 
(Figure 15), it can provide information that is not made available 
by more classic performance metrics such as sensitivity (Neri and 
Levi, 2007; Nagai et al., 2008; Dobres and Seitz, 2010). We found that 
the shape of the perceptual filters was affected by image inversion 
in specific and reproducible ways, delivering a dynamic picture of 
how low-level human sensors reshape their response properties 
under the instruction of higher-level image analysis.

2 Materials and Methods
2.1 natural iMage database
We initially obtained five databases from the internet. Four were 
directly downloaded from http://cvcl.mit.edu/database.htm [at the 
time of downloading they contained 330 ± 50 (mean ± SD across 
datasets) images each]; the category labels assigned by the database 

1 introduction
Natural scenes are characterized by highly structured statistical prop-
erties (Ruderman and Bialek, 1994; Mante et al., 2005; Frazor and 
Geisler, 2006). The fundamental question of whether these properties 
are reflected in the response characteristics of sensory systems has 
been actively debated in recent years (Felsen and Dan, 2005; Rust and 
Movshon, 2005). Although potentially relevant phenomena (e.g., 
alterations of receptive field structure) are still under investigation 
(Ringach et al., 2002; Smyth et al., 2003; David et al., 2004; Touryan 
et al., 2005), there is consensus over the notion that the selectivity of 
sensory neurons is matched to the statistics of the natural environ-
ment (Rieke et al., 1995; Vinje and Gallant, 2002; Felsen et al., 2005; 
Woolley et al., 2005; Yu et al., 2005). Because human vision is sup-
ported by this neuronal machinery, we expect perceptual processing 
to show some degree of specificity for the image regularities that 
characterize natural scenes (e.g., the tendency for edges to fall along 
contours; Geisler, 2008). It is clear that the human ability to process 
natural images depends on the integrity of local statistical properties 
(Piotrowski and Campbell, 1982; Bex et al., 2007, 2009) and many 
aspects of pattern vision, such as center–surround interactions (Yu 
and Levi, 2000; Paradiso et al., 2006) or contrast gain control (Bex 
et al., 2007), are able to account for a large part of how visual sen-
sitivity depends on specific image manipulations of natural scenes 
(Geisler et al., 2001; Bex et al., 2007).

An altogether different question is whether the semantic inter-
pretation of the image can impact how local sensors operate in the 
human observer; answering this question relies on the ability to 
interfere with image interpretation while at the same time leaving 
local statistics unaffected. One of the few manipulations that can 
achieve this goal is image inversion (Valentine, 1988): the inter-
pretation of natural scenes can differ dramatically when viewed 
upside-down (Thompson and Thatcher, 1980), a result that poses 
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We refer to this image as the “blob-like” image. We then created an 
image of size equal to the Sobel filter containing an oriented sharp 
edge, centered it on the previously determined location of peak 
edge content, and matched its orientation to the local structure 
of the “blob-like” image by minimizing square error (MSE). The 
resulting MSE value was used as primary index of how well that 
particular image was suited to the purpose of our experiments. We 
analyzed all images using the procedure just described and only 
retained the top 40 for each of the 4 non-face databases (those with 
smallest MSE value within their database), 80 for the face database. 
For each of these images we generated phase-only and power-only 
versions by Fourier transforming them and substituting either their 
power spectrum or their phase spectrum with that of an image 
containing white noise (this procedure was carried out only once 
for each image and the resulting images were kept fixed throughout 
the experiments, i.e., we did not generate new power-only and 
phase-only images on every trial to avoid the potential introduc-
tion of an additional external noise source). Finally, all images were 
rescaled to have the same contrast energy when projected onto the 
monitor; they spanned a range between 4 and 60 cd/m2 on a gray 
background of 32 cd/m2.

2.2 Probe design and insertion
Please refer to Figure 1. The probe (Figure 1E) consisted of an 
oriented edge (Figure 1C) added to a 2D sample of Gaussian 
noise (Figure 1D). It was smoothly inserted into the local region 
of the natural image (Figure 1G) identified by the automated 
edge- detection procedure detailed above, at the orientation cor-
responding to the image MSE value. Insertion was performed via 
the smooth circular window shown in Figure 1H, where the region 
within the red dashed circle was set to 1, the region outside the 
blue dashed circle to 0, the transition region between the red and 
the blue circles to a cumulative Gaussian ramp. The probe was 
centered on peak edge and optimally oriented to obtain Figure 1F. 
The images in Figures 1F,G were then averaged after weighting 
by the insertion window: Figure 1F was weighted by the image in 
Figure 1H, while Figure 1G was weighted by 1 minus the image 
in Figure 1H. The resulting graft is shown in Figure 1I. The inser-
tion was specifically designed so that the region occupied by the 
probe (outlined in green) was inside the red dashed circle, meaning 
that no contamination from the natural image was present within 
the probe. The statistics of the probe was therefore under direct 
experimental control. The target stimulus was created by inserting 
the probe at the correctly aligned orientation (Figure 1B); the non-
target stimulus by making the probe orthogonal (in the specific 
way shown by the small icons to the left of Figures 2A,C) prior to 
insertion (Figure 1A).

2.3 stiMulus Presentation and PsychoPhysical task
The overall stimulus consisted of two simultaneously presented 
images (duration 300 ms), one to the left and one to the right of fixa-
tion (Figures 1A,B). On every trial we randomly selected an image 
from the database and created both target and non-target stimuli 
from the same image, but using independent noise samples for the 
two (randomly generated on every trial). We then presented the target 
on the left and the non-target on the right, or vice versa (randomly 
selected on every trial). Whichever was presented to the right was 

creators (see Oliva and Torralba, 2001) were “forest,” “mountain,” 
“highway,” and “tall building.” The fifth database consisted of 206 
face images from the Stirling database (http://pics.psych.stir.ac.uk/) 
selected for frontal and 3/4 view, which we resized to match the 
pixel size of the other databases (256 × 256). We therefore started 
with a total of ∼1.5 K images. Of these we selected 240 (roughly 1 
out of 6) using an entirely automated software procedure (no pick-
and-choose human intervention). We first acquired each image as 
grayscale, rescaled intensity to range between 0 and 1 and applied 
a smooth circular window so that the outer edge of the image (5% 
of diameter) was tapered to background gray (see Figure 1A). We 
refer to this windowed image as the “upright natural image.” We 
then applied a Sobel filter of dimension equal to ∼15% image size 
to identify the location of peak edge content. Subsequent to edge 
detection we applied a broad low-pass Gaussian filter (SD equal to 
half image size), rescaled intensity to range between 0 and 1 and 
set all image values above 1/2 to bright, all those below to dark. 
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Figure 1 | Stimulus design and experimental protocol. Observers were 
asked to select one of two images (A versus B) that appeared to the sides of a 
central fixation cross. The target image [(B) in this example] contained a grafted 
edge (indicated by the white square) that was aligned with the local 
characteristics of the picture (the mountain ridge in this example), the 
non-target image (A) contained a similar graft but oriented orthogonally to the 
local structure of the picture. We created the graft by smoothly inserting a 
probe (green outline) into the natural scene. The probe (e) consisted of a target 
edge (C) superimposed onto Gaussian noise (D); it was rotated (F) to match 
the local structure of the picture (g) and then inserted via a smooth envelope 
(H). The envelope was designed so that the probe would be isolated from the 
natural scene within the resulting graft (i). See Section 2.2 for more details.
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preliminary  estimation of threshold point via a two-down one-up 
staircase procedure; it was 1.27 ± 0.18 (average ±1 SD across observ-
ers) in units of SD of the pixel Gaussian noise source (Figure 1D) 
which was set to 3 cd/m2. All conditions were mixed within the same 
block except for the phase-only manipulation, meaning that we ran 
two types of block: for type 1 each trial presented an image randomly 
selected from the entire dataset and could be precued or postcued 
(equiprobable at 1/2), upright or inverted, or blob-like (equiprobable 
at 1/3); for type 2 each trial presented a phase-only image randomly 
selected from the entire dataset and could be precued or postcued 
(equiprobable at 1/2), upright or inverted (equiprobable at 1/2). We 
collected 22.6 ± 8.8 K trials per observer (this figure includes half 
the trials from double-pass experiments, see section below). Overall 
we collected slightly more trials (∼22%) for each of the three main 
image types (e.g., natural upright) as opposed to each of the two 
phase-only image types. We collected 238 ± 74 trials per observer 
for the power-only condition (Figure 11).

