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Abstract: Antifreeze protein (AFP) is a proteinaceous compound with improved antifreeze ability
and binding ability to ice to prevent its growth. As a surface-active material, a small number of AFPs
have a tremendous influence on the growth of ice. Therefore, identifying novel AFPs is important to
understand protein–ice interactions and create novel ice-binding domains. To date, predicting AFPs
is difficult due to their low sequence similarity for the ice-binding domain and the lack of common
features among different AFPs. Here, a computational engine was developed to predict the features
of AFPs and reveal the most important 39 features for AFP identification, such as antifreeze-like/N-
acetylneuraminic acid synthase C-terminal, insect AFP motif, C-type lectin-like, and EGF-like domain.
With this newly presented computational method, a group of previously confirmed functional AFP
motifs was screened out. This study has identified some potential new AFP motifs and contributes to
understanding biological antifreeze mechanisms.

Keywords: antifreeze protein; protein domain; minimum redundancy maximum relevance; ran-
dom forest

1. Introduction

Antifreeze protein (AFP) is a proteinaceous compound with improved antifreeze abil-
ity in organisms and is widely identified and validated in various species and subtypes [1,2].
As indicated by its name, this compound inhibits the damage of frozen water/ice on living
organisms, and even a small amount of this surface-active material already has a tremen-
dous influence on the growth of ice. How AFPs combine with ice was attempt explained
from the following viewpoints: (1) “dipole-dipole” hypothesis model [3], (2) hydrogen
atom binding model [4], and (3) rigid body energy theory [5]. Given that AFPs have unique
biochemical properties as frost resisting regulators, multiple biochemical, biotechnologi-
cal, and agricultural production processes have relied on the application of such protein
clusters.

In agriculture, AFPs are applied to maintain crop and fish production in colder
climates and as a clinical treatment on hypothermia and cryosurgery against tumors,
thereby implying its specific role in biotechnological fields [6,7].
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AFPs are a group of effective proteins with unique antifreeze properties and typical
structural and functional characteristics. From the molecular structural aspect, the current
AFPs have originated from the sugar-bind domain of C-type lectins (CTLs) that usually
depend on calcium ions. Despite the detailed classification of AFPs, their molecular
structures still vary; some common structures are shared by almost all AFPs, and some are
also found in the original CTLs such as disulfide bridges and cysteine residues [8]. This
finding indicates that different AFPs may have similar evolutionary procedures, and their
structures may be essential for their antifreeze property. This concept provides structural
foundations for novel AFP predictions.

Considering that AFPs share similar structural properties and are important in the
maintenance of biological activity under certain extreme environments, understanding how
these materials utilize their typical structural properties to protect living organisms from
low temperature and identifying novel AFPs are the two most crucial research directions in
this field. Previous studies have partially revealed the biochemical mechanisms underlying
AFP protection of living organisms from internal ice formation. AFPs help regulate the
freezing point of certain aqueous solutions to provide a soluble and liquid microenviron-
ment for essential biochemical reactions as firstly reported and confirmed in Dendroides
canadensis [9]. In 2014, a detailed mechanism study used the Ginzburg–Landau-type
approach to identify and validate a specific phenotype as the phase separation of a typical
dynamic two-component system and confirmed that AFPs can inhibit the general water
freezing procedures in vitro [10].

Depending on their specific molecular structures, AFPs have varying participation in
regulating the antifreeze properties of organisms. One of the largest obstacles in current
AFP studies is the prediction of novel potential AFPs. Although AFPs share some simple
structures such as disulfide bridges and cysteine residues, their sequence similarity is
low. Hence, predicting novel AFPs according to previous computational methods is
difficult. In this study, a computational engine is developed to predict AFP features. The
39 most important features for AFP identification have been revealed. Candidate features
and signatures are extracted from a website called “InterPro protein sequence analysis &
classification”. These entries are converted to their protein domain by relying on features
that represent protein families, domains, repeats, and specific functional sites. Based on
the 39 features, the most common protein domains are antifreeze-like/N-acetylneuraminic
acid synthase C-terminal, insect AFP motif, and CTL-like domain. This finding indicates
that many important key features originated from the protein domains such as insect AFP
motif and CTL-like domain. In addition, a group of previously confirmed functional AFP
motifs is screened out by using the newly presented computational method. This study
has identified some potential new AFP motifs and contributes to the understanding of
biological antifreeze mechanisms.

