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Abstract
Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North

America, and yet the prevalence of rabies among this host is only passively monitored and

the disease among this host remains largely unmanaged. Oral vaccination campaigns have

not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant

viruses to other animals, including some domestic animals, are routinely recorded. In this

study we evaluated the spatial and spatio-temporal patterns of infection status among

striped skunk cases submitted for rabies testing in the North Central Plains of US in a

Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of

such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped

skunk rabies cases [n = 656 (negative), and n = 310 (positive)] received at a leading rabies

diagnostic facility between the years 2007–2013. The first model included only spatial and

temporal terms and a second covariate model included additional covariates representing

eco-climatic conditions within a 4km2 home-range area for striped skunks. The better per-

forming covariate model indicated the presence of significant spatial and temporal trends in

the dataset and identified higher amounts of land covered by low-intensity developed areas

[Odds ratio (OR) = 3.41; 95% Bayesian Credible Intervals (CrI) = 2.08, 3.85], higher level of

patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89), and diurnal temperature range (OR

= 0.54; 95% CrI = 0.27, 0.91) to be important drivers of striped skunk rabies incidence in the

study area. Model validation statistics indicated satisfactory performance for both models;

however, the covariate model fared better. The findings of this study are important in the

context of rabies management among striped skunks in North America, and the relevance

of physical and climatological factors as risk factors for skunk to human rabies transmission

and the space-time patterns of striped skunk rabies are discussed.
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Author Summary

Despite the long recognition that skunks are an important reservoir host for rabies, the
control of this disease among this host has not been achieved, and the disease is currently
only passively monitored in North America. The need for rabies control among striped
skunks is, however, well acknowledged, and reports of occasional spill-over of skunk vari-
ant rabies viruses to non-reservoir species, including some domestic animals, remains a
cause for public health concern and a major roadblock for eradicating rabies from North
America. An understanding of the spatial and temporal dynamics of diseases is important
in management and for setting future research agendas, and such knowledge could assist
in effective striped skunk rabies control. In this study, we evaluated whether rabies among
striped skunk cases submitted for testing in the North Central Plains exhibit discernable
spatial and temporal patterns, and if there are any eco-climatic factors that influenced
such patterns. Our findings indicate that the year-to-year and spatial origins of rabies inci-
dences in the states of Kansas and Nebraska in the North Central Plains are currently sta-
ble, and certain physical environment (developed low-intensity areas and patch
fragmentation) and climatic (diurnal temperature range) factors play an important role in
determining such temporal and spatial patterns.

Introduction
Rabies is one of the oldest known zoonosis, a central nervous system disease of mammals
caused by viruses in the Rhabdoviridae family. Rabies continues to kill people throughout the
world although human deaths due to this disease in the US have become increasingly rare [1].
The main global source of rabies occurs among domestic dogs but dog-to-dog transmitted
rabies has been pushed to near extinction in North America since the mid-20th century due to
intensive dog vaccination campaigns and stray dog control [1]. Numerous variants of the virus
however circulate in wildlife today in North America, primarily among those species in the
orders Carnivora and Chiroptera. In California, Texas and the north-central United States, the
disease is well established among skunks in theMephitis genera, and although all skunk species
are susceptible, the striped skunk,Mephitis mephitis is the most reported rabid species to diag-
nostic facilities in these regions [2] [3]. Two distinct variants of the virus are recognized for
striped skunk rabies in the central Midwestern US, one occurring in the South Central and the
other in North Central Plains [2].

Striped skunks are widely distributed habitat-generalists in North America, with an ability
to colonize periurban and rural environments [4]. Efforts to control or manage rabies among
skunks has been a challenge even though they have been known as a major terrestrial reservoir
for rabies in central and western US and as well as a public health concern for many decades
[5–7]. Unlike the widely acknowledged success of oral rabies vaccine (ORV) programs in
immunizing raccoons, foxes and coyotes [8–10], ORV baits are less effective on striped skunks
and has not produced detectable levels of immunity [10] [11]. The authors are aware of at least
one current effort in the Midwestern US that aims to understand the efficacy of ORV baits in
immunizing striped skunks in some parts of Texas but results have not been brought to public
attention at the time of this study. It can be safely said therefore that striped skunk rabies
remains largely if not fully unmanaged, and there are no efforts undertaken in the region to
actively monitor disease prevalence. An important cause for concern as a result of this is the
potential for skunk variant virus to spillover to non-reservoir species, including domestic ani-
mals, which occur time to time in the North Central Plains and other enzootic regions.

