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Abstract
Background  Type II diabetes mellitus (T2DM) is strongly linked with a heightened risk of coronary artery disease 
(CAD). Exploring biological targets common to T2DM and CAD is essential for CAD intervention strategies.

Methods  RNA transcriptome data from CAD and T2DM patients and single-cell transcriptional data from myocardial 
tissue of CAD patients were used for bioinformatics analysis. Differential analysis and Weighted Gene Co-expression 
Network Analysis (WGCNA) were conducted to identify hub genes associated with the CAD Index (CADi) in these 
cells. We then intersected these genes with differentially expressed genes in the T2DM dataset to validate the key 
gene FGF7. Additional analyses included immune analysis, drug sensitivity, competing endogenous RNA (ceRNA) 
networks, and smooth muscle cell -related functional analysis.

Results  An abnormally high proportion of smooth muscle cells was observed in CAD tissues compared to normal 
cardiomyocytes. The gene FGF7, which encodes the keratinocyte growth factor 7 protein, showed increased 
expression in both CAD and T2DM and was significantly positively correlated with the CADi (correlation = 0.24, 
p < 0.05). FGF7 expression was inversely correlated with CD4+ and CD8+ T-cell immune infiltration and correlated 
with the cardiovascular drugs. Overexpression of FGF7 in CAD samples enhanced interactions with mononuclear 
macrophages and influenced the metabolism of alanine, glutamate, nicotinamide, and retinol. We also identified that 
hsa-miR-15a-5p, hsa-miR-373-3p, hsa-miR-20a-5p, and hsa-miR-372-3p could regulate FGF7 expression.

Conclusion  FGF7 serves as a critical shared biological target for T2DM and CAD, playing a significant role in CAD 
progression with potential therapeutic implications.
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Background
Cardiovascular disease (CVD) is a leading cause of death 
and morbidity worldwide, killing approximately 17.9 mil-
lion people each year, or one person every 40  s [1]. 
Approximately 80% of deaths are from myocardial infarc-
tion (MI) [2]. CAD, also known as coronary heart dis-
ease (CHD), is characterized by coronary atherosclerotic 
lesions that narrow and block the blood lumen, leading 
to myocardial ischemia and even necrosis [3]. Patients 
with diabetes, hypertension, obesity, smoking, and a fam-
ily history are predisposed to CAD. Currently, serological 
markers such as troponin T/I and creatine kinase-MB are 
essential for the diagnosis of CAD [4], but these mark-
ers depend on the presence of associated symptoms [5]. 
Recent studies have identified CAD-related transcripts 
in blood and muscle using chip-based approaches, and 
some of the chip data obtained has been applied to some 
clinical practices [6, 7]; however, effective biomarkers for 
predicting disease progression in CAD patients remain 
scarce, posing a significant clinical challenge. Therefore, 
identifying effective biomarkers that predict disease pro-
gression in CAD patients is urgent and critical.

Type II diabetes (T2DM) is one of the most prevalent 
chronic metabolic diseases globally, affecting multiple 
bodily systems, including significant changes in the mus-
culoskeletal system [8]. It is primarily characterized by 
insulin resistance, where metabolic tissues such as skel-
etal muscle and liver fail to utilize insulin effectively, lead-
ing to elevated blood sugar levels and hyperglycemia [9]. 
The global incidence of T2DM is on the rise, partly due 
to an aging population, making it a leading cause of car-
diovascular and neurodegenerative diseases. Diabetes 
compromises the strength of cardiac and skeletal muscles 
through impaired energy metabolism, reduced blood 
flow, and mitochondrial dysfunction [10]. Over recent 
decades, the incidence of T2DM has surged, becoming 
the seventh leading cause of death in the United States.