2.4 double-Pass exPeriMents and internal noise
We estimated internal noise (y axis in Figure 3D) via a double-pass 
methodology in which the same set of stimuli is presented twice 
(Burgess and Colborne, 1988; please refer to Neri, 2010a for details 
regarding this well-established technique). Double-pass experi-
ments consisted of 100-trial blocks (like in the main experiment). 
Observers were not aware of any difference with respect to blocks 
for the main experiment. In double-pass blocks, the second half of 
the block (last 50 trials) showed the same stimuli presented during 

mirror-imaged around vertical, so that the probes were symmetrically 
placed with respect to fixation (see Figures 1A,B). At the adopted 
viewing distance of 57 cm the diameter of each stimulus was 12° (cen-
tered at 7.3° from fixation) and the probe measured 1 deg × 1 deg. 
On precue trials the main stimulus just described was preceded by 
a spatial cue (duration 100 ms) consisting of two Gaussian blobs 
(matched to probe size) that co-localized with target and non-target 
probes (see Figure 6A); the interval between cue and main stimulus 
was uniformly distributed between 150 and 300 ms. On postcue 
trials the same cue was presented but it followed the main stimulus 
(after the same interval detailed for precue). Observers were required 
to select the stimulus containing the target (by pressing one of two 
buttons to indicate either left or right of fixation); their response was 
followed by trial-by-trial feedback (correct/incorrect) and initiated 
the next trial after a random delay uniformly distributed between 
200 and 400 ms. At the end of each block (100 trials) observers were 
provided with a summary of their overall performance (percentage 
of correct responses on the last block as well as across all blocks) 
and the total number of trials collected to that point. We tested eight 
naive observers with different levels of experience in performing 
psychophysical tasks. The intensity of the target signal (maximum 
value of image in Figure 1C) was adjusted individually following 
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Figure 3 | Sensitivity and internal noise for upright natural (A), blob-like 
(B) and inverted images (C); color-coding is black, blue and red 
respectively. (D) Plots d′ on the x axis versus internal noise on the y axis (see 
Section 2.4 for details on how the latter was estimated). Gray shading shows 
internal noise range expected from previous studies (Neri, 2010a); green 
vertical line shows the desired d′ target value of 1 (Murray et al., 2002). (e) 
Plots ratios between d′ for blob-like and d′ for upright natural images (blue) on 
the x axis, versus ratios between internal noise for blob-like and internal noise 
for natural images on the y axis. Red symbols plot the same but for inverted 
instead of blob-like images. Dashed lines indicate unity ratios. Each symbol 
refers to a different observer. Error bars show ±1 SEM.
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Figure 2 | Procedure for deriving the perceptual filter from classified 
noise. Data from aggregate observer (>180 K trials). (A–D) Show average noise 
images from target (A,B) or non-target (C,D) probes on correct (A,C) or 
incorrect trials (B,D). Yellow traces show marginal averages taken vertically 
across the image, white traces horizontally. Before combining all four images 
into 1, some were summed [green + signs in (A,D)] and others were subtracted 
[red − signs in (B,C)] as well as transposed [yellow ⊥ symbol in (C,D)], to obtain 
the four images shown in (e–H) (see Section 2). The combined image is plotted 
in I (yellow trace shows marginal average in units of external noise variance σN

2 ), 
and a Z score map of this image is shown in (J) [colored pixels refer to |Z | > 2]. 
The smooth outlines in (J) show contour lines at 1/3 (light red) and −1/3 (light 
blue) of peak value for the pseudo-Gabor fit (see Section 2.6).

Neri Natural scenes shape edge detectors

www.frontiersin.org August 2011 | Volume 2 | Article 172 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/perception_science/archive


fitting procedure), shown in Figure 2J. Together with the rationale 
just described, we also  confirmed that the chosen combination rule 
is sensible via simulations (see Figures 14T–Σ and related text in the 
Section 3). For some analyses involving parcellation of the dataset, 
in particular precue/postcue (Figures 7A,B and 10C,D) and scenes/
faces (Figure 13), we smoothed the filter estimates in order to com-
pensate for dataset reduction; smoothing was achieved via Wiener 
denoising (Matlab function wiener2 with default parameter settings).

2.6 scalar Metrics for assessing filter structure
Oddity index (x axis in Figure 5A) was computed as log[Φ(P

odd
)/

Φ(P
even

)] where Φ is mean of squares ( Φ( )= 1A d i j i ja∑ , ,
2  across 

d elements a
i,j
 of matrix A). P P Podd = − ∗

   and P P Peven = ∗
 +  (see 

Bracewell, 1965), where P P P= −   and P  is the mean value across 
the entire filter, i.e., A = 1

d i j i ja∑ , ,  (we subtracted the DC compo-
nent in this way to ensure that simple baseline shifts would not 
bias our shape estimate), and P* is the mirror image of P around 
the vertical midline. SNR (y axis in Figure 5A) was computed as 
SNR( )=log[ ( ) ]P PΦ n n

w n n
[ ] [ ]

[ ] [ ]( )
1 0

1 02 +  (see Murray et al., 2002; Neri, 2010b) 
where n

[1]
 is the number of correct trials, n

[0]
 is the number of incor-

rect trials and w is the variance of the external noise source. Target 
similarity (x axis in Figure 5B) was simply the signed correlation 
r2 between P and T (element-by-element) where T is the target 
image (Figure 1C). Target-weighted energy (y axis in Figure 5B) 
was Φ(P ◦ T) where ◦ is Hadamard (i.e., element-by-element) prod-
uct. The pseudo-Gabor wavelet we used for the fitting results in 
Figure 5D was G = |T| ◦ C where each element c

i,j
 of the matrix C 

was defined by c
i,j
 = cos(2pv(x

j
 + f)) (no dependence on i) and 

the vector x (containing elements x
j
) ranged from −1 to 1. This 

wavelet is a sinusoidal grating modulated by the target envelope 
rather than a Gaussian; we adopted this formulation to minimize 
the number of free parameters for fitting (we can drop SD of the 
Gaussian envelope). For the same reason, before fitting we enforced 
matched energy between the wavelet and the perceptual filter, i.e., 
Φ(G) = Φ(P) (allowing us to drop the parameter of overall ampli-
tude). There were two free parameters left: the frequency of the 
sinusoidal carrier ω expressed in units of cycles per filter width, 
which is equivalent to cycles per degree because the width of the 
probe was 1 deg; and the phase of the sinusoidal carrier f expressed 
in units of fraction of a cycle (e.g., when equal to 1/4 the cosine 
function is a sine function, see green icon above green vertical line 
in Figure 5D). Fitting relied on the Matlab routine nlinfit.

2.7 coMbined index for change in filter shaPe
Our goal for Figure 15 was to plot changes in sensitivity versus 
changes in filter shape using comparable units. We could not use 
differences (e.g., oddity for blob-like minus oddity for natural) 
because the two metrics would be expressed in their own units, so 
we used log-ratios. For filter shape we adopted a composite index 
combining both oddity and target similarity by taking the log of the 
mean between exp(o

1
)/exp(o

2
) and t

1
/t

2
 where o is oddity, t is target 

similarity and numerical subscripts refer to the two conditions 
being compared [by applying exp(.) we effectively used oddity as 
Φ(P

odd
)/Φ(P

even
) to preserve positive quantities before taking ratios; 

this was not necessary for target similarity because all values were 
already positive]. The change in sensitivity plotted on the x axis in 
Figure 15 was simply the logged d′ ratio. Low-level comparisons 

the first 50 trials, but in randomly permuted order. We collected 
an average of 1.6 ± 0.8 K trials per observer. Half of these (the first 
50 trials of each block) were extracted and combined with trials 
from the main experiment.

2.5 coMPutation of PercePtual filters
Each noise sample can be denoted by the matrix N

[q,z]
, i.e., the 2D 

noise image that was added to the target probe (q = 1) or the non-
target probe (q = 0) on a trial to which the observer responded cor-
rectly (z = 1) or incorrectly (z = 0). The four panels in Figures 2A–D 
refer to the four possible ways of classifying a given noise sample: 
q = 1 and z = 1 (A), q = 1 and z = 0 (B), q = 0 and z = 1 (C), 
q = 0 and z = 0 (D). The standard formula for combining averages 
from the four classes into a perceptual filter P is (Ahumada, 2002): 
P = 〈N

[1,1]
〉 − 〈N

[1,0]
〉 − 〈N

[0,1]
〉 + 〈N

[0,0]
〉 where 〈〉 is average across 

trials of the indexed type; this combination rule is reflected by the 
green + and red − signs in Figures 2A–D. For the specific application 
of interest it was necessary to modify this rule slightly as follows: 
P N N N N= [1,1] [1,0] [0,1]

T
[0,0]
T− − +  where T is transpose, indi-

cated by the yellow ⊥ symbol in Figures 2C,D. This modification 
was motivated by both logical considerations (see below) and by 
computational modeling (Figure 14). Close inspection of 〈N

[1,1]
〉 in 

Figure 2A, which is the 2AFC equivalent of a “hit” classified image, 
demonstrates that (as expected) it resembles the target edge (icon 
plotted to the far left): it modulates along the horizontal axis from 
dark to bright (see marginal orange trace in Figure 2A), but not along 
the vertical axis (white trace). Similarly 〈N

[1,0]
〉 in Figure 2B, which is 

the equivalent of a “miss” image, conforms to the expectation of an 
inverted image of the target edge. For both Figures 2A,B the stand-
ard rule of adding the former and subtracting the latter is therefore 
applicable. The standard rule, however, was primarily formulated 
for designs in which the non-target is a scaled image of the target 
(Ahumada, 2002; Murray et al., 2002). The non-target we used in 
this study (icon plotted to the far left) was oriented orthogonal to the 
target, a difference that cannot be accommodated by scaling (with or 
without sign inversion). For this reason 〈N

[0,0]
〉 in Figure 2D, which 

is the equivalent of a “false alarm” image, is not a scaled version of 
Figure 2A as is normally expected (Ahumada, 2002; Neri, 2010b) but 
retains the orientation of the non-target signal that was embedded 
within this noise probe; it is therefore better thought of as a “miss” 
image where it is the non-target (rather than the target) that was 
missed. When viewed this way, it becomes clear why it was necessary 
to re-align its orientation to the target via transpose before combining 
it with Figures 2A,B. A similar procedure was necessary for 〈N

[0,1]
〉 

in Figure 2C, the equivalent of a “correct rejection” image but more 
appropriately viewed as a “hit” image for the non-target; because the 
corresponding noise probes contained a non-target signal the edge-
related modulation (dark/bright) is only present along the vertical 
axis (see white marginal trace) and not the horizontal (orange trace), 
requiring orientation re-alignment in addition to the sign inver-
sion prescribed by the original rule (Ahumada, 2002). Following 
these simple transformations the four images in Figures 2A–D are 
 re-aligned to the same reference as shown in Figures 2E–H, and can 
then be combined into a final perceptual filter image (Figure 2I) that 
shows a clear structure resembling the target edge. Throughout the 
article we present these images as Z score maps with overlaid fitting 
from a pseudo-Gabor function (see section below for specifics on this 
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ages from both target/non-target probes and correct/incorrect 
trials, separately shown in Figures 2A–D; prior to adding them 
together, they were rotated and/or sign-inverted to bring them 
into alignment with the target edge as shown in Figures 2E–H 
(see Sections 2.5 and 3.7).