2. Materials and Methods
2.1. AFPs and Their Sequence Features

A total of 9083 non-AFP and 464 AFP sequences were downloaded from Yang et al. [11]
and are provided in Supplementary Material S1. InterProScan was used to scan and
annotate the sequence characteristics of these proteins [12]. Proteins without domain
annotations were removed. Finally, a matrix with proteins as rows (420 “1” meant AFP and
8998 “2” meant non-AFP) and 13,729 domains as columns was established. If a protein,
i, has a domain, j, then the value in a row, i, and column, j, is 1; otherwise, it is 0. The
protein domain matrix is provided in Supplementary Material S2. The AFPs were termed
as positive samples, whereas non-AFPs were called negative samples.

2.2. Minimum Redundancy Maximum Relevance Feature Selection

Lots of domains were used to encode one AFP or non-AFP. Not all domains were
highly related to the determination of AFPs. To extract highly related domains, thereby
building an efficient classifier, a feature selection procedure was necessary. Here, we
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selected the widely used minimum redundancy maximum relevance (mRMR) [13–16]
feature selection method. Such a method evaluates the importance of features using
maximum relevance and minimum redundancy. The former indicates that features that are
highly related to class labels are important, whereas the latter one means features that have
low redundancies to other features are also important. The relevance and redundancy are
all used mutual information (MI) to quantify. For two variables x and y, their MI value can
be computed by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x, y) is their joint probabilistic density, and p(x) and p(y) are their marginal proba-
bilistic densities. The mRMR method outputs a feature list, named mRMR feature list, to
indicate the importance of features. At first, this list is empty. Features are selected one by
one and appended to this list. For each of the non-selected features, calculate its relevance to
class labels, measured by MI of it and class labels, and its redundancies to already-selected
features, evaluated by the average MI values of it and each already-selected feature. The
difference between the relevance and redundancies is further computed and a feature with
a maximum difference is picked up. This procedure stops until all features have been
selected. For formulation, the feature list is denoted as

F = [ f1, f2, . . . , fN ], (2)

where N is the number of all input features. Features that have high ranks are more
important than those with low ranks.

2.3. Incremental Feature Selection

The mRMR method produced an mRMR feature list. According to the idea of mRMR,
some top features can comprise the optimum feature subsets for a given classification
algorithm. Thus, the IFS method [17] was employed to extract discriminative features
with the best performance for one classification algorithm (e.g., random forest (RF) [18]).
In accordance with the mRMR feature list F, a series of feature subsets F1, F2, . . . FN was
generated, where F1 = { f1}, F2 = { f1, f2}, and so forth. A classifier can be built on each
feature subset, where samples were represented by features in such a list. Then, 10-fold
cross-validation [19–26] was adopted to evaluate the performance of all classifiers. Finally,
the classifier with the best performance can be found and the corresponding feature subset
was extracted. Such classifier was termed as the optimum classifier and features in the
corresponding feature subset were called optimum features.

2.4. Random Forest

As mentioned in Section 2.3, the IFS method needed a classification algorithm. Here,
we selected the classic classification algorithm, RF [18], which is an ensemble algorithm
with multiple decision trees. In the training stage, each decision tree was grown from
bootstrap samples [27] and random feature subsets [28]. In the bootstrap procedure,
a training dataset containing N samples was repeatedly sampled for B times (B is the
parameter representing the number of decision trees). For each decision tree, the randomly
selected N samples with replacement constituted its training set, and a random feature
subset was adopted to split the nodes of this decision tree. B decision trees were eventually
grown. For a new sample, each decision tree provided a predicted class, and the predicted
class of the RF was determined by majority voting. RF has been applied to tackle many
biological problems [29–36].