Bayesian Spatiotemporal Patterns and Eco-climatological Drivers of Skunk Rabies

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004632 April 29, 2016 2 / 16

contacting Heath Ritter (E-mail: hlr@ksu.edu, Phone:
+1 785 532 3234).

Funding: Publication of this article was funded by the
Kansas State University Open Access Publishing
Fund. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors declare that no
competing interests exist.



Geographically scattered skunk rabies cases are usually recorded throughout the year in the
North Central Plains [2]. However, the temporal and spatial dynamics of striped skunk rabies,
or in other words whether or not this disease among skunks has been increasing or decreasing
over the years, and whether it is expanding or contracting in geographic extent within the areas
where it is known to occur is not clearly known since active surveillance is lacking. Striped
skunk habitats overlap with those of humans, particularly in the periurban areas, and evidence
suggests that striped skunk abundance is relatively higher in urban and forest edge environ-
ments. The magnitude of risk posed by striped skunks to humans and domestic animals in
such environments are however not clear. Further, research on environmental factors, includ-
ing climate and land cover that could be influencing the epizootiology of striped skunks in the
north central US are not available in the literature. Wildlife mammalian distribution and their
movement, and therefore the pathogens they vector are influenced by environmental and cli-
matological pressures, some of which are undergoing rapid changes, and an understanding of
such factors is crucial for effective disease management.

Our objectives in this study were to explore the spatial and temporal patterns of rabies infec-
tion status among striped skunk cases submitted for testing in the North Central Plains, and to
evaluate any influential environmental and climatological factors that drive such patterns. We
hypothesized that the spatio-temporal patterns of passively surveilled striped skunk rabies
cases can be described by modeling the underlying spatially structured and unstructured het-
erogeneities, nonparametric time trend and space-time interaction in a Bayesian hierarchical
construct; and, that such a model can be extended to identify important eco-climatic drivers of
such patterns, whose posterior estimates when further exponentiated can be used to describe
the risk of skunk to human rabies transmission and as well as the risk of enzootic skunk rabies.

Materials and Methods
Rabies infection data on striped skunks for the region are rarely collected using active surveil-
lance methods. We therefore used a passive surveillance data maintained at the Kansas State
Veterinary Diagnostic Laboratory (KSVDL), and for the eco-climatic variables utilized publicly
available data repositories (NASA, USGS, and US Census Bureau). The geospatial analyses
were performed in ArcGIS environment and models were constructed using a Bayesian hierar-
chical framework in R-INLA (Integrated nested Laplace approximations). The following sec-
tions present specific details.

Striped skunk rabies data
This study utilized a retrospective case-control study design, with samples for cases and con-
trols obtained from medical records maintained at KSVDL. Records of tests performed for the
presence of rabies virus in striped skunk tissue samples that were submitted during January
2007 –December 2013 were obtained from a laboratory information management system.
Observations were coded in a binary fashion, those with positive test result (case) as ‘1’, and ‘0’
for negative test result (control). KSVDL receives test requests for rabies predominantly from
the US states of Kansas and Nebraska, and records from these states alone were kept for statisti-
cal evaluations. Address information provided along with submission forms were geocoded in
ArcGIS environment for mapping and were projected into North American Datum of 1983
(NAD83) State Plane coordinate system. Presence of address locations within rural vs. urban
areas was assessed in ArcGIS using US Census Bureau’s 2010 census urban and rural classifica-
tion criteria. Urban areas according to US Census Bureau’s definition includes densely devel-
oped territory and encompass residential, commercial and other non-residential urban land
uses. The US Census Bureau identifies two types of urban areas, viz., urbanized areas of 50,000
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or more people and urban clusters of at least 2,500 but less than 50,000 people. Any other terri-
tory, population or housing not included in ‘urban’ are considered rural [12].

Eco-climatic covariates
Striped skunk home range is sex and age dependent and could vary from 3.75–5.0 km2 [13–
15]. We assumed an area covering 4 km2 as home-range for the purposes of this study. A poly-
gon layer with 4 km2 area was created in ArcGIS, and environmental and climatic data were
extracted from publicly available sources surrounding case locations. The 2006 National Land
Cover Dataset [16] was obtained from the United States Geological Survey (USGS) in a raster
grid format. Grids representing different land cover type within each areal unit (4 km2 area)
were extracted from the raster dataset and the percentage area they occupy were estimated. A
list of land cover variables evaluated in the study is present in Table 1. In addition to deriving
percent land-cover areas, a landscape metric, Total Edge Contrast Index (TECI) was derived.
TECI was calculated in FRAGSTATS [17] program by

TECI ¼
Xm
i¼1

Xm
k¼iþ1

eikdik

" #�E�

ð100Þ:

where eik is the total length of edge between patch types i and k, and E�is the total length of
edge in landscape, and dik is the dissimilarity (edge contrast weight) between patches i and k.