T2DM is strongly linked to an increased risk of myo-
cardial dysfunction and coronary artery disease (CAD), 
with these conditions often coexisting and influencing 
each other [11]. Up to 75% of T2DM patients may expe-
rience myocardial dysfunction, which frequently goes 
unrecognized due to its asymptomatic nature, comor-
bidities such as CAD and obesity, and the absence of 
standardized diagnostic criteria, leading to delayed treat-
ment [12]. Thus, identifying shared biomarkers between 
T2DM and CAD is crucial for the diagnosis and treat-
ment of these diseases. In this study, we utilized multiple 
integrated bioinformatics tools to identify critical genes. 
We analyzed three CAD datasets and one T2DM data-
set to pinpoint key genes linking these diseases. We then 
developed a binary classification model using machine 
learning techniques to assess the potential of these key 
genes in predicting CAD. The Coronary Artery Disease 

Index (CADi) prediction based on key genes highlighted 
FGF7, whose potential function was further explored 
through immune and drug sensitivity analysis.

Materials and methods
Data acquisition
We accessed three CAD-related datasets from the Gene 
Expression Omnibus Database (GEO, ​h​t​t​​p​:​/​/​​w​w​w​​.​n​​c​b​i​.​
n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​​​​​)​: GSE 12,288 [13], GSE 20,680 [14, 15], 
and GSE 221,911 [16]. GSE 12,288 comprises a total of 
222 samples, including 110 CAD and 112 normal sam-
ples, and the sample tissue source is peripheral blood. 
GSE 20,680 includes 139 samples, with 87 representing 
CAD and 52 as normal, and the sample tissue source is 
peripheral blood. GSE 221,911 features 134 samples, 
consisting of 55 CAD and 79 normal samples, and the 
sample tissue source is peripheral blood. Additionally, 
a T2DM dataset, GSE 179,455 [17], was incorporated, 
containing 19 samples with 5 T2DM, 7 lean and 7 fat 
individuals, and the sample tissue source is epicardial 
adipose tissue. All data, including sequencing and chip 
data, underwent normalization prior to analysis. For sin-
gle-cell data related to CAD, we utilized GSE131778 [18, 
19], which contains data from proximal to mid coronary 
artery of eight CAD patients, totaling 11,754 cells, and 
GSE 121,893 [20], comprising two normal samples which 
cells come from left artery and ventricular cells in heart 
tissue, totaling 356 cells. We performed quality control, 
normalization, and batch effect removal on the single-cell 
data using Seurat V5 software.

CellChat
To infer and analyze intercellular communication in CAD 
samples, we utilized CellChat, a public library equipped 
with ligands, receptors, cofactors, and their interactions 
[21]. CellChat serves as a versatile and user-friendly tool-
kit, accessible via a web-based resource manager ​(​​​h​t​t​p​:​/​
/​w​w​w​.​c​e​l​l​c​h​a​t​.​o​r​g​/​​​​​)​, which facilitates the discovery of 
novel cell-to-cell communication pathways and the con-
struction of comprehensive cell-to-cell communication 
maps. In the analysis of cell interactions, expression lev-
els are calculated relative to the total values mapped to 
the same set of encoded genes across all transcriptomes. 
Additionally, expression values are averaged for each 
individual cell population or cell sample, ensuring a stan-
dardized approach to data analysis.

Trajectory analysis
Monocle 3 version is used to perform trajectory analysis 
to predict differentiation paths between different cells in 
CAD samples without prior knowledge of differentiation 
time or direction [22].

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.cellchat.org/
http://www.cellchat.org/
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WGCNA analysis
The WGCNA software package was used to identify key 
genes significantly associated with CAD [23]. We began 
by inputting the expression profile of CAD patients from 
the GSE12288 dataset. Soft thresholds were determined 
based on the characteristics of the expression matrix, 
after which adjacency matrices were clustered, and core 
modules were identified. Pearson correlation coefficients 
between these modules and CAD cores were calculated 
to identify modules with the strongest positive correla-
tions for further analysis. We assessed gene significance 
(GS) and module membership (MM) within these central 
modules for each genetic trait. Ultimately, we selected 
the modules that demonstrated the strongest correlations 
and significance, and screened for genes that might be 
associated with CAD.

