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Abstract
Strategies for discovering commonmolecular events among disparate diseases hold promise

for improving understanding of disease etiology and expanding treatment options. One tech-

nique is to leverage curated datasets found in the public domain. The Comparative Toxicoge-

nomics Database (CTD; http://ctdbase.org/) manually curates chemical-gene, chemical-

disease, and gene-disease interactions from the scientific literature. The use of official gene

symbols in CTD interactions enables this information to be combined with the Gene Ontology

(GO) file from NCBI Gene. By integrating these GO-gene annotations with CTD’s gene-dis-

ease dataset, we produce 753,000 inferences between 15,700 GO terms and 4,200 diseases,

providing opportunities to explore presumptive molecular underpinnings of diseases and iden-

tify biological similarities. Through a variety of applications, we demonstrate the utility of this

novel resource. As a proof-of-concept, we first analyze known repositioned drugs (e.g., raloxi-

fene and sildenafil) and see that their target diseases have a greater degree of similarity when

comparing GO terms vs. genes. Next, a computational analysis predicts seemingly non-intui-

tive diseases (e.g., stomach ulcers and atherosclerosis) as being similar to bipolar disorder,

and these are validated in the literature as reported co-diseases. Additionally, we leverage

other CTD content to develop testable hypotheses about thalidomide-gene networks to treat

seemingly disparate diseases. Finally, we illustrate how CTD tools can rank a series of drugs

as potential candidates for repositioning against B-cell chronic lymphocytic leukemia and pre-

dict cisplatin and the small molecule inhibitor JQ1 as lead compounds. The CTD dataset is

freely available for users to navigate pathologies within the context of extensive biological pro-

cesses, molecular functions, and cellular components conferred by GO. This inference set

should aid researchers, bioinformaticists, and pharmaceutical drugmakers in finding common-

alities in diseasemechanisms, which in turn could help identify new therapeutics, new indica-

tions for existing pharmaceuticals, potential disease comorbidities, and alerts for side effects.
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Introduction
Manual curation of the scientific literature helps standardize, harmonize, and organize dispa-
rate data into a structured format, making it more manageable and computable for analysis [1–
2]. Biocurators for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/)
review environmental health and other peer-reviewed literature and manually code a core set
of chemical-gene, chemical-disease, and gene-disease interactions using controlled vocabular-
ies and structured notation [3–5]. In 2013, CTD collaborated with Pfizer scientists to manually
curate 88,000 articles for interactions between 1,500 therapeutic drugs and their diseases [6].
This collaboration enhanced the scope of CTD information beyond environmental chemicals,
and highlighted the goal of understanding chemical toxicity for both environmental health sci-
entists and pharmaceutical drug developers.

To great effect, CTD has utilized data integration to transfer knowledge [7] and generate
predictive inferences between different types of curated data [8–9]: if chemical A interacts with
gene B, and independently gene B is associated with disease C, then chemical A can be inferred
to have a relationship with disease C (via gene B). Integrating CTD’s three core data types
(chemical-gene, chemical-disease, and gene-disease) yields chemical-gene-disease inferences
that can be statistically evaluated and ranked [10]. This method of knowledge transfer can be
used for any type of data, including Gene Ontology (GO) annotations.

The GO is an independent annotation resource of controlled vocabularies used by biocura-
tors to characterize a gene product’s molecular function (GO-MF), cellular component
(GO-CC), and biological process (GO-BP) [11]. While CTD biocurators do not annotate genes
with GO terms, each month CTD imports the official file of updated GO-gene annotations
from NCBI Gene [12] and displays them on “GO” data-tabs for each CTD Gene page as well as
on dedicated CTD GO page. These imported GO-gene annotations help describe the functions,
processes, and localizations of genes associated with chemicals and diseases in CTD.