Climatic variables including the maximum normalized vegetation index (NDVI), minimum
land surface temperature LSTmin, mean LST(min), diurnal temperature range (DTR) (the differ-
ence between daily maximum and minimum temperatures averaged over a thirty day period),
precipitation and humidity were extracted for each 4 km2 area in the study area. The LST and
NDVI estimates were derived fromMODIS (Moderate Resolution Imaging Spectroradiometer)
imagery [18]. DTR, precipitation and relative humidity were derived from the Prediction of
Worldwide Renewable Energy (POWER) web portal of the NASA Langley Research Center
[19] [20]. These datasets were resampled in ArcGIS environment whenever required to derive
4km2 resolution data.

Statistical analysis
Univariate parameter estimation. Candidate explanatory variables (Table 1) to be

included in the Bayesian hierarchical models were screened a priori in order to avoid model fit-
ting issues. Several frequentist bivariate logistic regression models were used to evaluate each
variable independently, and only variables that were significant at a liberal p<0.2 were kept for
further evaluation [21]. A logistic regression takes the form,

log½pij� ¼ b0 þ bijvkij:

Where πij is the probability of positive infection status in an individual striped skunk at loca-
tion i, in year j, β0 the intercept coefficient, and βk the coefficient for the explanatory variable
vkij(k = 1,..,n). Care was taken not to remove candidate variables that were deemed clinically
relevant [21]. Multicollinearity among screened variables was tested by estimating the variance
inflation factor (VIF) and all variables with a VIF� 10 were considered to indicate multicolli-
nearity [22], in which case, one of the variables was dropped at a time until multicollinearity
was absent. Non-linearity among independent variables was evaluated at the screening stage
with logistic regressions. Significant variables with non-linearity were categorized using cut-
offs based on scatterplots and reevaluated in bivariate logistic regression models.

Bayesian Spatiotemporal Patterns and Eco-climatological Drivers of Skunk Rabies

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004632 April 29, 2016 4 / 16



Model specification. For the Bayesian hierarchical data model we assumed that the
rabies infection status Yij of an individual striped skunk in location i in year j followed a Ber-
noulli distribution with a function πij being the probability of infection. The parameter of
interest πij = p(yi = 1|xi), where xij = (xij1,. . .,xim) is the vector of m predictors for the ith

Table 1. Results of univariate logistic regression analysis (frequentist) of candidate covariates evaluated in the study (P<0.2).

Source/variable Control (Mean ± S.E) Case (Mean ± S.E.) p � 0.2

National Land Cover Dataset
a. Percentage ground cover

Open water 0.83 ± 0.18 0.75 ± 0.11 0.65

Developed—open space 1.54 ± 0.54 1.08 ± 0.81 0.41

Developed—low intensity 1.41 ± 1.01 3.02 ± 0.77 0.02

Developed—high intensity 2.44 ± 1.63 2.11 ± 2.16 0.42

Barren land 1.81 ± 0.68 2.21 ± 1.01 0.54

Deciduous forest 8.41 ± 2.74 9.27 ± 2.33 1.48

Mixed forest 2.14 ± 1.20 2.98 ± 0.58 0.29

Evergreen forest 10.24 ± 3.54 8.25 ± 2.89 0.61

Scrub/shrub 7.24 ± 2.39 6.74 ± 3.04 0.74

Grassland/herbaceous cover 0.84 ± 0.01 2.11 ± 0.20 0.09

Pasture/hay 12.36 ± 5.63 10.51 ± 5.21 0.35

Woody wetlands 1.36 ± 0.85 2.11 ± 1.02 0.71

Emergent herbaceous wetlands 1.55 ± 1.02 1.34 ± 0.87 1.88

b. Landscape metric

Total edge contrast index (TECI) 1.84 ± 0.21 2.81 ± 0.42 0.03

NASA Moderate Resolution Imaging Spectrometer (MODIS)