Protein-protein network interaction (PPI)
The STRING database (https://string-db.org/) was used 
to identify and predict PPIs [24]. After establishing the 
PPI, Cytoscape was employed to visualize the interac-
tions, and the MCC algorithm of the cytoHubba software 
calculated the rank value of each protein, determining 
the top 15 hub genes from the network in descending 
order of importance [25].

Enrichment analysis
Metascape (metascape.org) is used for functional enrich-
ment analysis, known for its user-friendly and reliable 
features [26]. The criteria set included a minimum over-
lap of 3, minimum enrichment of 3, and a P value thresh-
old of 0.05. We then conducted an enrichment analysis of 
the hub genes using this platform.

Establishment of mechanical learning model
We utilized GSE12288 as the training set and GSE20680 
as the test set. Fifteen machine learning algorithms were 
integrated, including neural network, logistic regres-
sion, linear discriminant analysis, quadratic discriminant 
analysis, KNN nearest neighbors, decision tree classifi-
cation, random forest classification, XGBoost classifica-
tion, ridge regression, lasso regression, support vector 
machine, gradient boosting, stepwise logistic regression, 
and naive Bayesian model. We implemented 10-fold 
cross-validation to identify the best lasso features, where 
each model underwent training validation with all fea-
tures and with the best features only. Variable impor-
tance output was performed for any machine learning 
algorithm with a feature selection function. We selected 
each parameter corresponding to the main features, and 
formed 207 optimal parameter combinations by integrat-
ing multiple parameters.

Drug sensitivity analysis
Potentially effective drugs targeting key genes were 
obtained from Drug-gene interactions database and visu-
alized with Cytoscape (https:/​/dgidb.​genome.​wust​l.edu/) 
(DGIdb) [27].

Analysis  of  immunoinfiltration
IOBR is an R package focused on decoding the immune 
microenvironment of tumours [28]. In this study, eight 
immune algorithms were used to decode the Peripheral 
blood immune microenvironment of CAD samples from 
the GSE12288 cohort, including CIBERSORT, ESTI-
MATE, quanTIseq, TIMER, IPS, MCPCounter, xCell and 
EPIC [29–33]. Relevant features were provided by the 
IOBR package and the ssGSEA algorithm was used to 
quantify the features [34].

MR analysis
Mendelian randomisation (MR) analysis of model 
genes in CAD and diabetes was performed using the 
TowSanpleMR package [35]. Diabetes outcome data 
were obtained from the ebi-a-GCST90013891 dataset 
of the IEU database; CAD outcome data were obtained 
from the ebi-a-GCST005195 dataset; and gene expres-
sion exposure SNP data were also obtained from the IEU 
database. After p5e<-8 and linkage disequilibrium elimi-
nation, gene SNPs were included in the subsequent MR 
analysis.

Statistical analysis
All statistical analyses were conducted using the R pro-
gramming language. Comparison of data between differ-
ent groups were performed with independent-samples 
t-test or Kruskal test. A P-value less than 0.05 was con-
sidered statistically significant.

Results
Abnormal smooth muscle cell function in CAD patients
To examine the differences in cell subset composition 
between CAD patients and normal samples, Single R 
annotation was applied to cells from CAD patients in 
the GSE131778 dataset and normal myocardial tissue in 
the GSE121893 dataset. The results, depicted in Fig. 1A, 
reveal a disproportionately high number of smooth mus-
cle cells in CAD patients, with the cell subset composi-
tion ratio displayed in Fig.  1B. Differential enrichment 
analysis conducted for each cell subset indicated that 
smooth muscle cells are primarily enriched in pathways 
related to myelination and tissue regeneration in the cen-
tral nervous system, with SOX2 and SOX10 identified as 
marker genes (Fig. 1C). Trajectory analysis suggested that 
various cells in CAD patients, including chondrocytes 
and tissue stem cells, have the potential to differentiate 
into smooth muscle cells (Fig. 1D). Cell communication 

https://string-db.org/
https://dgidb.genome.wustl.edu/
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analyses highlighted that smooth muscle cells possess the 
highest signaling capacity among various pathways, nota-
bly in the GAS signaling pathway, demonstrating strong 
interaction intensities with various cells such as chondro-
cytes, tissue stem cells, and macrophages (Fig. 1E-I).