The question of whether sensory filters alter their characteristics 
in response to natural statistics has received considerable attention 
in recent years (Kayser et al., 2004; Felsen and Dan, 2005; Rust and 
Movshon, 2005; Geisler, 2008), but it has proven more challenging 
than anticipated due to the difficulty of applying reverse correlation 
to non-white inputs (Smyth et al., 2003; Sharpee et al., 2008). Our 
approach completely bypasses this issue by retaining a white noise 
probe (see Section 2 and Figure 1D), the local statistics of which is 
isolated from the natural image via an insertion envelope that does 
not allow for spatial overlap between probe and image (Figure 1H). 
The final graft consists of a region containing only the probe, sur-
rounded by a region of smooth transition into the natural image 
(Figure 1I). By adopting this specific design we are in a position to 
apply established methods for psychophysical reverse correlation 
with white inputs (Ahumada, 2002; Neri, 2010b), eliminating the 
concern for artifacts having to do with the statistics of the images 
per se (Smyth et al., 2003; Sharpee et al., 2008). At the same time 
we can gauge the effect of image statistics on our filter estimates 
by embedding the probe within images of different character (e.g., 
natural versus artificial) and assigning a task that requires observers 
to integrate both probe and image context to perform above chance 
(see immediately below). Because the statistical properties of the 
probe are identical across changes in image types, any resulting 
alteration in the estimated perceptual filter must be attributed to 
the statistics of the surrounding image and not to possible artifacts 
of the estimation technique.

An additional critical feature of our experimental design was 
that target and non-target stimuli were statistically indistinguish-
able when viewed out of context: if we imagine removing the image 
regions outside the two inserts in Figures 1A,B, observers would 
see an oriented edge on one side of fixation and a differently ori-
ented edge on the other side, with no way of knowing which one to 
choose. Similarly, no useful information was provided by context 
alone: if we imagine removing the image regions within the inserts 
in Figures 1A,B, observers would see a natural scene with a hole 
on one side of fixation and its mirror image on the other side, with 
no indication that one should be preferred over the other. The 
task of choosing the image containing a registered target probe 
could only be performed by integrating both context and probe in 
a meaningful fashion.

3.1 PerforMance Metrics
The black symbols in Figure 3D show sensitivity (d′) on the x axis 
versus internal noise on the y axis for detecting edges within natural 
scenes similar to the one shown in Figure 3A. The term internal noise 
refers to a source of response variability that is intrinsic to the observer, 
as opposed to the response variability induced by the external noise 
source in the stimulus; the reader is referred to Neri (2010a) for a 
detailed review of this concept and its application to human sensory 
processing. Internal noise was independently estimated using a stand-
ard approach termed double-pass (see Section 2.4). Across our sample 
d′ was near 1 (mean 1.00 ± 0.13 SD across  observers), as targeted by 

included all manipulations except image inversion, and each black 
symbol in Figure 15 refers to one low-level comparison for one 
observer. For example if we compared blob-like versus upright 
natural image, the x axis would plot the sensitivity ratios already 
plotted on the x axis in Figure 3E (logged) while the y axis would 
plot the composite index detailed above from the oddity and target 
similarity values plotted in Figure 5 for blue versus black symbols 
(log-ratio between blob-like and upright natural). More specifi-
cally, black symbols in Figure 15 plot the following comparisons: 
blob-like versus upright natural, blob-like versus inverted natural, 
upright phase-only versus upright natural, inverted phase-only ver-
sus inverted natural, precue versus postcue for upright natural, pre-
cue versus postcue for inverted natural, precue versus postcue for 
blob-like, precue versus postcue for upright phase-only, precue ver-
sus postcue for inverted phase-only, upright natural scenes versus 
faces, inverted natural scenes versus faces, upright phase-only scenes 
versus faces, inverted phase-only scenes versus faces. Higher-level 
comparisons (red symbols) were: upright versus inverted natural 
on precue trials, upright versus inverted natural on postcue trials, 
upright versus inverted phase-only on precue trials, upright versus 
inverted phase-only on postcue trials. The rationale behind these 
selections was to include as many comparisons as possible without 
subdividing the dataset into excessively small chunks.

2.8 Modeling
Please refer to Figure 14. The output of model in panel A is  
r

A
 = R • S where S is the probe image (e.g., Figure 1E), • is Frobenius 

inner product (A • B = Σ
i,j 

a
i,j
b

i,j
), and R = C as defined above with 

v = 1 and f = 1/4 (see grating in Figure 14A). The output of the 
model in panel B is the same but squared, i.e., r rB A= 2. The output 
of the model in panel C is r r rC B B= − ∗1

3
 where the output rB

∗  is the 
same as r

B
 except the underlying template R is oriented orthogo-

nally (see Figure 14C). Each model generates an output value r[1] in 
response to the target stimulus and an output value r[0] in response 
to the non-target stimulus; the model then responds correctly if 
r[1] > r[0], incorrectly otherwise. The simulated filters in Figure 14 
were obtained by applying the same analysis to the model that was 
used with the human observers. We set target intensity to the value 
(1/4) that corresponded to model d′ ∼ 1.

3 results
We mapped local edge detectors via noise image classification 
(Ahumada, 2002), a psychophysical variant of reverse correla-
tion. In this method a controlled noisy perturbation is applied 
to a local target edge, which we embedded within a structured 
image (Figure 1B). Observers saw two such images on every trial, 
and were asked to select the image containing a meaningfully 
embedded “target” edge (Figure 1B) as opposed to an orthogonal 
“non-target” edge which did not fit its surround (Figure 1A). 
By studying how individual noise samples affected the response 
generated by observers on specific trials we were able to derive 
perceptual filters analogous to the neuronal receptive fields meas-
ured in the electrophysiological literature (Neri and Levi, 2006); 
an example is shown in Figure 2I (with corresponding Z map 
in Figure 2J) where the edge-like structure of the filter is clearly 
visible and in conformity with its expected function of detecting 
the target edge. This filter was obtained by combining noise aver-
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2009), but it is known that response variability in human  observers 
is dominated by a late decisional noise source with remarkably 
stable characteristics against large variations in stimulus proper-
ties, task specifications, and even sensory modality (Neri, 2010a).

The second manipulation consisted of inverting the entire 
display upside-down (Figure 3C). Differently from the blob-like 
manipulation detailed above, stimulus inversion has virtually no 
effect on commonly studied statistical properties of the image (e.g., 
Fourier power, see Torralba and Oliva, 2003). As shown by the red 
symbols in Figure 3D this manipulation had little or no effect on 
both sensitivity and internal noise (compare with blue symbols). We 
can verify this result more transparently in Figure 3E, which shows 
that sensitivity ratios between upright and upside-down conditions 
are near 1 (red points fall on vertical dashed line at p = 0.57) and 
that the same applies to internal noise ratios (red points fall on 
horizontal dashed line at p = 0.84). The latter result is consistent 
with previous reports (Gaspar et al., 2008).

3.2 structure of the PercePtual filters and its dePendence on 
context
Figures 4D–F show perceptual filters derived separately for the 
three different conditions detailed above: natural image (A), blob-
like image (B), and inverted natural image (C). As expected, they all 
resemble to some extent the target edge that observers were asked to 
detect. However they also appear to differ in some respects from one 
condition to another: the perceptual filter derived from trials show-
ing inverted natural images (F) contains additional ripples at the 
outer edges, which are not present in the perceptual filter derived 
from upright natural images (D), and its central zero-crossing is 
misplaced with respect to the vertical line defined by the target edge 
(white vertical dashed line).

our protocol (see Section 2) and as recommended for the application 
of psychophysical reverse correlation (Murray et al., 2002). Internal 
noise was in the range 0.6–2 (indicated by gray shading in Figure 3D), 
well within previous estimates (Neri, 2010a). Overall it is clear that 
observers understood the task and adopted a stable consistent strategy 
to perform it (reasonable internal noise).