a. Daytime land surface temperature

�35°C 36.32 ± 3.14 38.21 ± 2.36 0.61

28–34.9°C 30.95 ± 1.25 29.22 ± 1.23 1.10

24.9–27.9°C 26.54 ± 1.02 26.11 ± 0.84 1.51

�25°C Reference category

b. Night time land surface temperature

�16°C Reference category

15.9–19.9°C 16.44 ± 1.21 16.14 ± 1.25 1.21

�20°C 21.33 ± 0.88 23.01 ± 1.05 0.19

c. Diurnal temperature range 12.00 ± 0.14 15.21 ± 0.41 0.04

NASA Prediction of Worldwide Renewable Resources

Daily maximum temperature 34.32 ± 1.22 34.62 ± 1.24 1.84

Daily minimum temperature 15.25 ± 1.55 16.05 ± 1.50 0.57

Daily average temperature 28.44 ± 2.61 27.58 ± 2.07 0.66

Dew point 63.32 ± 10.21 59.21 ± 7.32 0.75

Relative humidity 74.21 ± 8.21 75.38 ± 6.32 0.81

Diurnal temperature range 11.14 ± 1.51 13.21 ± 1.32 0.06

A total of 23 variables were considered for univariate evaluations. There were 14 variables derived from the NLCD, 3 variables from NASA’s MODIS and 6

from POWER sources. All variables except daytime land surface temperature and night-time land surface temperature were in continuous form. �25°C

and �16°C were used as reference categories in the models for daytime land surface temperature and night-time land surface temperature, respectively.

Six variables retained significance in the univariate screening, with a liberal p−value � 0.2. They were, developed—low intensity (p = 0.021), grassland/

herbaceous cover (p = 0.092), grassland/herbaceous cover (p = 0.122), total edge contrast index (p = 0.033), night time land surface temperature

(�20°C) (p = 0.191), and diurnal temperature range (DTR) (p = 0.044).

doi:10.1371/journal.pntd.0004632.t001
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individual. For the process models, we used a logit link function in an extended generalized
linear model (GLM) structure that incorporated stochastic spatial and temporal functions
and as well as different environmental covariate effects. The link function (logit) was defined

as logit pij ¼ log
pij

1�pij

h i
¼ xib

� �
so that pi ¼ logit�1ðxijbÞ ¼ expðxibÞ

1þexpðxibÞ : Several models that

allowed us to evaluate random and covariate effects were fitted individually. First, a partial
model with random effect terms for spatial and temporal processes in the data were fitted,
notated as following,

LogðpijÞ ¼ b0 þ ui þ vi þ gj:

Where, β0 (intercept) represent positive striped skunk rabies infection in all locations in all
years, and ui and vi are random terms accounting for spatially structured variation in striped
skunk rabies infection and unstructured heterogeneity in the data, respectively. No interac-
tion effect was assumed to exist between ui and vi, and these terms were assigned ui * CAR,
and vieNormalð0; s2

vÞ priors [23] [24]. Spatial dependence in ui was applied by assuming a
conditional autoregressive model (CAR)(γ) with a Gaussian distribution, which implies that
the observations for each ui is conditional on the neighbor uj with variance ðs2

i Þ dependent on
the number of neighboring 4km2 home range cells ni of the home range cell i, i.e.,

uiju; j neighbor of i � N
1

ni

gSni
j¼1uj;

s2
i

ni

� �
:

The temporal component of the data was accounted for by including γj, non-parametric
term that follows a structured temporal pattern with a random walk prior of first order
(RW1)gj � Nðgj�1; t

�1
g Þ[25] [26].

In addition to these terms, in a second intercept-only model, quantification of any spatio-
temporal interaction effect in the data attempted by including aCij term,

Logðpi jÞ ¼ b0 þ ui þ vi þ gi þCij:

which had aCij ~ (Ci,j−1 τC) prior [27].
For the full models that included covariate terms, different covariates were included to the

intercept-only model in several steps, starting with a model that included all covariates fol-
lowed by removal of one covariate term at each step. No covariates were added to the inter-
cept-only model with the space-time interaction term,Cij since this addition did not improve
model performance over the intercept-only model without this term. Covariates were retained
in the model unless their removal resulted in the increase of DIC value by 5 units or more.
Terms representing several two-way covariate interaction effects were evaluated in these steps
as well.

Model implementation and validation. Model posterior parameters were estimated using
a Bayesian framework implemented using R-INLA software [28] on a Linux Beocat cluster
computing environment [29]. We used non-informative, uniform priors for the distributions
of covariate effects (both regression parameters, βk and their variance components,s2

k). This
allowed the observed data to have the greatest influence on posterior distributions without
being constrained by the choice of prior [30]. The median estimates from the posterior distri-
bution were calculated and exponentiated to provide odds ratios (ORs) and their correspond-
ing uncertainty measures.