Acquisition of hub gene
To identify hub genes in smooth muscle cells from CAD 
patients, we conducted differential analysis on these cells. 
As illustrated in Fig.  2A, we identified 2797 differential 
genes under the condition of a log fold change (logfc) 
threshold of 0.5, selecting only genes highly expressed in 

smooth muscle cells. Subsequent WGCNA analysis was 
then performed on the GSE12288 dataset for these dif-
ferential genes yielded three gene modules. The turquoise 
module showed the highest correlation with the CADi 
with a p-value of 9e-7 and a correlation coefficient of 0.18 
(Fig.  2B-E). PCA (Principal Component Analysis) was 
used for dimensionality reduction in GSE12288 to com-
pare the modular genes between CAD and normal sam-
ples (Fig. 2F). The differential analysis results, presented 
in Fig.  2G, revealed 75 differential genes. The PPI anal-
ysis of these 75 genes is depicted in Fig.  2H. The MCC 
(Maximal Clique Centrality) algorithm of the cytoHubba 

Fig. 1  Abnormal function of smooth muscle cells in CAD patients. (A) Cell annotation in CAD patients and normal samples. (B) Histogram showing the 
proportion of cells in CAD patients versus normal samples. (C) Differential genes and enrichment heat maps for various cell subsets in CAD patients. (D) 
Cell subset trajectory analysis in CAD. (E) Network diagram of cell interaction intensity. (F) Bubble plot showing afferent and efferent intensity of signaling 
pathways. (G) Heat map of signaling pathway cellular afferent and efferent intensity. (H) Bubble diagram of ligand -receptor interactions between differ-
ent cells. (I) Heat map of GAS signaling pathway interactions among CAD cell subsets
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software was employed to identify the top 15 key hub 
genes, with their interaction network displayed in Fig. 2I.

Correlation analysis of hub genes
We conducted correlation analysis on hub genes across 
three datasets (GSE12288, GSE20680, and GSE221911), 
with results depicted in Fig. 3A-C. These analyses dem-
onstrated a positive correlation among the hub genes 
overall (correlation > 0). Additionally, the correla-
tion analysis between hub genes and CADi is shown in 
Fig.  3D, revealing a significant positive co-expression 

relationship between FGF7, TBX3, AGT, and CADi 
(p < 0.05, correlation > 0).

Enrichment Analysis of Hub Gene
GSVA analysis was performed on hub genes within the 
HALLMARK pathway gene set, with the results pre-
sented in Fig. 4A. This analysis revealed that the hub gene 
has a positive expression relationship with the KARS 
down-regulation pathway, APICAL_JUNCTION, and 
MYOGENESIS. Conversely, it exhibits a negative expres-
sion relationship with DNA_REPAIR, JAK_STAT3, and 

Fig. 2  Identification of the Hub gene. (A) Volcano plot of differences between smooth muscle cell subsets and other subsets in CAD patients. (B) Selec-
tion of the soft threshold. (C) Choice of module. (D) Association between the module and the CADi. (E) Scatter diagram of the association between genes 
in the turquoise module and CADi. (F) PCA results of turquoise module genes between CAD and normal samples in GSE12288 dataset. (G) Differential 
analysis volcano plot. (H) PPI network map of differential genes.(I) Network maps of the first 15 most related genes obtained using CytoHubba software
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Fig. 3  Correlation analysis. (A) Hub gene correlation chord map in the GSE12288 dataset. (B) Hub gene correlation chord map in the GSE20680 dataset. 
(C) Hub gene correlation chord map in the GSE221911 dataset. (D) Scatter plot of the correlation between the Hub gene and CADi
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MYC-related pathways. Additionally, GO enrichment 
analysis indicated that the hub gene is primarily enriched 
in pathways associated with cell death, regulation of 
anatomical structure, tissue morphology, and axonal 
development. Notably, the regulation of structural mor-
phology features prominently as a key regulatory path-
way among all pathways studied (Fig. 4B-E).