GO annotations can also be used for data integration. Previously, we integrated GO-gene
annotations with CTD’s gene-chemical interactions to yield GO-chemical inferences [13].
Here, we describe the value of integrating GO-gene annotations with CTD’s curated gene-dis-
ease data (in a chemical-independent manner) to produce novel GO-disease inferences. Thus,
if gene A is annotated to biological process B (by a GO biocurator), and gene A is indepen-
dently curated to disease C (by a CTD biocurator), then integration of these two datasets gener-
ates an inferred relationship between biological process B and disease C (via gene A). These
inferences provide a unique way to compare diseases, since they expand beyond analyzing gene
sets, and instead cast a wider net by comparing broader biological concepts like activities and
processes. We provide several examples of how these data can be used by investigators for
insight into understanding and comparing disease mechanisms, disease predictions, and possi-
ble therapeutic repositioning. Over 753,000 inferences connecting 15,700 GO terms to 4,200
diseases are now freely available through the CTD web site.

Materials and Methods

CTD’s GO-disease data file
CTD is updated monthly (http://ctdbase.org/about/dataStatus.go). Analysis was derived from
data available in CTD in October 2015 (public web application version 14384). Each month,
CTD imports and integrates GO-gene annotations from the NCBI using the gene2go file. All
Eumetazoa-based species annotations, citing specific evidence codes, and associated with genes
included in CTD’s subset of NCBI Gene [12], are incorporated into CTD. GO-disease infer-
ences are generated via shared gene sets between these direct GO-gene annotations from NCBI
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and CTD’s directly curated gene-disease relationships. CTD’s GO-disease inferences are freely
available as downloadable files (http://ctdbase.org/downloads/#godiseasegenes). Prior to subse-
quent analysis, files were processed to remove three GO parent term placeholders used by
external databases: “molecular_function” (GO:0003674), “biological_process” (GO:0008150),
and “cellular_component” (GO:0005575).

CTD analysis tools
CTD provides a suite of web-based, user-friendly analysis tools (http://ctdbase.org/tools/). This
report uses:MyVenn (http://ctdbase.org/tools/myVenn.go); VennViewer (http://ctdbase.org/
tools/vennViewer.go); Batch Query (http://ctdbase.org/tools/batchQuery.go); and Set Analyzer
(http://ctdbase.org/tools/analyzer.go). All tools are freely available, and have been described
previously [4,13].

Inferred GO-CC analysis
GO-CC terms were queried using CTD to collect diseases for each specific GO-CC term as well
as to any descendent GO-CC term. The collection was filtered to generate unique lists of dis-
eases. GO-CC query terms included: “nucleus” (GO:0005634), “mitochondrion”
(GO:0005739), “endoplasmic reticulum” (GO:0005783), “Golgi apparatus” (GO:0005794), and
“plasma membrane protein complex” (GO:0098797). The 1,178 diseases associated with mito-
chondrion were binned into 37 generic disease categories using CTD’s MEDIC disease vocabu-
lary slim list [5].

Inferred GO-MF analysis
The “GO-Disease molecular function associations” file was sorted to collect all inferred
GO-MF terms associated with the top six neoplasms described in the Results: prostate, breast,
stomach, lung, hepatocellular carcinoma, and colorectal. CTD’sMyVenn tool was used to find
the inferred GO-MF subset common to all six cancers. Genes directly associated with the neo-
plasms were compared using CTD’s VennVeiwer tool to discover six genes in common. The 86
GO-MF terms annotated to these six genes were collected using CTD’s Batch Query tool.