The classifiers named “RandomForest” in Weka [37] with default parameters were
used to build classification models.
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2.5. Performance Evaluation

As mentioned in Section 2.1, AFPs were termed as positive samples, whereas non-
AFPs were deemed as negative samples. By dealing with such a binary classification
problem, some essential domains and one efficient classifier can be obtained. For binary
classification, the following entries are always counted. They are true positive (TP), false
positive (FP), false negative (FN), and true negative (TN), where TP/TN stands for the
number of correctly predicted positive/negative samples, FN/FP denotes the number of in-
correctly predicted positive/negative samples. Based on these entries, four measurements:
sensitivity (SN), specificity (SP), accuracy (ACC), and Matthews correlation coefficient
(MCC) can be computed. Their formulations are as follows:

SN =
TP

TP + FN
(3)

SP =
TN

TN + FP
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)

MCC =
TP × TN− FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

SN is the accuracy for positive samples, whereas SP is the accuracy for negative samples.
In addition, ACC and MCC can fully evaluate the performance of classifiers. Considering
the fact that MCC is a balanced measurement that is more accurate than ACC when the
dataset is imbalanced, it is picked up as the key measurement in this study. The higher the
above measurements are, the higher the performance of the classifier is.

3. Results

In this study, we used functional domains to represent each protein and proposed an
RF classifier to identify AFPs. Furthermore, some essential domains were extracted. The
entire procedures are illustrated in Figure 1.

3.1. Results of mRMR Method

13729 domains were used to represent AFPs and non-AFPs. We first used the mRMR
method to evaluate the importance of all features, obtaining an mRMR feature list. Such a
list is provided in Supplemental Material S3.

3.2. Results of IFS Method

The mRMR feature list was fed into the IFS method. Because lots of domain features
were involved, the IFS method would be time-consuming if all possible feature subsets
were considered. To save time, we only constructed the top 500 feature subsets and built
an RF classifier on each subset. All classifiers were evaluated by 10-fold cross-validation.
Predicted results were counted as four measurements computed by Equations (3)–(6),
which are available in Supplementary Material S4. For easy observation, an IFS curve was
plotted in Figure 2, in which the number of features was set as X-axis and MCC was set
as Y-axis. It can be observed that such a curve first followed an increasing trend and after
it achieved the highest point, it followed a slightly decreasing trend. The highest MCC
was 0.937, which was obtained by using the top 39 features. Accordingly, these 39 features
were termed optimum features and the RF classifier with them was called the optimum
RF classifier. The other three measurements (SN, SP, ACC) of such a classifier were 0.890,
1.000, and 0.995, respectively. These results indicated the good performance of such an RF
classifier.
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Figure 1. Entire procedures to construct the classifier to identify antifreeze proteins (AFPs). Each
protein is represented by its functional domain composition. Then, the minimum redundancy
maximum relevance method is used to analyze domain features, resulting in a feature list. Such a
list is fed into the incremental feature selection, incorporating random forest (RF) as a classification
algorithm, to construct an optimum RF classifier and extract essential domains.
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3.3. Comparisons with Previous Methods

The performance of the proposed RF classifier was compared with those of other
state-of-the-art methods to reveal its advantages. Given that AFP-Ensemble [11] does
not calculate MCC, only the measurements reported by both methods were included. As
shown in Table 1, our classifier yielded the best performance across two measurements,
namely, specificity and accuracy. In detail, the specificity and accuracy were at least 6% and
5.7%, respectively, higher than those obtained by other methods. In addition, our classifier
used only 39 features, which is fewer than the 156 features used in AFP-Ensemble [11].
These results indicated that our proposed classifier showed satisfactory potential for AFP
prediction.
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Table 1. Performance comparison of different methods for classifying AFPs.

Method MCC Sensitivity # Specificity # Accuracy #

Our classifier 0.937 0.890 1.000 0.995
AFP-Pred [6] * - 0.847 0.840 0.843

AFP-PSSM [38] * - 0.759 0.933 0.930
AFP-PseAAC [39] * - 0.862 0.847 0.848
AFP-Ensemble [11] * - 0.892 0.940 0.938

*: The results of the other four methods are from [11]. ‘-’ indicates that this measurement is not reported in their
methods. ‘#’: Bold number in one column indicates the highest value in the corresponding column.