Machine learning model further verifies hub gene’s key 
role in CAD
To further assess whether the Hub gene can serve as 
a key target for predicting CAD occurrence, we con-
structed a model using 15 machine learning algorithms 
based on the Hub gene. The C-index results, displayed 
in Fig. 5A, indicate that the combination of GBoost and 
LASSO yielded the highest C-index (C-index = 0.802) in 
the 10-fold cross-validation model. The C-index in most 
models hovered around 0.6, suggesting that the Hub 
gene could be effective biological targets for predict-
ing the occurrence of CAD. In the variable importance 
results, genes such as CXCL12, GATA4, ACE2, AGT, 
FGF7, MMP2, NTRK1, and TGFB2 demonstrated strong 
importance in the model (Fig. 5C).

FGF7 could be a key target for CAD and T2DM
To explore the biological association between T2DM and 
CAD and identify key targets, we performed PCA dimen-
sionality reduction and differential analysis on diabetes 
and lean samples in the GSE179455 dataset. The cor-
relation results are presented in Fig. 6A and B. At a sig-
nificance level of p < 0.05 and |logFC|>0.3, we identified 
758 differential T2DM genes. After intersecting these 
with Hub genes, three intersection genes were obtained: 
SOX9, FGF7, and L1CAM (Fig. 6C). The expression dif-
ferences of these intersection genes among diabetic, lean, 
and obese samples are shown in Fig. 6D, with FGF7 being 
highly expressed in diabetic samples and reaching statis-
tical significance (p < 0.05). The relationship between the 
expression of intersection genes and CADi is depicted in 
Fig. 6E and F, revealing a significant positive expression 
relationship between FGF7 and CADi (p < 0.05, cor > 0), 
while the other two genes did not show statistical dif-
ferences. Thus, FGF7 is selected as a key target for both 
CAD and T2DM.

Immunoassay of FGF7
We conducted immunoassays on CAD samples to inves-
tigate the immune mechanisms associated with the 
FGF7 gene in CAD. Heat maps indicate that high expres-
sion of FGF7 results in low infiltration levels of CD8 + T 

Fig. 4  Enrichment analysis. (A) Heat map of the relationship between the Hub gene and HALLMARK pathway. (B) Bubble diagram of enrichment analysis. 
(C) Network diagram of enrichment analysis. (D) Interaction of pathways. (E) Node tree of enrichment analysis

 



Page 8 of 15Xie et al. BMC Cardiovascular Disorders          (2024) 24:620 

cells, CD4 + T cells, monocytes, macrophages, and NK 
cells (Fig.  7A and C). Additionally, immunomodula-
tor thermograms reveal that high expression of FGF7 
is associated with low expression of various types of 
immunomodulatory molecules, including costimulatory, 
coinhibitory, and receptor molecules (Fig.  7B). The co-
expression butterfly diagram further illustrates that FGF7 
co-expresses with a variety of immune cells and immuno-
modulatory molecules, such as costimulatory molecules 
CD40 and CD80, and immune cells like NK cells and 
CD4 + T cells (Fig. 7D).