We then applied two manipulations to the region outside the tar-
get edge. The first manipulation consisted of replacing the natural 
image with a blob-like version that retained some coarse features 
from the original image (see Section 2); an example is shown in 
Figure 3B. The purpose of this manipulation was to test the effect 
of replacing the natural image with one that resembles simple 
laboratory stimuli, while at the same time retaining task-relevant 
aspects of the original image (i.e., most evident edge structure) so 
as to allow reasonable comparisons. The blue symbols in Figure 3D 
show that this manipulation produced a marked increase in sensi-
tivity (blue symbols lie to the right of black symbols, paired t-test 
returns p < 10−8) but no change in the intensity of internal noise 
(p = 0.49). Both effects can be verified more readily by replotting 
the data in terms of ratios between values for the blob-like images 
and values for the natural images, as shown by the blue symbols in 
Figure 3E: sensitivity ratios (x axis) are >1 (blue points lie to the 
right of vertical dashed line at p < 10−6) while internal noise ratios 
(y axis) are near 1 (blue points fall on horizontal dashed line at 
p = 0.41). This result is consistent with electrophysiological reports 
that the response of V1 neurons is suppressed more effectively by 
surround stimuli with natural as opposed to scrambled/featureless 
characteristics (Guo et al., 2005; MacEvoy et al., 2008). The lack of 
any significant change in internal noise is perhaps more surpris-
ing in light of existing electrophysiological literature (Vinje and 
Gallant, 2002; Kayser et al., 2003; Yu et al., 2005; Tolhurst et al., 
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Blob−like

E

C
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F

Figure 4 | Perceptual filters (D–F) for upright natural (A), blob-like (B) and inverted images (C). Plotted to the same conventions of Figure 2J. Dashed vertical 
lines indicate target edge location.
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this  interpretation by computing the SNR of individual perceptual 
filters (Murray et al., 2002; Neri, 2010b); for the SNR index we used 
(see Section 2.6) SNR = 0 for the hull hypothesis of a filter contain-
ing solely noise. The SNR index is constructed in relation to this null 
hypothesis, so it does not assume any underlying model (e.g., linear 
observer model): it estimates the departure of perceptual filters 
from the null hypothesis of full decoupling between stimuli and 
response, regardless of the characteristics of the underlying process. 
We plot this quantity on the y axis in Figure 5A to demonstrate 
that SNR > 0 for all three conditions (points lie above horizontal 
dashed line at p < 0.02 for black, p < 0.003 for blue and p < 0.003 
for red). We conclude from this analysis that the measured lack 
of oddity for the perceptual filters from inverted images is not a 
consequence of lack of structure: the inverted perceptual filters 
contain at least as much structure (assessed by SNR) as the upright 
perceptual filters (in fact the average SNR value for the inverted 
condition at 0.23 ± 0.14 was larger than for the upright condition 
at 0.16 ± 0.14); yet this structure is equally odd and even for the 
former, mostly odd for the latter. A somewhat related concern is 

It is not possible to draw firm conclusions from a qualitative 
inspection of aggregate data like that shown in Figure 4, nor is 
it possible to inspect perceptual filters for individual observers 
(see Figure A1 in Appendix) as they show significant variability 
[expected from previous work (Meese et al., 2005; Neri, 2010b)] and 
present the same challenge of only allowing primarily qualitative 
considerations. We therefore performed additional analyses that 
captured relevant aspects of the perceptual filters (see below), and 
quantified each aspect using a single value for each observer. The 
data could then be subjected to simple population statistics in the 
form of two-tailed t-tests and confirm or reject specific hypotheses 
about the overall shape of the filters. Our conclusions are therefore 
based on individual observer data, not on the aggregate observer 
(which is used solely for visualization purposes); this distinction 
is important because there is no generally accepted procedure for 
generating an average filter from individual images for different 
observers (see Neri and Levi, 2008 for a detailed discussion of this 
issue). We arbitrarily adopt a notional threshold of p = 0.05 for 
statistical significance; reducing this threshold would translate into 
an overly conservative test in favor of the null hypothesis, which is 
problematic for the analysis we present below because our interest 
is not in confirming or rejecting the null hypothesis, but rather in 
showing that the same dataset can either favor it or not depending 
on the manipulation we have chosen to apply before collecting 
the data. We choose an empirical strategy to test for robustness of 
the results: we collect more data in different conditions and show 
that the same result is obtained from independent datasets (see 
Section 4).

We adopted three metrics to capture the shape of the perceptual 
filters (detailed in Section 2.6). The first metric measures “oddity” 
of the filter around the midline by taking the log-ratio between odd 
and even energy along the direction orthogonal to the edge. The 
target edge itself is infinitely odd; had it been a bar in the middle, it 
would have been infinitely even. For empirical estimates like those 
shown in Figure 4 the oddity metric never reaches infinity due to 
the inevitable presence of measurement noise; when the estimated 
surface contains noise and nothing else, the metric returns 0. This 
specific outcome, i.e., a featureless filter containing modulations 
that solely reflect the properties of the external noise source in 
the stimulus, is the natural null hypothesis for statistical testing. 
Figure 5A plots oddity on the x axis for the three main conditions 
we have considered so far (color-coding as before). Perceptual filters 
for upright natural images are significantly odd (black points lie to 
the right of vertical orange line at p < 0.03 on a two-tailed t-test), 
and so are those for blob-like images (blue points lie to the right 
of vertical orange line at p < 0.01). Perceptual filters for inverted 
natural images, on the other hand, present a roughly equal degree 
of oddness and evenness (red points lie on the vertical orange line 
at p = 0.82).

There is a potentially trivial explanation for the lack of oddity 
in the perceptual filters from inverted images: they may simply 
contain noise. As mentioned above, a surface generated from noise 
(where for example each pixel value comes from a normal distribu-
tion) will on average return an oddity value of 0. If our method for 
estimating perceptual filters failed for the inverted condition, but 
not for the upright condition, then we would expect the observed 
difference in oddity between the two conditions. We can rule out 

−0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

∞
Oddity index

F
ilt

er
 S

N
R

A
+ 0 0.2 0.4

0.1

0.2

0.4

Target similarity

T
arget−

w
eighted energy

B

−0.5 0 0.5 1

0

0.2

0.4

Oddity index

T
ar

ge
t s

im
ila

rit
y

Inverted
Upright

Blob−like

C

1/8 1/4

1

1.5

2

Wavelet phase

W
avelet frequency

D +

Figure 5 | Filter shape metrics. (A) Plots filter oddity (log-ratio between odd 
and even energy) on the x axis, versus filter signal-to-noise ratio (SNR) on the y 
axis (see Section 2.6 for definitions of these quantities). Vertical orange line 
indicates oddity index of 0, corresponding to equal odd and even content (see 
orange cosine + sine icon above line). Vertical green line indicates oddity index of 
∞, corresponding to a noiseless odd function (see green sine icon above line). 
Horizontal dashed line indicates filter SNR of 0, corresponding to noise baseline 
(filter containing only measurement noise). Ovals are centered on corresponding 
mean values and radius equals SD. (B) Plots target similarity (correlation between 
perceptual filter and target shape) on the x axis, versus energy of target-weighted 
filter on the y axis (see Section 2.6). (C) Plots oddity [from x axis in (A)] on the x 
axis versus target similarity [from x axis in (B)] on the y axis. (D) Plots phase (x 
axis) and frequency (y axis) parameters for the pseudo-Gabor fit (see Section 2.6). 
Orange and green lines indicate phase values somewhat connected to the lines in 
(A), although oddity and phase are conceptually different quantities (see Section 
2). Horizontal dashed lines indicate carrier frequencies of 1 and 2 cycles per 
degree (see sinusoidal icons to the left of y axis).
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rier function is reported on the x axis, its frequency on the y axis. 
Because these two  quantities are not defined for a filter containing 
only noise, we tailored statistical testing to the next natural null 
hypothesis of the filter reflecting the target shape (phase value of 
1/4). As expected from the preceding analysis based on oddity 
(Figure 5A) and target similarity (Figure 5B), perceptual filters 
from upright natural images cluster around the phase value of 
1/4 (% of cycle) corresponding to an odd wavelet (black points 
fall on vertical green line at p = 0.25), while those from inverted 
images show significantly smaller values than the odd prediction 
(red points fall to the left of the vertical green line at p < 0.0002) 
and are shifted toward the odd + even value of 1/8 (vertical orange 
line). Blob-like filters fall in between, which is perhaps unexpected 
from the two analyses detailed previously. Although there appeared 
to be a slight tendency for inverted filters to show higher wavelet 
frequencies (the red cluster is somewhat shifted upwards compared 
to the black cluster) this effect was not significant (p = 0.23).

Figure 5C combines the two non-parametric indices for assess-
ing filter shape, the oddity index on the x axis versus the target simi-
larity index on the y axis (same values as x axes in Figures 5A,B). 
The pattern emphasized by this plot is one where clusters shift 
upward to the right as we consider perceptual filters from inverted 
natural images, upright natural images and blob-like images in 
this order. In the remainder of this article we proceed to exam-
ine how robust this data structure is, and whether it depends on 
specific features of the images we used. We have chosen to report 
many results that may appear irrelevant/uninteresting upon first 
reading; the motivation for delving so deep into the dataset is that 
we wished to build up enough evidence in support of Figure 15, 
where we summarize all the reported effects within the context 
of a dichotomy between performance metrics and filter measure-
ments. Our goal was to allow the reader to evaluate the extent to 
which the overall framework we offer in Figure 15 may or may not 
explain our results.