With the above arguments, the proposed classifier was superior to previous methods.
The most previous methods directly extracted features from protein sequences, which
contained limited function information of proteins. The functional domain is much more
powerful to identify different properties of proteins because it directly contains the function
information of proteins. Although AFP-Ensemble [11] also employed functional domain
to represent proteins, it only adopted fifteen domains which were annotated to no less
than ten proteins. In fact, those domains that were annotated to few proteins may still be
important to identify AFPs. Among 39 optimum features (domains), 15 (~38.46%) domains
were annotated to less than 10 AFPs or non-AFPs. We employed all domains and adopted
an advanced feature selection method to extract essential domains, which were further
used to construct the proposed RF classifier. It is an important reason why our classifier
was much better than AFP-Ensemble and other methods.

4. Discussion

In the proposed RF classifier, each protein was represented by 39 features. These
features were derived from 39 functional domains. According to the construction of such
a classifier, these domains were highly related to AFPs. They were classified into seven
subgroups for analysis: (1) CTL domain, (2) sushi/SCR/CCP domain, (3) antifreeze-
like/N-acetylneuraminic acid synthase C-terminal domain, (4) insect AFP, (5) type I
AFPs, (6) type II AFPs, and (7) type III AFPs. The detailed structure information link
from the Interpro database and the cluster of each identified domain are provided in
Supplementary Material S5. A heat map demonstrated the classification of domains in
each subgroup is presented in Figure 3. Detailed analyses of each group of features can be
seen below.



Life 2021, 11, 520 7 of 12

Life 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

4. Discussion 

In the proposed RF classifier, each protein was represented by 39 features. These fea-

tures were derived from 39 functional domains. According to the construction of such a 

classifier, these domains were highly related to AFPs. They were classified into seven sub-

groups for analysis: (1) CTL domain, (2) sushi/SCR/CCP domain, (3) antifreeze-like/N-

acetylneuraminic acid synthase C-terminal domain, (4) insect AFP, (5) type I AFPs, (6) 

type II AFPs, and (7) type III AFPs. The detailed structure information link from the In-

terpro database and the cluster of each identified domain are provided in Supplementary 

Material S5. A heat map demonstrated the classification of domains in each subgroup is 

presented in Figure 3. Detailed analyses of each group of features can be seen below. 

 

Figure 3. A heat map to show the classification of domains in each subgroup. 

4.1. CTL Domains 

CTL domain was matched by eleven InterPro entries and therefore is an important 

feature for AFP detection. CTLs are generally made up of 110–130 residues. The four typ-

ical cysteins are conserved at the structural level and involve a functional two-disulfide 

bond. Such conserved domains are shared in multiple protein subtypes. As a general clus-

ter of AFPs, type II AFPs have been confirmed to be homologous to such calcium-depend-

ent CTLs in a widely cultivated fish named Osmerus mordax [40]. Therefore, this struc-

tural feature may be crucial for the identification of novel, functional AFPs. 

AFPs were assumed to have derived from lectin-associated residues in vivo [41]. The 

conserved lectin-associated genes exhibit function loss in various species as not-favored 

genes. These results show that the gene transfer between eukaryotes occurs naturally, 

suggesting that the ancestor gene of AFPs may have originated from the gene of the CTL 

domain [41]. 

Some typical peptide sequences and spatial structures do participate in the inhibition 

of cellular freezing and thus may partially reveal potential AFP mechanisms [40]. For in-

stance, calcium-dependent ice recrystallization inhibition (IRI) is a functional biological 

regulatory mechanism for antifreeze properties in plants and also involves CTL domains 

Figure 3. A heat map to show the classification of domains in each subgroup.

4.1. CTL Domains

CTL domain was matched by eleven InterPro entries and therefore is an important
feature for AFP detection. CTLs are generally made up of 110–130 residues. The four typical
cysteins are conserved at the structural level and involve a functional two-disulfide bond.
Such conserved domains are shared in multiple protein subtypes. As a general cluster of
AFPs, type II AFPs have been confirmed to be homologous to such calcium-dependent
CTLs in a widely cultivated fish named Osmerus mordax [40]. Therefore, this structural
feature may be crucial for the identification of novel, functional AFPs.

AFPs were assumed to have derived from lectin-associated residues in vivo [41]. The
conserved lectin-associated genes exhibit function loss in various species as not-favored
genes. These results show that the gene transfer between eukaryotes occurs naturally,
suggesting that the ancestor gene of AFPs may have originated from the gene of the CTL
domain [41].