Drug sensitivity analysis of FGF7
To identify potential drugs targeting FGF7 in CAD 
patients, we first grouped samples based on FGF7 
expression levels. The PCA plot of the grouped sam-
ples (Fig.  8A) shows that the two groups can be 

distinguished to some extent. Next, we identified dif-
ferentially expressed genes between the two groups, as 
shown in Fig.  8B. Using the thresholds of logFC > 0.8 & 
P.Value < 0.05 for positively correlated genes and logFC < 
-0.6 & P.Value < 0.05 for negatively correlated genes, we 
identified four significantly positively correlated genes 
(PDLIM3, ZNF674, LHCGR, and ZNF442) and four sig-
nificantly negatively correlated genes (SMAD7, QDPR, 
SNX6, and PSMD5). The correlation analysis of these dif-
ferentially expressed genes is shown in Fig. 8C-D, further 
validating the differential expression levels. To explore 
potential effective drugs targeting these key genes, we 
obtained the gene-chemical interaction network from 
the Drug-Gene Interaction Database (DGIdb) and visual-
ized it using Cytoscape software, as shown in Fig.  8E-F. 
Notably, COMPOUND 34 and DTRIM24 showed strong 
interaction scores with FGF7 (interaction scores of 

Fig. 5  Machine learning analysis. (A) C-index heat map for the Hub gene across different models. (B) ROC curve for model performance. (C) Histogram 
of variable importance for the Hub gene in the model
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Fig. 6  Key gene screening.(A) PCA dimensionality reduction performed on samples from the GSE179455 dataset. (B) Volcano plot of differential analysis. 
(C) Intersection of differential genes and Hub genes. (D) Expression of intersecting genes in diabetic, lean, and obese individuals. (E) Differential expres-
sion between CADi and intersecting genes. (F) Co-expression relationship between CADi and intersecting genes
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13.126918 and 26.253836, respectively), suggesting that 
these drugs may play an important role in CAD patients 
by affecting FGF7 expression. Additionally, drugs asso-
ciated with the positively correlated gene LHCGR are 
mainly related to sex hormones, while some drugs associ-
ated with the negatively correlated gene SMAD7, such as 
Alteplase, can be used to treat heart disease.

ceRNA network construction
To further investigate the upstream regulatory targets 
of FGF7 gene, we obtained first the miRNA targets of 
FGF7 against two databases miRNet and miRTaRBase, 
and then the 20 intersection miRNAs (Fig.  9B). Subse-
quently, for these 20 miRNAs, their related LncRNAs 
were predicted in the LncACTdb3.0 dataset, and then 

visualized in Cytoscape. The results are shown in Fig. 9A. 
The MCC algorithm was used to select key regula-
tory networks using cytoHubba software. As shown in 
Fig.  9C, the important miRNAs regulating FGF7 were 
hsa-miR-15a-5p, hsa-miR-373- 3p, hsa-miR-20a-5p and 
hsa-miR-372- 3p, and their related LncRNAs were also 
displayed.

Functional verification of FGF7
To further verify the function of FGF7 in CAD, we first 
performed MR analysis on the Hub gene, and found 
that the FGF7-related SNP was deleted under the con-
dition of removing linkage disequilibrium and p5e-8, 
but the L1CAM gene was positive in type 1 diabetes (p 
0.05, OR 1, Fig. 10A and B). At the single-cell level, the 

Fig. 7  Immunoassay. (A) Heat map showing the relationship between immune cells and FGF7 expression using eight immune microenvironment de-
coding methods. (B) Expression heat map of FGF7 and different immune molecules. (C) Bar graph showing correlation between FGF7 and immune cell 
infiltration score. (D) Co-expression butterfly map of FGF7 with immune cells and immune molecules
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expression of FGF7 in smooth muscle cells was divided 
into FGF7 + SMC and FGF7-SMC, and KEGG metabo-
lite analysis was performed. As shown in Fig.  10C, 
FGF7 + SMC cells were more involved in nicotinic acid 
ester and nicotinamide metabolism, retinol metabolism, 
alanine, aspartic acid and glutamic acid metabolism, and 
glycosaminoglycan biosynthesis-chondroitin sulfate/der-
matan sulfate metabolic pathways than FGF7-SMC cells. 
FGF7 + SMCs showed stronger communication intensity 
in cellular communication, especially for monocyte/mac-
rophage interactions (Fig. 10D and E). Trajectory analy-
sis showed that FGF7 expression decreased gradually as 
smooth muscle cells grew and differentiated (Fig. 10F and 
G).