Before moving on to a detailed exposition of our results, we 
emphasize that the actual size of the upright/inverted comparison 
is small: although we will demonstrate that perceptual filters for 
these two conditions systematically differ in specific ways, their 
structure is also very similar (see Figures 4D–F). It is not surpris-
ing that any effect of image semantics would be small, particularly 
when considering that existing attempts at demonstrating differ-
ential responses to natural scenes in single neurons have yielded 
small effects or none at all (Ringach et al., 2002; Smyth et al., 2003; 
David et al., 2004; Touryan et al., 2005). The clearest effects have 
been reported by David et al. (2004) under conditions where neu-
rons were stimulated using either gratings or natural scenes. In our 
behavioral experiments, design constraints meant that the stimuli 
for comparison (upright versus inverted) involved far more subtle 
differences, for which it would have been unrealistic to expect mas-
sive alterations of perceptual filter structure.

3.3 effect of attentional dePloyMent
It is conceivable that some of the effects detailed above may depend 
on the allocation of attentional resources to specific regions of 
the image: it is known that attention is deployed in idiosyncratic 
ways to natural scenes (Foulsham and Underwood, 2008) and local 
details of natural images can fail to reach conscious perception in 

that observers may have been “put off” by inverted images and 
mostly ignored them; this interpretation is inapplicable because 
observers performed equally well with upright and inverted images 
(Figures 3D,E). Finally, the SNR analysis indicates that the tendency 
for oddity to be larger with blob-like images (blue cluster is shifted 
to the right of black cluster) may simply result from the concomi-
tantly larger SNR values associated with the blob-like manipulation 
(blue cluster is shifted upwards of black cluster).

The second metric was designed to assess the similarity between 
the perceptual filter and the target signal; it simply consisted of the 
point-by-point correlation between the two surfaces (see Section 
2.6). Because the target signal was odd, this similarity index bears 
some relationship to the oddity index: a largely odd perceptual filter 
is expected to return a high similarity index as well as a high oddity 
index. We therefore expect that the pattern we measured for oddity 
in Figure 5A would be roughly preserved by target similarity. The 
latter quantity is plotted on the x axis in Figure 5B; as expected from 
the oddity index analysis, perceptual filters for upright perceptual 
filters show larger similarity values than the corresponding filters 
from inverted images (black points lie to the right of red points at 
p < 0.04 on a paired t-test), despite both being greater than 0 (at 
p < 0.02) meaning that both contained structure. Furthermore, 
there was no difference in target-weighted energy (p = 0.85) which 
we document on the y axis. This quantity measures filter energy 
after weighing by the target shape (see Section 2) and is largest for 
blob-like filters (blue points fall above black points at p < 0.001).

Before detailing results from the third metric, we emphasize 
that the two metrics considered so far do not involve any fitting 
procedure: they return a non-parametric estimate of overall filter 
shape. The oddity index is particularly useful because it involves 
minimal assumptions and is desirable for a number of theoretical 
reasons. First, luminance-defined image features are commonly 
classified into edges and lines: edges are odd functions, lines are 
even functions (Marr, 1982). This distinction derives from an estab-
lished body of biologically motivated image processing literature 
(Morrone and Burr, 1988; Morgan, 2010). Second, the even/odd 
distinction has informed psychophysical (Field and Nachmias, 
1984; Bennett and Banks, 1991) as well as electrophysiological 
work (Pollen and Ronner, 1981) and has led some investigators to 
propose that only even and odd phases are initially encoded at the 
level of both perceptual sensors and single neurons (Burr et al., 
1989). Third, the even/odd characterization is arguably the most 
general description for an arbitrary function and plays a central 
role in Fourier-based analysis (Bracewell, 1965), which is directly 
relevant to signal processing in human vision (Graham, 1989).

For the reasons detailed above we favor the oddity and the 
target-similarity metrics over the third metric, which assumes a 
specific shape for the perceptual filter and involves a fitting pro-
cedure to optimize the parameterization of the assumed model. 
Besides the undesirable feature of relying on specific assump-
tions, this approach is very sensitive to measurement noise (see 
also Smyth et al., 2003 for similar issues) and is therefore less 
robust; we implemented it nonetheless because it can be useful 
for visualization purposes (e.g., contour lines in Figure 4). We 
report results from this analysis in Figure 5D, where we fitted a 
wavelet similar to a 2D Gabor to the perceptual filters (see Section 
2.6 and Figures 4D–F for examples); the phase of the cosine car-
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may have failed to exploit it effectively or even simply ignored it. 
Figure 6B unequivocally demonstrates that the manipulation was 
successful across the board: we observed a significant improvement 
in sensitivity on precue trials (y axis) as opposed to postcue trials 
(x axis) for all conditions (black points lie above the unity line at 
p < 0.005, red points at p < 0.01, blue points at p < 0.005). Clearly 
observers did exploit the cue effectively.

An interesting feature of the data plotted in Figure 6B is 
that there appeared to be greater benefit from using the cue 
for natural images (whether upright or inverted) as opposed 
to blob-like images: black/red points lie further away from the 
unity line than blue points (on a log–log plot). We quantify 
this effect in Figure 6C, where we assess the effect of the cue by 
plotting the ratio between sensitivity on precue trials and sen-
sitivity on postcue trials. As expected the ratio values are all >1 
(larger sensitivity on precue trials) shown by data points falling 
above the horizontal dashed line and to the right of the vertical 
dashed line (both lines indicate unity). This effect however is 
significantly larger for natural images, plotted on the y axis, as 
opposed to blob-like images, plotted on the x axis: data points 
fall above the solid unity line for both upright and inverted natu-
ral images (p < 0.02). This difference presumably results from 
the fact that the location of target/non-target probes was more 
readily identifiable against the relatively homogenous blob-like 
background as opposed to cluttered natural scenes, making the 
cue less valuable for the former class of images. We also assessed 
the impact of the cue on internal noise, plotted in Figure 6D 
for precue trials on the y axis versus postcue trials on the x axis. 
Perhaps surprisingly, we found a significant effect of the cue 
on internal noise for processing inverted natural images (red 
points lie above the unity line at p < 0.04) but not for the other 
two image classes (black symbols fall on unity line at p < 0.19, 
blue symbols at p < 0.4).

Figure 7 displays the characteristic structure for shape-index 
variation across image classes which we demonstrated previously 
(Figure 5C), plotted here separately for precue (Figure 7A) and 
postcue (Figure 7B) trials (we used smoothed filter estimates 
for this analysis due to the data reduction resulting from halv-
ing the dataset, Section 2.5). Clearly the same structure is pre-
sent in both conditions. More specifically, oddity is greater than 
0 for upright natural images (black symbols) on both precue 
(p < 0.03) and postcue (p < 0.04) trials, but is no different from 
0 for inverted natural images in both conditions (p = 0.96 and 
p = 0.74 respectively).

To further emphasize the similarity between precue and postcue 
data, we plot each measurement from the precue dataset on the 
y axis versus each corresponding measurement from the postcue 
dataset on the x axis (pooling across image classes and observers 
without distinction), separately for the oddity index (solid) and 
the target-similarity index (open). We found a strong and signifi-
cant positive correlation in both cases (r = 0.6 at p < 0.002 and 
r = 0.73 at p < 10−4 respectively). We conclude from this analysis 
that the context-dependent alterations in filter shape we reported 
in Figure 5 are unrelated to attentional deployment. This result 
is broadly consistent with previous experiments on the potential 
interaction (or lack thereof) of spatial cues with semantic manipu-
lations of image content (Biederman, 1972).

the absence of focused attention (Simons and Rensink, 2005). The 
question of what, if any, role is played by attention in processing 
natural scenes has been topical in the past (Biederman, 1972) but 
also in recent years following the report that this image material 
can be processed in parallel and in the near absence of attentional 
deployment (Li et al., 2002; Rousselet et al., 2002). We therefore 
wished to assess the potential role of attention within the context 
of our experiments.

For clarity of exposition, in the preceding sections we have omit-
ted an important detail of our experimental paradigm (see Section 
2): observers were cued to the spatial locations of both target and 
non-target probes on every trial by a pair of white Gaussian blobs 
symmetrically placed around fixation (see Figure 6A). On half the 
trials (randomly selected within each block) this spatial cue was 
presented before the stimulus (precue condition); on the remaining 
half it was presented after the stimulus (postcue condition). On pre-
cue trials observers were therefore informed of where task-relevant 
information would appear before it was presented, affording them 
the opportunity to deploy attentional resources to the cued regions. 
The same information was provided on postcue trials but only 
after the stimulus was presented, making it impossible for them 
to deploy an effective attentional strategy.

The first issue we address is whether the above-detailed manipu-
lation was successful in inducing a differential use of attentional 
resources on the part of the human observers: although the precue 
offered the opportunity to achieve better performance, observers 
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range (compare data position along the y axis between Figures 8B 
and 3D with respect to the gray shaded region). Sensitivity also lies 
within a similar range (near 1), but the phase-only data appears to 
fall at slightly higher values (black and red symbols in Figure 3D fall 
to the left of the green vertical line, whereas they scatter around this 
line in Figure 8B). We verify this effect in Figure 8C where we plot 
sensitivity for phase-only images on the y axis versus sensitivity for 
the original images on the x axis; phase-only sensitivity is larger for 
both upright and inverted images (black and red symbols fall above 
the unity line at p < 0.02 and p < 0.04 respectively). We speculate 
that this difference may have resulted from the fact that, similarly 
to blob-like images, the location of target/non-target probes was 
more readily identifiable against phase-only backgrounds, mak-
ing the task easier. This speculation was confirmed by differential 
analysis of the data for precue and postcue trials, detailed below.