Some typical peptide sequences and spatial structures do participate in the inhibi-
tion of cellular freezing and thus may partially reveal potential AFP mechanisms [40].
For instance, calcium-dependent ice recrystallization inhibition (IRI) is a functional bio-
logical regulatory mechanism for antifreeze properties in plants and also involves CTL
domains [40]. Some plant CTLs change the Ca2+ concentration to affect the IRI activity
without inducing sequence homology to AFPs. Hence, additional non-AFPs may exist with
the ability to display calcium-dependent ice recrystallization inhibition.

Among these domains, three of them are just c-type lectin-like domains (IPR001304,
IPR016187, IPR018378), which are CTL domains. Apart from that, some additional domains
like link domain (IPR000538), EGF associated domains (IPR001881, IPR000742, IPR000152,
IPR013032, IPR018097), and a lectin associated domain have also been clustered into CTL
domains. Considering the anti-freeze capacity of CTL domains and EGF domains have
been validated in Section 1, it is reasonable for us to identify such terms as anti-freeze
protein-associated domains.
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4.2. Sushi/SCR/CCP Domains

Sushi/SCR/CCP domain was found by two InterPro entries in numerous complement
and adhesion proteins. This domain has typical structural properties that reflect its effective
biological functions. For each CCP domain, approximately 60 residues have formed a
similar domain with CTL [42,43]. Considering the correlations between structural and
functional similarities, the sushi/SCR/CCP domain may also display calcium-dependent
IRI, thereby corresponding with our prediction result. As for the detailed terms, two IPR
terms describing Sushi/SCR/CCP domain (IPR000436) and Sushi/SCR/CCP superfamily
(IPR035976) have been identified, which are quite reasonable.

4.3. Antifreeze-Like/N-Acetylneuraminic Acid Synthase

Antifreeze-like/N-acetylneuraminic acid synthase C-terminal domain, also called
antifreeze-like protein (AFLP), is an important feature to differentiate AFPs from other
proteins. AFLPs are similar to AFPs. Early in 2006, the structure of AFLP was identified
and validated by one of the most advanced techniques, nuclear magnetic resonance spec-
troscopy. Composed of 75 amino acid residuals, the AFL domain is the core functional
residuals for AFLPs [44]. Similar structural and sequential properties were found between
AFLPs and type III AFPs; however, their biological stability and potential regulatory mech-
anisms differ under alternative temperatures [5]. Therefore, these two groups were sepa-
rately classified despite their structural similarity [45]. AFLPs are also widely distributed
under natural conditions. Considering their potential functions and distinctive antifreeze
performance, AFLPs must be classified into a particular AFP category. The three IPR terms:
SAF domain (IPR013974), antifreeze-like/N-acetylneuraminic acid synthase C-terminal
(IPR006190), and Antifreeze-like/N-acetylneuraminic acid synthase C-terminal domain
superfamily (IPR036732), are included in this subgroup. The last two terms just describe the
antifreeze-like/N-acetylneuraminic acid synthase C-terminal domain associated structures.
As for the SAF domain, it is also a member of the antifreeze-like/N-acetylneuraminic acid
synthase C-terminal domain superfamily.

4.4. Insect AFPs

Insect AFP was matched by five InterPro entries and identified in insects. The core
regulatory mechanism for insect AFP is the regulation of freezing points on aqueous solu-
tions [46]. For instance, the AFPs in D. canadensis contain effective ice-binding sites [9].
The in vivo insect AFPs accumulate at the air-water interface [9], thus indicating their
antifreeze capacity. Therefore, this typical subtype of AFPs with species-specific distribu-
tion and functions can be categorized as a particular AFP subgroup. Three terms have a
direct description as insect-associated AFPs (IPR016133, IPR036668, IPR003460). As for
another two terms, both of them are associated with specific types of insects (IPR007928
and IPR020030).