Discussion
Approximately 2,200 people die from cardiovascular 
disease (CVD) each day, which translates to about one 
person every 40  s, and annually, more than one million 
individuals experience heart attacks, marking it as a 
global public health issue. Typical symptoms of coronary 
artery disease (CAD) include chest pain and shortness of 
breath during exertion; however, these symptoms alone 
are not definitive for CAD, as most chest pain results 
from musculoskeletal issues [36]. Studies have identified 

age, gender, smoking, and increased cholesterol levels as 
risk factors for the development of CAD [37], yet there 
remains a significant need for molecular biological mark-
ers to predict the occurrence and progression of CAD 
[16, 38]. Advances in sequencing and chip technology, 
along with deeper understanding of CAD’s molecular 
biology, are enabling the use of new molecular mark-
ers for clinical prognostic assessments and personalized 
treatment.

The FGF7 gene encodes keratinocyte growth factor 
7 (KGF), also known as alveolar epithelial growth fac-
tor. This cytokine is crucial for the health and repair of 
various epithelial tissues [39]. In humans, FGF7 primar-
ily acts through its receptors on epithelial cell surfaces to 
regulate biological processes including cell proliferation, 
migration, and differentiation. Additionally, FGF7 is sig-
nificant in smooth muscle cells, which are vital compo-
nents of many organs and tissues such as blood vessels, 
the digestive tract, respiratory system, and reproductive 
system. The roles of FGF7 in these cells largely pertain to 
cell proliferation, migration, and extracellular matrix syn-
thesis [40].

In CAD, research indicates that smooth muscle cells 
are important in the pathogenesis and progression of the 
condition, primarily through three mechanisms: First, 

Fig. 8  Drug sensitivity analysis. (A) PCA plot of samples grouped by the top and bottom thirds of FGF7 expression in CAD patients. (B) Heatmap of dif-
ferentially expressed genes. (C) © Co-expression network of FGF7 and negatively correlated genes. (D) Co-expression network of FGF7 and positively 
correlated genes. (E) Screening of targeted drugs related to differentially expressed genes of FGF7. (F) Network diagram of targeted drugs for differentially 
expressed genes of FGF7 (red represents drugs for positively correlated genes, blue represents drugs for negatively correlated genes)
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within the structure and function of the coronary artery 
wall, such as in atherosclerosis development, smooth 
muscle cells are damaged and activated, contributing 
to the formation and evolution of pathological plaques. 
Second, smooth muscle cells regulate the vasoconstric-
tion and relaxation of the coronary artery. In CAD, 
abnormal activation of these cells can lead to improper 
vasoconstriction, impacting coronary artery hemody-
namics. Lastly, the proliferation and migration of smooth 
muscle cells are crucial for the stability and progres-
sion of atherosclerotic plaques. Following arterial wall 
injury, smooth muscle cells can proliferate and migrate to 
the plaque areas, aiding in plaque formation and repair 
[41–43].

From the single-cell transcription profile of CAD 
myocardium, we initially identified abnormal subsets of 
smooth muscle cells and analyzed their functions. These 
cells were predominantly enriched in tissue regeneration 
and myelination pathways. Notably, tissue stem cells and 
chondrocytes were found to have the potential to differ-
entiate into smooth muscle cells. Differential analysis and 
WGCNA were conducted to identify CAD-index-related 
hub genes in smooth muscle cells, including WNT5A, 
FGF7, SOX9, CXCL12, MMP2, TGFB2, TBX3, GATA4, 
NTRK1, MSX2, AGT, WT1, ACE2, L1CAM, and 
NRXN1. The average C -index in machine learning was 
around 0.6, confirming the relatively significant role these 
hub genes play in predicting CAD onset. Subsequently, 
from the biological link between T2DM and CAD, we 

Fig. 9  CeRNA network of FGF7. (A) Network diagram showing interactions between FGF7, miRNAs, and LncRNAs. (B) miRNA targets of FGF7 intersecting 
in miRNet and miRTaRBase databases. (C) Key ceRNA network obtained using cytoHubba software
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pinpointed a key gene, FGF7, which is crucial for both 
conditions.