Figure 9A plots the sensitivity ratio between phase-only values 
and original image values, separately for precue trials on the y axis 
versus postcue trials on the x axis. On postcue trials, all ratios are 
>1 [data points fall to the right of the vertical dashed line at p < 0.02 
for upright (black) condition and p < 0.03 for inverted (red) condi-
tion]. This effect is not significant for precue trials: ratios are >1 
(data points fall on the horizontal dashed line at p > 0.05 for both 

3.4 role of Phase sPectruM
Previous work in natural image processing has emphasized the 
distinction between power and image spectra (Morrone and Burr, 
1988; Felsen et al., 2005; Bex et al., 2007). The generally held notion 
is that the phase spectrum, not the power spectrum, contains critical 
information for image interpretation (Piotrowski and Campbell, 
1982). Recent work however has demonstrated that the power spec-
trum may contain more information than previously suspected 
(Torralba and Oliva, 2003), well beyond the 1/f2 trend that is known 
to characterize natural scenes (Ruderman and Bialek, 1994). We 
wished to relate our findings to this body of literature by manipu-
lating our image dataset in similar ways. For each natural image in 
our database we created a “phase-only” image which preserved the 
phase spectrum of the original image but not its power spectrum, 
and a “power-only” image which preserved the power spectrum 
but not the phase spectrum (see Section 2.1). For the image in 
Figure 1A, the corresponding phase-only and power-only images 
are shown in Figures 8A and 11A respectively. We discuss results 
for the phase-only condition first.

Figure 8B shows sensitivity and internal noise values for phase-
only images using the same plotting conventions adopted for the 
original images in Figure 3D. Internal noise lies within the same 
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at p < 0.001). This effect is absent for the original image database 
(open data points fall on the horizontal dashed line at p = 0.66 
and on the vertical dashed line at p = 0.54) as expected from our 
previous analysis (see Figure 6).

As we did for the original image database, we also compared 
internal noise between precue and postcue trials for phase-only 
images. Internal noise values on precue trials are plotted on the y 
axis in Figure 9D, versus corresponding values for postcue trials 
on the x axis. We did not find any cue-specific effect (points fall 
on the unity line at p = 0.33 and p = 0.83 for upright and inverted 
respectively), differently from the original database (for which 
we measured a cue-specific effect in the inverted condition, see 
Figure 6D).

We analyzed phase-only perceptual filters using the same met-
rics described previously and confirmed the presence (although 
somewhat weaker) of an inversion effect on filter shape. Figure 10A 
is plotted to the same conventions as Figure 5C (and similarly 
relies on raw filter estimates; the blob-like data has been replicated 
here to ease direct comparison). It is clear that the same pattern is 
observed; more specifically, the upright condition is significantly 
odd (black symbols lie to the right of the orange line at p < 0.04) 
but this effect is not present for inverted images (red data points 
fall on the orange line at p = 0.21), despite both conditions being 
associated with SNR values significantly greater than baseline (at 
p < 0.05, not shown).

In line with the result reported earlier for natural images (Figure 7) 
precue and postcue conditions behaved similarly (Figure 10B) with 
relation to both oddity (correlation coefficient for solid symbols 
was 0.5 significant at p < 0.02) and target similarity (open symbols, 
r = 0.63 significant at p < 0.001). However the resolving power of 

upright and inverted). In other words, performance was higher 
for phase-only images compared to the original natural images 
when no spatial cues were provided ahead of the stimulus; when 
observers were cued, their performance was no different for the 
two image classes. It should be noted that previous studies have 
typically found that performance is degraded following removal 
of the power spectrum (Gaspar and Rousselet, 2009), opposite to 
what we found here. However the task adopted here is not com-
parable to those used in previous studies, a likely reason for this 
apparent discrepancy.

We also noticed another, more interesting cue-specific effect: 
sensitivity was degraded by image inversion for phase-only images 
on postcue trials. This effect is to some extent visible in Figure 9B, 
where sensitivity on precue trials is plotted on the y axis versus 
sensitivity on postcue trials on the x axis, for the phase-only image 
dataset (this figure is the equivalent of Figure 6B for the original 
image dataset). Besides the clear cueing effect already demonstrated 
for the original images (points lie above the unity line at p < 0.02 for 
both upright and inverted), the inverted values appear to be shifted 
to the left of the upright values (compare each black symbol with 
each corresponding red symbol): an inversion effect for postcue, 
but not precue, trials. We document this effect more transparently 
in Figure 9C, where the inverted/upright sensitivity ratio is plotted 
for precue trials on the y axis versus postcue trials on the x axis. 
Ratios for phase-only images (solid) are ∼1 on precue trials (solid 
data points fall on horizontal dashed line at p = 0.28), but <1 on 
postcue trials (solid data points fall to the left of vertical dashed line 
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We confirmed this result in a non-naive observer (author Peter 
Neri) who had full knowledge of how the stimuli were generated; 
data for this observer is indicated by the open symbol in Figure 11C 
and is within the range spanned by the naive observers. This state 
of affairs made it impossible to proceed with further data collection 
because our methodology relies on threshold levels of target inten-
sity (Ahumada, 2002; Neri and Levi, 2006): consider that observers 
were performing well below the desired sensitivity level of d′ ∼ 1 
in the absence of any noise and in the presence of a highly visible 
signal. Adding noise would reduce performance even further, mak-
ing it impossible to select target intensity values that would afford 
viable reverse correlation experiments (Murray et al., 2002). Clearly 
performance in these conditions is primarily limited by factors that 
are not under the control of the external noise source, forcing us 
to abandon this line of investigation.

The extremely poor performance we observed for power-only 
images is easily explained when one considers the nature of the task 
in conjunction with the effect of removing phase information from 
specific image samples. Figure 11A shows the power-only version 
of the image in Figure 1A. For this particular image the orientation 
of the target edge happens to match the overall orientation content 
of the picture; even if phase information is removed, the residual 
power information allows for a match between target edge and sur-
rounding context (Figure 11A) and the task can be performed. But 
consider Figure 11B: the original scene (lower-left inset) presents a 
clear match between target orientation and the local orientation of 
the image (defined by the edge of the road); across the whole image, 
however, most power lies in the vertical orientation (main panel 
in Figure 11B) which is not the orientation of the target. For this 
specific natural scene observers would find it impossible to decide 
whether the target should be oriented as shown in Figure 11B, or 
orthogonal to it. Because this situation is relatively common across 
our database, the resulting performance level is prohibitively poor.

3.6 role of iMage content (scenes versus faces)
Our database spanned a wide range of image material: cities, built 
outdoors, forests, mountains, faces (see Figure A2 in Appendix for a 
selection of representative examples). We investigated the possibil-
ity that some of the effects we reported earlier showed specificity 
for image content. In keeping with previous literature (Wright and 

our data diminished when we analyzed precue and postcue condi-
tions separately in more detail: Figures 10C,D are the equivalent of 
Figures 7A,B (and similarly rely on smoothed filter estimates) but 
report data for phase-only images. On precue trials (Figure 10C) the 
oddity index generated the same pattern reported in 10A: upright 
but not inverted images show significant oddity (at p < 0.05 and 
p = 0.19 respectively); on postcue trials (Figure 10B) oddity for both 
conditions was not significantly different from 0 (at p > 0.05). The 
results from the cue-specific analysis are clearly less robust, but also 
more difficult to interpret because SNR was not significantly greater 
than 0 for either image type or cueing condition (at p > 0.05, not 
shown), and (as detailed previously) oddity can depend on SNR; it is 
also relevant in this context that we collected less trials for the phase-
only condition (see Section 2.3), so it is possible that we were not 
able to resolve data structure as effectively due to insufficient data.

With the caveat detailed above relating to dataset size, we 
conclude that removing the information provided by the power 
spectrum somewhat reduces the effects we observed for context-
dependent shape alterations in the structure of the perceptual fil-
ters. The effects are clearly still present (Figure 10A), but appear 
less robust when the dataset is halved for the purpose of probing 
specific subconditions (Figures 10C,D). It would appear that both 
phase and power information contribute to the alterations of filter 
shape we reported in Figure 5.

3.5 role of Power sPectruM
We attempted to gather similar data for the power-only image dataset 
in order to study the effect of selectively removing phase informa-
tion, but found that observers were unable to perform the task when 
this image manipulation was applied; spatial cueing did not help. 
Figure 11C plots sensitivity on precue trials (y axis) versus sensitiv-
ity on postcue trials (x axis) for the power-only image dataset when 
noise intensity was set to zero and target intensity to the largest value 
afforded by the operating range of our monitors. Under these condi-
tions the target edge is perfectly visible, and observers scored perfect 
performance (100% correct responses) for the original image data-
base. Following removal of phase information, performance plum-
mets to near chance and the corresponding sensitivity values never 
exceed 1 on either precue or postcue trials (with no difference between 
them: data points fall on the unity line in Figure 11C at p = 0.79).
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Figure 11 | Sensitivity to power-only images. (A) Shows Figure 3A 
following the power-only manipulation (see Section 2.1). (B) Shows another 
example: the original image is displayed in the inset, the power-only version in 

the main panel. (C) Plots d′ from precue trials (y axis) versus postcue trials (x 
axis); no distinction was made between upright and inverted conditions because 
not relevant. Open symbol shows data for author Peter Neri.
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either image category. We attribute this apparent discrepancy to the 
different nature of our task in comparison to those used by previous 
studies on the inversion effect (e.g., Yin, 1969; Wright and Roberts, 
1996; Yovel and Kanwisher, 2005): in these previous tasks observers 
were not asked to discriminate local properties of the image, whereas 
this was a critical feature of our experimental design.