4.5. AFP, Type I

Type I, II, and III AFPs are the most common subtypes. Type I AFPs are a group of
gas hydrate crystal inhibitors, and their antifreeze ability relies on their binding capacity
against the ice plane. Type I AFPs contribute to the regulation of intracellular antifreeze
biological processes as confirmed in multiple artificial and natural environments [47,48],
indicating that the features of such a group may help identify novel AFPs. Furthermore,
the biological functions of type I AFPs are correlated with and contribute to the local
melting of ice upon adsorption to surfaces [47,48], thus reflecting a special regulatory
mechanism for this subtype. Therefore, type I AFPs have specific antifreeze regulatory
effects and mechanisms compared with other AFPs, thus validating the efficacy and
accuracy of our feature subgrouping. For type I AFP, only zinc ribbon-associated anti-
freeze proteins (IPR013429 and IIPR025874) and a general description of antifreeze protein,
type I (IPR000104) have been identified.



Life 2021, 11, 520 9 of 12

4.6. AFP, Type II

Compared with type I AFPs, type II AFPs have different natural distribution patterns
and are found in species such as sea ravens, smelt, and herring. With regard to struc-
ture, type II AFPs can also be regarded as the evolved CTLs with calcium ion-dependent
functions. In a natural environment, the antifreeze capacity of herring and smelt can be
attributed to type II AFPs [49], indicating the biological basis of our feature classification.
On the basis of the evolutionary routines of CTL domains, the type II AFP gene is suggested
to be a typical and complicated evolved antifreeze subgroup from the classic CTLs [49].
Under differentiated selection pressures, type II AFPs share some common properties with
the original CTLs and also contain some specific and unique structures, thus forming a new
subgroup of antifreeze proteins. For instance, some type II AFPs such as those in sea ravens
can remove the restriction of calcium ions and constitute a new non-calcium-reliant mecha-
nism for the antifreeze processes [49]. Due to the complicated antifreeze structures, some of
the identified terms of type II AFPs have been fully described, but the biological functions
have not been revealed, including SPFH domain, Ydjl-like (IPR033880), Band7/SPFH
domain superfamily (IPR036013), 5-formyltetrahydrofolate cyclo-ligase (IPR002698) and
P-loop containing nucleoside triphosphate hydrolase (IPR027417).

4.7. AFP, Type III

Different from type II AFPs that have evolved from CTLs, type III AFPs are derived
from a sialic acid synthase gene according to an evolutionary genomic study on Antarctic
eelpout [5]. A group of complicated biological structure signatures, including multiple α-
helix, helices, and β-strands, have been identified in type III AFPs [5]. The first typical type
III AFP was purified from a viviparous European eel named Zoarces viviparus [50]. Two
isoforms of type III AFPs, namely, QAE1 (ZvAFP13) and SP (ZvAFP6) were also identified
in such species, thus reflecting the diversity of this subtype. For their functional mecha-
nisms, type III AFPs can promote the meiotic spindle morphology and the fertilization and
blastocyst rates of sperm cells and embryos under freezing conditions [51]. According to a
series of studies on the protective role of type III AFPs in reproductive cells [51–53], this
subtype can protect the cells, especially reproductive cells, from freezing to death and pro-
vide maximum maintenance on their reproductive capacity. Therefore, type III AFPs have
also been applied to modify and evaluate sperm cryopreservation. A general description
of antifreeze protein type III (IPR006013) and two summarized type III AFPs according to
Pfam classification (Ice-binding protein as IPR021884, N-acetylneuraminic acid synthase,
N-terminal as IPR013132) have been identified and predicted to be associated with AFPs.

Previous works have confirmed these predicted high-ranking sequence features (mo-
tifs) of AFPs, thus conforming to our prediction. Therefore, the present study has developed
a novel computational approach for the detection of potential AFPs and helps us partially
reveal the common structural characteristics of anti-freeze associated proteins.

5. Conclusions

This study used functional domains to represent each AFP or non-AFP. Then, some
machine learning methods were applied to identify AFP-associated protein domains.
According to recent publications, several identified domains with reliable annotation
are associated with seven clusters of AFPs. These results can help us take the initial
step to understand the biological mechanisms of AFPs at the structural level. Moreover,
the classifier using identified domains provided better performance than some previous
methods, which can be a useful tool for identifying latent AFPs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11060520/s1, Supplementary Material S1: AFP and non-AFP sequences, Supplementary
Material S2: Protein domain matrix, Supplementary Material S3: mRMR results, Supplementary
Material S4: Prediction performances, Supplementary Material S5: Detailed structure information
link from Interpro database and the cluster of each identified domain.
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