Our study identified FGF7 as a risk factor for the devel-
opment of coronary artery disease (CAD), showing a 

correlation coefficient of 0.24 (p = 0.01) and elevated 
expression in Type II diabetes mellitus (T2DM) com-
pared to normal subjects (logfc > 0.3, p < 0.05). Immu-
noassay results in CAD samples indicated that FGF7 

Fig. 10  functional verification FGF7. (A-B) MR analysis of Hub gene in CAD and Diabetic diseases. (C) Differential bubble diagram of FGF7 expression and 
metabolites of smooth muscle cells in CAD. (D)FGF7 expression and signal molecule interaction bubble diagram of smooth muscle cells in CAD. (E) The 
network map of interaction intensity between FGF7 expression of smooth muscle cells and other cells in CAD. (F) The expression trend of FGF7 along with 
the growth and differentiation of smooth muscle cells. (G) The expression of model genes with the growth and differentiation of smooth muscle cells
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expression negatively correlated with the infiltration of 
CD4 + T cells, CD8 + T cells, NK cells, and other immune 
killer cells, suggesting that FGF7 may promote CAD 
development by inhibiting immune cell recruitment. 
Drug sensitivity analysis identified key drugs that can 
affect FGF7-related targets, including the thrombolytic 
drug Alteplase, and the proteasome inhibitors Bortezo-
mib and Carfilzomib.

Further, we predicted upstream targets of FGF7, con-
structed ceRNA networks, and identified significant 
miRNA targets including hsa-miR-15a-5p, hsa-miR-373- 
3p, hsa-miR-20a-5p, and hsa-miR-372- 3p that could 
affect FGF7 expression. Analysis also showed that cells 
expressing FGF7 + in smooth muscle (FGF7 + SMC) 
had stronger interaction intensities with other cells 
and decreased expression as smooth muscle cells grew 
and differentiated. Metabolic analysis indicated that 
FGF7 + SMC cells were more enriched in pathways such 
as nicotinic acid ester and nicotinamide metabolism, 
retinol metabolism, and alanine, aspartate, and glutamate 
metabolism than FGF7-SMC cells.

Despite its significance and impact, this study has 
several limitations. ①This study mainly relied on bioin-
formatics analysis and transcriptome data in public data-
bases, which may limit the comprehensiveness of the data 
and the depth of experimental verification. ②Although we 
have screened out FGF7 gene through Various bioinfor-
matics methods, the specific mechanism of action of the 
gene in CAD and type II diabetes has not been fully veri-
fied in experiments. ③We have identified drugs that may 
affect the expression of the FGF7, but the clinical efficacy 
and safety of these drugs have not yet been verified in 
large-scale clinical trials. ④This study only used com-
mon bioinformatics analysis methods to mine common 
targets for CAD and type 2 diabetes. The single research 
method may lead to single analysis results. Future studies 
should aim to overcome these limitations by expanding 
sample sources, improving data analysis methods, and 
strengthening experimental validation, thus providing 
more robust support and guidance for CAD research and 
clinical practice.

Conclusions
In conclusion, our study demonstrates that FGF7 expres-
sion is reduced in CAD and exhibits a positive correlation 
with CADi. Additionally, FGF7 expression level emerges 
as a significant feature in our machine learning models. 
We found that FGF7 expression is linked to the activity of 
immune killer cells and sensitivity to statins. Moreover, 
the regulation of FGF7 expression may be influenced by 
miRNAs and LncRNAs. Thus, FGF7 plays a role in the 
pathophysiology of CAD and holds potential therapeutic 
value.
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