Models were validated by randomly partitioning the predicted posterior estimates into five
subsets and by running the models using only four of the five subsets, while validating model
prediction with the fifth subset. The models were run five times to allow each validation with

Bayesian Spatiotemporal Patterns and Eco-climatological Drivers of Skunk Rabies
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subset. Each time, the model’s performance (prediction accuracy) was measured using area
under the receiver-operator’s curve (AUC) values with the observed infection rates (dichoto-
mized as 0 or 1). The mean error and mean absolute error were calculated to quantify predic-
tion bias and overall precision respectively.

Results
A total of 1027 tests were performed for rabies virus on striped skunk cases in the region during
the 2007–2013 study period. Among these, 705 specimens had negative diagnosis and 318 were
tested to be positive. During the same period 33 specimens were determined unsuitable for
diagnostic testing, and were not included in the analyses. Geographic coordinates were obtain-
able for 656 (93%) negative and 310 (97.4%) positive specimens, whose spatial distribution is
present in Fig 1. A predominant number of striped skunk specimens tested had originated

Fig 1. Spatial distribution of positive (dark circles) (n = 310) and negative (open circles) (n = 656) test results for striped skunk rabies in the study
region.

doi:10.1371/journal.pntd.0004632.g001
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from locations that were completely present within areas classified as rural (n = 905, [93.7%])
and the remaining (n = 61, [6.3%]) within urban boundaries.

Of twenty three covariates evaluated in the univariate parameter estimation, six were
retained for Bayesian hierarchical analysis (Table 1). No multicollinearity was noted among
the retained covariates, and univariate non-linearity in logit with relation to positive infection
among striped skunks over time and geographic extent was not noted.

The covariate model with independent random effects for spatial and temporal terms, and
fixed land cover/land use and climatological covariates performed best among the three Bayes-
ian hierarchical models considered in this study, indicating that the inclusion of covariate
terms explained additional variability among striped skunk rabies submissions that were unac-
counted by purely random-effect terms. The summary of obtained posterior estimates for the
hyperparameters (τu,τv and τψ) in the three models (Table 2) showed that the spatially unstruc-
tured regional effect, indicating spatial heterogeneity, and the spatially structured random
effects, indicating spatial clustering were significant in all models, while the spatio-temporal
effect was negligible. The estimates for the former terms decreased in the covariate model,
likely due to the fixed effect covariate terms competing to explain the same processes in the
model. The non-parametric term, γj for structured temporal trend in all three models (Fig 2)
indicated that there was an increasing overall time trend, albeit by very small amounts in the
data during the initial years followed by a stable trend throughout the remaining years in the
study.

The covariate model indicated that higher percentages of low intensity—developed areas,
total edge contrast index (henceforth referred to as patch fragmentation) within skunk home
ranges (4 km2 units), and a climate variable, diurnal temperature range were significantly asso-
ciated with positive rabies infection among submitted cases of striped skunks (Table 2). All fur-
ther interpretations are made on this model alone. The ORs and 95% Bayes CrIs indicate the
risk of rabies infection among striped skunks submitted for testing in the study region for each

Table 2. Model statistics from two spatio-temporal models evaluating striped skunk rabies incidence in Kansas, Nebraska in the Northern Plains,
USA.

Parameter Partial model (1a) Partial model (1b) Covariate model

Random effect terms (Mean ± SD) £

β0 0.35 ± 0.04 0.33 ± 0.04 0.28 ± 0.03

ui 0.04 ± 0.00 0.06 ± 0.02 0.02 ± 0.01

vi 0.18 ± 0.02 0.11 ± 0.01 0.08 ± 0.02

γj 0.23 ± 0.05 0.20 ± 0.05 0.21 ± 0.05

Ψij - -0.03 ± 0.05 -

Fixed effect covariates (Odds ratio, 95% Credible Intervals)¶

β1 (% developed—low intensity areas) - - 3.41 (2.01, 3.83)

β2 [Total edge contrast index (fragmentation)] - - 1.70 (1.26, 2.81)

β3 (Diurnal temperature range) - - 0.54 (0.27, 0.91)

£ Mean and standard deviation correspond to the posterior estimates for the hyperparameters τu,τv,τγ, and τψ in the three Bayesian models present above.
¶ The odds ratio and credible intervals correspond to the median of the posterior predictive distributions of the covariate model.