We also identified some specificity in relation to the context-
dependence of filter shape. Figures 13A,B are the equivalent of 
Figure 5C plotted separately for faces (A) and scenes (B). Scenes 
mostly conform to the pattern we have discussed previously: upright 
natural scenes and blob-like images are significantly odd (black 
symbols fall to the right of the vertical orange line at p < 0.0002, blue 
symbols at p < 0.02), while inverted images are not (red symbols 
fall on vertical orange line at p = 0.1); furthermore, upright natural 
scenes show larger target similarity than inverted scenes (black sym-
bols are shifted upwards of red symbols at p < 0.02). There is also 
a trend for upright natural scenes to show larger oddity and target 
similarity than blob-like images (black cluster is located above and 
to the right of blue cluster). Data for faces (A) differs in that upright 
natural faces are not significantly odd (black symbols scatter around 
vertical orange line at p = 0.62), and there is no difference in target 
similarity between upright and inverted (p = 0.3). The similarity in 
perceptual filters for upright and inverted faces is consistent with 
previous reports using psychophysical reverse correlation (Sekuler 
et al., 2004). The different outcome for upright faces versus scenes 
is shown more clearly in Figure 13C, where oddity is plotted for 
scenes (y axis) versus faces (x axes); all black points lie above the 
solid unity line (direct comparison) at p < 0.02, indicating larger 
oddity for upright scenes as opposed to upright faces.

Roberts, 1996; Yovel and Kanwisher, 2005; Epstein et al., 2006) we 
focused our analysis on the distinction between scenes (Figure 12A) 
and faces (Figure 12B). We observed clear differences in sensitivity 
(but not internal noise): probes were processed more efficiently 
when embedded within scenes as opposed to faces (all points lie 
above the unity line in Figure 12C at p < 0.05), no matter whether 
they were upright or inverted (black and red symbols) and precued 
or postcued (solid and open symbols). Interestingly this effect was 
partly dependent upon the power spectrum because it was less 
pronounced for phase-only images: the ratio between sensitivity for 
scenes and sensitivity for faces (plotted in Figure 12D) was larger 
for natural images (x axis) as opposed to phase-only images (data 
points fall below the unity line at p < 0.02 for upright and p < 0.01 
for inverted). Notice however that the effect, although smaller, was 
nevertheless present after removal of the power spectrum (points 
fall above the horizontal dashed line at p < 0.02 for both upright 
and inverted), demonstrating a role for the phase spectrum.

Turning images upside-down had little effect on sensitivity with 
no specificity for either faces or scenes. Previous reports (Wright and 
Roberts, 1996; Epstein et al., 2006) have highlighted a distinction 
between faces and scenes in this respect, whereby inversion effects 
apply primarily if not exclusively to faces. We therefore looked for 
this class of effects when restricted to our face dataset but could 
not find any (x values of black and red symbols in Figure 12C span 
similar ranges), not even in relation to the effect reported earlier that 
sensitivity was lower for inverted phase-only images (Figure 9C): 
this effect, very significant when data was pooled from both faces 
and scenes, was lost (at p > 0.05) when the dataset was restricted to 
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on incorrect trials (Figure 14G) is oriented orthogonally to that 
measured in the human observers (see magenta trace and com-
pare Figure 14K with Figure 2H); a similar result was obtained 
for non-target noise fields on correct trials (Figure 14J). We must 
therefore abandon the template-matching model (also known as 
linear–non-linear cascade), despite its common application in sen-
sory neuroscience (Marmarelis, 2004; Sharpee et al., 2008) and its 
significance in relation to reverse correlation methods (Ahumada, 
2002; Murray et al., 2005; Neri, 2010b).

A simple, plausible modification of the model in Figure 14A 
leads to improved simulation of the human data: the output from 
the template-matching stage is squared as indicated in Figure 14B. 
The resulting perceptual filters are now closer to those observed 
experimentally: no filter in Figures 14L–S presents structure 
orthogonal to the human data, and the filter derived from target-
present noise fields on incorrect trials (Figure 14M) has larger 
amplitude than the other subfilters as in the human data (compare 
with Figure 2). There are nevertheless some residual differences, 
in particular the lack of modulation for some of the subfilters 
(Figures 14R–S). This issue can be rectified by subtracting the 
output from an orthogonally oriented unit in a push–pull fashion 
as outlined in Figure 14C (see Section 2.8). The resulting subfilters, 
shown in Figure 14X–Σ, capture most of the features seen in the 
human data (compare with Figures 2E–H). We also verified that 
shape manipulations of the model filters affected the three metrics 
we used (oddity, target similarity and fitted phase) in a sensible, 
predictable manner: when we varied the phase of the gratings we 
found (as expected) that this parameter was highly correlated with 
all three shape indices; for example, the oddity index decreased 
as we manipulated the phase of the gratings to approach a cosine 
(rather than sine) profile.

An interesting prediction associated with the model in 
Figure 14C is that observers should be insensitive to the polar-
ity of the target edge. In other words, if observers were asked to 
discriminate between the target edge and a non-target edge of the 
same orientation but with swapped bright and dark regions, their 
performance should be at chance. This is indeed the case, as we veri-
fied during the preliminary stages of design and protocol develop-
ment: perhaps surprisingly, it is virtually impossible to discriminate 
edge polarity for the peripheral presentation employed in this study, 
even in the absence of any noise within the probe. This observa-
tion also serves as a useful reminder of the potential limitations 
associated with the specific protocol used here: our results pertain 
to peripheral processing. While it is attractive to speculate that 
they may extend to the fovea, known differences between these two 
structures prompt caution. Crowding in particular, a well-known 
phenomenon that likely played a role in our experiments, is primar-
ily if not exclusively operational in the periphery (Levi and Carney, 
2009; it is worth noting however that crowding is expected to be 
equally effective for upright and inverted stimuli, making it unlikely 
that it would provide an explanation for the differences we report 
between these two conditions). A related potential limitation of 
our experiments is that we only tested one probe size; the choice 
of this specific size (roughly 1°) was motivated by the similar size 
of V1 receptive fields at the eccentricities tested (Dumoulin and 
Wandell, 2008). We do not know whether/how the results reported 
here may extend to smaller/larger probes.

The above-detailed effects on filter shape are tentative for three 
reasons. First, filter SNR values were occasionally not different from 
0 (Figure 13D); as mentioned previously SNR values close to 0 
pose a serious problem for interpreting the oddity index correctly. 
More specifically, upright perceptual filters returned SNR values 
greater than 0 only for scenes (p < 0.0002), not faces (p = 0.27); 
SNR values for inverted filters were greater than 0 for both scenes 
and faces (p < 0.05). Second, because the probability of selecting 
a face was 1/2 the probability of selecting a scene on a given trial 
(see Section 2), twice more data was collected for scenes than for 
faces; it is therefore possible that the lack of an oddity effect for 
upright images may have resulted from insufficient data [how-
ever we were able to resolve the effect for blob-like images from 
faces (blue symbols) with far less data (by a factor of ∼2 because 
no phase-only trials were collected for blob-like images), which 
would seem to argue against this interpretation]. Third, the face 
dataset and the natural scene dataset differed in obvious ways that 
may have little relevance to the semantic distinction between faces 
and scenes: face images were more homogeneous in structure than 
scene images (see Figure A2 in Appendix), while this is not nec-
essarily true in natural vision. Furthermore the outcome of our 
automated probe- insertion algorithm was such that face images, 
but not scenes, showed a biased distribution of probe locations: 
probes were mostly located within the eye region in face images (see 
histogram to the left of Figure 12B), whereas there was no upper-
lower bias for scenes (histogram to the left of Figure 12A). While 
this factor highlights potential low-level differences between face 
and scene datasets, it indicates that the scene images were relatively 
uniform in their edge structure across the vertical dimension, fur-
ther strengthening the notion that image inversion was specifically 
targeting higher-level and not lower-level aspects of the scenes.

3.7 Modeling
The main purpose of the modeling exercise was to identify the 
minimal elements required for a qualitative account of the most 
prominent features of the perceptual filters; it was not intended 
as a comprehensive model of all the effects reported in this study. 
A model of the latter kind would need to account for the effect 
of image inversion; because this effect is exclusively higher-level 
(Valentine, 1988) the model would need to interpret the semantic 
content of the image. Although there exist models that incorpo-
rate semantic knowledge (e.g., Ullman et al., 2002), none has been 
described in sufficient detail to afford implementation within the 
context of our experiments; the development of such models for 
application to our data is well beyond the scope of the present 
study. A secondary goal of the simulations we present in Figure 14 
(discussed below) was to provide indirect validation for the com-
bination rule we adopted in order to compute the perceptual filter 
(see Figure 2 and Section 2.5).