β0 is intercept in all models, representing positive striped skunk rabies infection in all locations in all years, and ui and are vi random terms accounting for

spatially structured variation in striped skunk rabies infection and unstructured heterogeneity in the data, respectively. γj and Ψij terms represent non-

parametric time trend and spatio-temporal interactions, respectively. Information on the choice of priors for these terms are provided in the text.

doi:10.1371/journal.pntd.0004632.t002
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of the 4 km2 habitat cells. For every percentage increase in developed—low density area
within a 4 km2 habitat cell, the odds of a striped skunk specimen collected within that cell to
test positive for rabies is 3.41 times larger than being negative. Likewise, for every percentage
increase in patch fragmentation (as measured by total edge contrast index), the odds of
testing positive was 1.7 times larger than testing negative; and, for every unit increase in
DTR, the odds of testing positive reduced by 0.54 times; or in other words, the ongoing
decrease in DTR due to climate change increased the odds of rabies infection. Developed—
low intensity areas and patch fragmentation indirectly point to the relatively higher human
density in such areas, which increases striped skunk encounter rates and the probability of pos-
itive diagnosis.

The addition of an interactive space-time term,Cij to the partial ST model yielded a Devi-
ance Information Criterion (DIC) value of 1,459, marginally higher than the DIC value (1,431)
without the term included. Additionally, the inclusion ofCij term and covariate terms to the
final covariate model failed to improve model performance, indicating a lack of space-time
process in the dataset (Table 3).

The posterior estimates used to derive ORs and 95% CrI correspond to the median of the
posterior predictive distribution of the covariate model (Table 3). Model validation statistics
based on the mean error and mean absolute error derived by randomly partitioning incidence
data within 4 km2 areas into test and model groups did not indicate model inadequacies and
the area under curve (AUC) values for the covariate model indicated good discriminative
capacity (Table 4).

Fig 2. Overall time trend for the three models with the non-parametric γj term including 95% credible intervals.

doi:10.1371/journal.pntd.0004632.g002
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Discussion
Understanding the spatial and temporal patterns of diseases is important for disease manage-
ment. While methods have been developed to model these aspects of infectious diseases in
human populations and to some extent also for companion and food animals [25] [31] [32], it
is rather difficult to quantify the space-time epidemic processes for those diseases vectored by
wildlife [33]. Wildlife diseases are not regularly monitored, and even at times when they are
studied through well thought-out sampling regimens the infection rates can be heterogeneous
over different landscapes in addition to being confounded by host factors such as age, sex and
genotype [34] [35]. This calls for the analysis of such infection data using statistical methods
that are well equipped to account for spatial, temporal and host-level heterogeneities. Another
issue, particularly with striped skunk rabies but likely also with other rare wildlife diseases is
the general lack of active surveillance data. Sampling efforts to quantify rabies prevalence

Table 3. Model fit and comparison statistics.

Model �D pD DIC

Partial

(1a) 1320 81 1401

(1b) 1345 114 1459

Covariate£

(2) 952 32 984

�D = posterior mean deviance, calculated as �D ¼ E½D�: where D = −2log p(y|θ).

pD = Posterior mean deviance—deviance of posterior means, calculated as pD = Eθ|y [D]−D(Eθ|y[θ]).

DIC = Deviance information criterion, analogous to the frequentist AIC estimate and estimated as DIC ¼
Dð�yÞ þ 2pD:
£Several covariate models (which also included random effect terms) were fitted starting with a model that

included all covariates that were screened in the univariate procedure with a liberal p � 0.2, followed by the

removal of one covariate at a time from the Bayesian hierarchical models. The removal of % grassland

area, minimum land surface temperature and an interaction term, ‘diurnal temperature range x % mixed

forest area’ one at a time, in that order resulted in models with DIC values of 1261, 1014, and 1008. To the

final covariate model, a random effect space-time term, Ψij was inserted, which resulted in a DIC value of

1023, indicating poor performance. Other previously removed covariates did not re-enter the final covariate

model.

doi:10.1371/journal.pntd.0004632.t003

Table 4. Validation statistics for the partial and covariate Bayesianmodels.

Model AUC* Mean error† Mean absolute error‡

Partial (1a) 0.71 0.21 6.23

Partial (1b) 0.68 0.42 6.86

Covariate model 0.78 0.18 4.27

* AUC values in the range of 0.5–0.7 indicates poor discriminative capacity, 0.7–0.9 is considered good

and > 0.9 to be very good.
† Overall tendency to over or under-predict relative risk.
‡ Overall precision of models estimated using magnitude of error in predictions.

doi:10.1371/journal.pntd.0004632.t004
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among striped skunks in the region are not found even though evidence for rabies in this host
in the Northern Plains region has been known for many decades [5] [6]. However, a different
source for disease prevalence information are diagnostic laboratories where testing for diseases
is routinely performed. The Rabies Laboratory at KSVDL is one of the largest diagnostic facili-
ties in North America, and the primary diagnostic lab for the states of Kansas and Nebraska
where skunk rabies is a reportable disease. We used retrospective disease information gathered
at this facility, and for the statistical analyses employed Bayesian hierarchical models in order
to alleviate the difficulties in modeling uncertainties associated with retrospective data with an
inherent spatio-temporal structure [31] [36].

The use of passive surveillance data such as this introduces two important limitations, due
to which the findings reported here are only directly applicable to a sub-population of skunks.
It is likely that many of the skunks submitted for testing were those that had human/domestic
animal encounter or those that showed visible signs of malady to passing-by humans, whereby
introducing a population bias. And, it is also quite likely that these skunk samples originated
from areas closer to human dwellings and not from a wider habitat, and therefore introducing
a spatial bias. Even though a spatial analysis of sample locations in this study revealed that a
predominant number of cases originated from rural locations (93.7%) with human population
less than 2500 persons, and which have land cover characteristics akin to those of wild skunk
habitats (except for any heavily developed areas), a distinction must be made in the interpreta-
tion of the results of this study to a sub-population of striped skunks and not the entire striped
skunk population. Carefully designed prospective studies will be needed to fully alleviate all
population and spatial biases. The present study underscores a need for such an effort since
any and all of the information currently available on the space-time dynamics or eco-epidemio-
logical drivers of striped skunk rabies exist only in the form of passive surveillance data.

Of all the Bayesian hierarchical models that were evaluated in the study, the covariate model
that included independent random terms for spatial and temporal effects and fixed eco-clima-
tological covariates had the highest potential in explaining rabies incidence in striped skunks.
The covariate model included non-interactive spatial and temporal terms and they significantly
accounted for some of the variability in the incidence data. This indicated that the odds of posi-
tive infection presence in a given year in any one of the 4 km2 home range is dependent on the
infection presence in the neighborhood in the previous year or years. Despite this finding, we
did not note any significance for the interactive spatio-temporal term in the partial or covariate
models. Unlike non-interactive spatial and temporal terms, the presence of a significant space-
time interaction in a dataset is often an indication of the presence of localized clusters that may
be linked, for instance to emerging ecological pressures to hosts. Our finding of a lack of signifi-
cant space-time interaction does not however mean that rabies among submitted striped skunk
cases has not spread across the landscape or that the prevalence has remained constant within
the study region. In fact, the clumped case distribution (Fig 1) in some areas but not others sug-
gests that submissions of striped skunk cases for rabies testing has expanded to larger area in
the past, perhaps at a slower rate, and the measurement of spatially explicit temporal changes
are undetectable over moderate time periods and smaller spatial scales despite the use of
sophisticated methods. Again, carefully designed prospective studies are warranted that would
help assess the dynamics of striped skunk rabies prevalence and/or its spread and intensity in
the region.

The covariate model in the present study had an AUC value of 0.78 (Table 3), which indi-
cated a reliable model performance, reflecting that a linear combination of fixed covariate and
random effect terms predicted the infection prevalence in the 4 km2 home range locations with
satisfactory level of accuracy. This model has also identified important eco-climatological driv-
ers for striped skunk rabies in the region based on passive surveillance, which to the best of our
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knowledge are not available in the published literature. The ORs and 95% Bayes CrIs associated
with the covariates indicate the statistical odds of detecting positive rabies infection among
striped skunk cases submitted for testing and their corresponding uncertainty levels. In epide-
miological studies the ORs are interpreted in terms of infection or disease risk. Three covariates
were retained in the model; developed—low intensity areas, landscape fragmentation, and
diurnal temperature range (DTR), and they simultaneously indicate risk of rabies infection
from striped skunks to humans and as well as the enzootic risk among striped skunks. The
higher percentages of developed—low intensity areas and higher fragmentation on a landscape
indicate the elevated risk of rabies transmission to humans from striped skunks, while the
decreasing DTR points to the enzootic striped skunk rabies risk in the North Central Plains.