In the absence of modeling, it may be expected that a simple 
template-matching strategy should return the observed perceptual 
filters. Figure 14A outlines a model of this kind: the input image 
is matched to an oriented grating via inner product (•), and the 
resulting output is used to generate a psychophysical choice (see 
Section 2.8). As shown in Figures 14D–K this approach gener-
ates filters that are inconsistent with those observed experimen-
tally: the perceptual filter computed from non-target noise fields 
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was  independently demonstrated on three separate instances: for 
precue (Figure 7A), postcue (Figure 7B) and phase-only manipu-
lations (Figure 10A) from three entirely distinct datasets. It is clear 
that we extracted genuine data structure in relation to the effect 
of image statistics on filter shape, despite the challenging task of 
achieving this goal via an indirect probe-image coupling design 
(Figure 1), sizeable internal noise (Figure 3D), the necessity to 
obtain a large amount of data (we collected in excess of 180 K tri-
als for this study) and the intrinsically noisy nature of the reverse 
correlation methodology.

We can sketch an intuitive interpretation for the effects we meas-
ured on filter shape. Both oddity and target similarity reflect how 
well the perceptual filter is matched to the target edge (although 
the oddity index has more general value, Section 3.2). If we adopt 
this simple interpretation, then the main pattern we observed for 

4 discussion
4.1 context-dePendent effects on sensitivity and filter shaPe
We measured effects of image statistics on both sensitivity and filter 
shape. The effects on sensitivity were robust (e.g., Figures 3E and 9A) 
and partly interpretable based on simple considerations about 
image structure following the different manipulations we applied 
(e.g., the relative ease of locating probes against blob-like and phase-
only backgrounds, Section 3). We occasionally measured robust 
effects for which there was no obvious explanation: the advantage 
for processing scenes over faces was greatly reduced (although not 
eliminated) by removal of the power spectrum (Figure 12D).

To assess the robustness of our filter measurements we rely 
on replicability across the dataset. The main result from our 
analysis of context-dependent effects on the estimated percep-
tual filters is indicated by the pattern in Figure 5C; this pattern 
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Figure 14 | Simulated perceptual filters. We tested three simple models, 
starting with linear template matching (A). The model in (B) is the same as (A), 
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for details. The average noise images associated with the classification carried 
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Figures 2A–H.
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but because we presented images in a left–right mirror fashion 
(see Figures 1A,B) any such effect is irrelevant. A classifier that 
is able to recognize image inversion would need to incorporate 
more complex algorithms than those operating in the early stages 
of visual processing (Kayser et al., 2003; Yu et al., 2005; Geisler, 
2008). For this reason any effect deriving from image inversion is 
believed to reflect higher-level processing (Valentine, 1988; Wright 
and Roberts, 1996; Yovel and Kanwisher, 2005); we adopt the same 
view here.

Taken together and with a few notable exceptions (e.g., Figures 9C 
and 6D) our dataset points to the following result: low-level image 
manipulations result primarily in sensitivity changes, with little evi-
dence of changes in filter shape; conversely, higher-level manipula-
tions result primarily in modified filter shape with little evidence 
of changes in sensitivity. Figure 15 summarizes our entire dataset 
within the context of this conceptual framework. Low-level image 
manipulations (black symbols) lead to sizeable sensitivity changes (x 
axis) but have a small effect on filter shape (y axis), as demonstrated 
by the relevant data points stretching along the x axis (black points 
fall to the right of the vertical dashed line at p < 10−18). Higher-level 
manipulations (red symbols) generate a complementary pattern, as 
demonstrated by the relevant data points stretching along the y axis 
(red points fall above the horizontal dashed line at p < 0.002). More 
specifically, the average change in performance metric index (x axis) 
is 6.5 times larger for low-level manipulations as opposed to higher-
level manipulations; this effect is significant at p < 10−6 (unpaired 

context-dependent changes in filter shape (Figure 5C) indicates 
that filter affinity for target shape is degraded by image inversion. 
We propose the following conceptual model for a qualitative inter-
pretation of this result. In line with current thinking about simple 
feature detection, each location in the visual field is analyzed by 
both edge (odd) and line (even) detectors (Pollen and Ronner, 
1981; Morrone and Burr, 1988). For the purpose of performing the 
edge-detection task we assigned to our observers, image context is 
exploited by the visual system to bias the output of detectors within 
the localized probe region in favor of the odd subpopulation so as 
to extract primarily odd (edge-like) energy. We hypothesize that 
the process of biasing the local detection machinery is affected by 
a higher-level interpretation of the image; when this interpreta-
tion is disrupted by inverting the image upside-down, the biasing 
signal is weaker and local detection retains roughly equal odd/
even components.

The interpretation above is very speculative and by no means 
exclusive of others, so we only offer it as a coarse tool for a poten-
tially intuitive understanding of our results. Our main conclusion 
is independent of this specific model. We also emphasize that this 
interpretation does not imply that the changes we report for the 
behavioral perceptual filter directly reflect changes at the level of 
the earliest edge-detection devices in the human brain, e.g., edge-
selective neurons in primary visual cortex. Our measurements are 
behavioral; as such, they monitor the output of a relatively large 
neuronal circuit. This means that the perceptual filters reported 
here return an aggregate picture of several neuronal receptive fields. 
Any associated change in oddity may result from a change in the 
relative output of some circuit elements compared to others (e.g., 
odd as opposed to even), without any qualitative change in the 
response selectivity of the individual elements. This is the interpre-
tation we favor. In this context we use the term “human edge detec-
tor” to refer to the entire circuit; we would contend that, despite its 
being more complex than a single element, this aggregate entity falls 
within the domain of low-level vision insofar as this terminology 
is currently understood and conceptualized in the field.

4.2 low-level ManiPulations affect sensitivity, higher-level 
ManiPulations affect filter shaPe
To facilitate a coherent interpretation of our results we draw a 
distinction between two broad categories of experimental manipu-
lations: low-level and higher-level. By low-level manipulations we 
refer to all image comparisons except for upright versus inverted 
(see Section 2.7 for details). Together with manipulations that intro-
duce obvious differences in image statistics [i.e., visible via coarse 
inspection of the Fourier transform (Torralba and Oliva, 2003)] 
we include the distinction between faces and scenes because these 
two image classes differ in several low-level respects, as well as the 
attentional manipulation because cueing alters the local spatiotem-
poral properties of the stimulus.

By higher-level comparisons we refer to those that are not 
explained by image statistics per se, i.e., effects based on a compari-
son between upright and inverted images. Although image inver-
sion clearly affects the Fourier transform, the associated changes are 
invisible to early visual cortex (Kayser et al., 2004). If we consider 
the power spectrum for different image orientations, vertical and 
horizontal are not affected by inversion; diagonal orientations are, 
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Figure 15 | Low-level manipulations change sensitivity, higher-level 
manipulations change filter shape. Change in sensitivity (d′ log-ratio) is 
plotted on the x axis versus change in filter shape (y axis) as assessed using 
an index that combines both oddity and target similarity (see Section 2.7), for 
both low-level image manipulations (e.g., blob-like transformation) in black and 
higher-level manipulations (image inversion) in red. See Section 2.7 for details 
on how different comparisons were classified as low-level or higher-level. Top 
and right histograms plot distributions; arrows show mean values.
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is inadequate for a correct interpretation of the data we report 
here (see Figure 14 and its relevance to Figure 2). Insertion of a 
non-linear processing layer into any proposed model for simulat-
ing human performance makes it unsurprising that filter shape 
and sensitivity may be manipulated independently and behave in 
a largely decoupled fashion as empirical quantities (Abbey and 
Eckstein, 2006; Neri, 2010b). The dissociation we demonstrate in 
Figure 15 is therefore compatible with existing literature (see previ-
ous paragraph) and theoretical notions. It likely reflects a simple 
fact: different metrics from different methodologies provide dif-
ferent kinds of information about the process of interest (Neri and 
Levi, 2007; Nagai et al., 2008; Dobres and Seitz, 2010), each metric 
with its own resolving power in relation to specific experimental 
manipulations.

5 conclusion
Our primary result is grounded on data, regardless of specific 
models and/or conceptual frameworks. It consists of the largely 
unexpected result that higher-level manipulations of image content 
(i.e., inverting the image upside-down) altered the characteristics of 
local edge detectors employed by the human observers for feature 
extraction (see Figure 15). No existing model can account for this 
effect. Our results demonstrate that even the earliest and simplest 
stages in human visual processing cannot be fully understood as 
operating completely outside the domain of higher-level process-
ing; a comprehensive account of low-level vision requires that 
feature detectors are characterized not only within the controlled 
parameter range spanned by artificial stimuli (Rust and Movshon, 
2005), but also within the operating regime afforded by natural 
statistics (Felsen and Dan, 2005).
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4.3 sensitivity and filter shaPe: different tools for  
different jobs
Is it reasonable to expect a dissociation between sensitivity met-
rics and filter characteristics of the kind reported in Figure 15? 
If we accept the notion that observers rely on perceptual filter 
machinery to perform the task, then it may appear that sensitivity 
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captured by linear models, the relationship between filter shape 
and sensitivity becomes opaque (Murray et al., 2005). There are 
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Figure A1 | Perceptual filters for individual observers (S1–S8). First 
column shows filters for the upright condition, second column for the blob-like 
condition, third column for the inverted condition, fourth column for upright 
phase-only condition, fifth column for inverted phase-only condition. Each filter 
is plotted to the conventions of Figure 2J.
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Figure A2 | representative selection of images from the database with embedded target probes.
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