Developed, low intensity area on a landscape is defined by USGS as areas with a mixture of
constructed materials and vegetation where impervious surfaces account for 20% to 49% per-
cent of total ground cover. These areas most commonly include single-family housing units
[37], and are also likely to be newly urbanized portions of cities with potentially high human-
wildlife interactions [38]. It is well documented that exurbanization, or the increasing tendency
for urban residents to settle in suburban or rural environments increases anthropogenic influ-
ences on the landscape and concentrate vital resources for wildlife [39]. Striped skunks are tol-
erant towards humans and when opportunities are present they are known to inhabit less
accessed areas in and around human dwellings. The observed higher odds of detecting positive
infection among striped skunks from such places therefore presents an elevated risk for rabies
transmission to humans and as well as domestic animals in this environment.

The 4 km2 habitat cells in the study region with higher patch fragmentation positively
impacted infection among striped skunks. At the landscape level, total edge contrast index is a
measure of patch fragmentation—higher values indicate higher fragmentation. Some effects of
landscape fragmentation are that it leads to more and smaller habitat patches, decreased com-
plexity of patch shape, and higher proportions of edge habitats [40], and as a result it has been
hypothesized that habitat fragmentation could lead to rise in infectious disease among wildlife
by facilitating an increase in susceptible host abundance and as well as by increasing the disease
load due to diminished host diversity [41] [42]. In addition, it is known that striped skunks are
adapted to living in a variety of land cover types including rural and urban environments [43].
Unlike other wildlife mammals such as opossums and raccoons, striped skunks generally do
not show a preference to any one particular land use type [44] [45]; however, previous studies
have shown that their abundance was highest near urban edges [46] [47] and forest edges [48],
and skunk dispersal is increased along edge habitats between fields and forest fragments [49].
For these reasons, it is plausible that higher skunk population in fragmented areas lead to more
submissions resulting in a higher detection rate, without a true increase in rabies incidence
rate. Regardless of the process involved, we suspect that highly fragmented landscapes in the
study region at the edges of urban development and around agricultural fields pose a signifi-
cant risk of rabies infection to humans and domestic animals since they favor striped skunk
habitats.

Climate plays an important role in striped skunk life history and foraging behavior. The spa-
tio-temporal changes in temperature, precipitation and humidity that are expected to occur
under different climate-change scenarios will affect the biology and ecology of disease vectors,
intermediate hosts and consequently the risk of disease transmission [50]. The identification of
diurnal temperature range as a driver for striped skunk rabies in the region is therefore signifi-
cant, since it has been identified as an index of climate-change [51] [52], and further field
experiments to quantify this linkage could help us understand climate-change impacts on wild-
life disease ecology, including striped skunk rabies. DTR has narrowed over the US since the
1950s at least in part due to differential changes in daily maximum and minimum temperatures
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[53]. For most parts of the US, trends show that Tmax have remained constant or have increased
only slightly but Tmin have increased at a faster rate [50] [54]. There is no direct evidence in the
literature so far that indicates increasing night-time temperatures (Tmin) translate to changes in
rabies ecology among striped skunks, for instance via an extended movement period from
their dens for foraging activity or other adaptations. However, during the warm winter of 2008
in Kansas striped skunks were noticed to move farther (948 ± 207 m) between locations than a
typical average distance of 197 ± 44 m covered during other winters [55], and such occurrence
may become more commonplace as DTR continues to change. Identifying associations
between climatic factors and disease outcomes is often challenging due to other confounding
factors [56] but such knowledge is vital for quantifying any role that climate-change may be
playing towards the amplification and/or spatial expansion of disease incidences. Studies con-
sidering long term surveillance of striped skunk rabies prevalence in the field and its associa-
tion with climate-change indices are therefore needed.

Conclusions
This study presents current spatiotemporal pattern of striped skunk rabies in the North Central
US based on passive surveillance, and identifies influential eco-climatological drivers of this
disease using Bayesian hierarchical modeling approach. Developed, low intensity areas and
highly fragmented landscapes are mostly periurban environments and areas where human
habitats overlap striped skunk habitats. In these environments higher rates of human—striped
skunk contact is possible. There is a relatively higher risk of rabies transmission from striped
skunks to humans who reside in developed low intensity areas and highly fragmented land-
scapes such as edges of woodlands and agricultural lands than other places. Diurnal tempera-
ture range, a climate change indicator is decreasing at a slow but steady rate, and increases the
enzootic risk of rabies to striped skunks. Human mediated landscape changes and climate-
change appears likely to exacerbate the prevalence of this disease in this species, and further
studies are necessary to more fully understand the dynamics of skunk rabies in the study region
and its impact upon the prevention of rabies among humans and other animals.
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