Inferred GO-BP analysis
Historical information for the selected repositioned pharmaceuticals was collected from
Drugs@FDA (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm). CTD’s
“GO-Disease biological process associations” file was sorted to collect GO-BP terms inferred to
disease targets for each repositioned drug. Since CTD’s MEDIC disease vocabulary is hierarchi-
cal [5], we collected data curated to the parent disease term plus data curated to any descendent
(i.e., disease sub-type). For example, in the analysis of raloxifene, we combined GO-BP terms
and genes directly annotated to “osteoporosis” (MESH:D010024) as well as disease sub-types,
such as “osteoporosis, postmenopausal” (MESH:D015663). This insured the most accurate
comparison for drug targets. A complete list of the diseases, inferred GO-BP terms, and direct
genes used for these analyses is provided in S1 File. The disease-pair matrix was created for the
4,258 diseases with 10,640 GO-BP inferences to compare the number and profile of genes and
inferred GO-BP terms shared between any two pairs of diseases (A and B). The matrix was cre-
ated computationally using a process to extract all curated disease-gene associations from
CTD’s “Gene-disease associations” file (http://ctdbase.org/reports/CTD_genes_diseases.tsv.gz)
and all GO-BP term-disease inferences from CTD’s “GO-Disease biological processes associa-
tions” file (http://ctdbase.org/reports/CTD_Disease-GO_biological_process_associations.tsv.
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gz). Each disease with one or more inferred GO-BP terms was compared to every other disease
to compute the number of associated genes (for each disease A and B), the intersection of asso-
ciated genes (between disease A and B), the number of associated GO-BP terms (for each dis-
ease A and B), and the intersection of associated GO-BP terms (between disease A and B). The
matrix compilation was loaded to a PostgreSQL database for further manipulation. SQL-based
queries were run against this database to retrieve data described in the text. Similarity indices
were computed for disease-pairs involving bipolar disorder using the Jaccard method, as previ-
ously described [14]. This index was calculated as the number of intersecting inferred GO-BP
terms for diseases A and B divided by the union of inferred terms for A and B. We compared
the top 20 ranked results against the DiseaseComps publicly available in CTD for bipolar disor-
der via shared gene associations.

Statistics
For repositioned pharmaceuticals, the significance of overlap among inferred GO-BP terms for
disease-pairs were evaluated by computing 2x2 contingency tables and applying the hypergeo-
metric distribution in R 3.2.1 (http://www.r-project.org). For the three diseases influenced by
lithium, Pearson’s Chi-square test in R was used to determine the significance of overlap
among inferred GO-BP terms for the three diseases. Contingency tables are provided in S2
File.

Results and Discussion

Inferred GO-disease relationships from CTD
CTD contains 32,260 directly curated gene-disease interactions between 7,950 genes and 4,958
diseases. Additionally, CTD imports and displays 1,155,024 gene-GO annotations from NCBI
Gene [12]. GO-disease inferences are computationally generated at CTD through data integra-
tion (Fig 1A and 1B). The inferences can be viewed on the “Diseases” data-tab at any GO page
in CTD (http://ctdbase.org/voc.go?type=go). Since GO is a hierarchy, disease inferences are
subsumed to parent terms; for example, the GO term “apoptotic process” (GO:0006915) dis-
plays all diseases inferred to that specific GO term as well as to descendents of that term, such
as “activation-induced cell death of T cells” (GO:0006924). This structure allows users to easily
find all data associated with any GO domain as well as drill down to more granular GO terms
to refine the specificity and associated data retrieved. We have now formatted all of these com-
puted GO-disease inferences into structured files that are freely available from the “Data
Downloads” page (http://ctdbase.org/downloads/) for the three branches: GO-CC, GO-MF,
and GO-BP (Fig 1C). Currently, the files contain 753,346 inferences between 15,707 GO terms
and 4,277 diseases, inferred by 6,766 genes (Table 1). GO-BP has the greatest number of associ-
ated inferences since, on average, genes tend to be annotated with more GO-BP than GO-MF
or GO-CC terms. The top 10 diseases with the greatest number of inferred GO terms include
six cancers, autism, hypertension, glomerulonephritis, and peripheral nervous system diseases
(Table 2).

Below we demonstrate some of the many ways investigators can utilize this free resource to
explore and address disease mechanisms from the perspectives of cellular components, molec-
ular functions, and biological processes.

Exploring diseases from GO-CC perspective
Based upon inferred GO-CC terms in CTD, diseases can be mapped to cellular locations (Fig
2A). This unconventional way of presenting and exploring pathologies can uniquely pinpoint
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interesting features, such as the 778 diseases inferred to protein complexes on the plasma mem-
brane, which could have implications on drug targeting. The 1,178 diseases related to the mito-
chondrion can help expand and inform the compendium of known mitochondrial pathologies
[15]. Towards that end, we classified the 1,178 mitochondrial-associated disorders into generic

Fig 1. GO terms inferred to diseases via gene inference networks. (A) The "Diseases" data-tab on CTD’s webpage for the GO-BP term “G-protein
coupled receptor signaling pathway” lists human pathologies inferred to this GO term, including a connection to obesity made by an inference network of
22 genes (red double arrow). (B) A schematic outlines how this GO term is directly annotated to these 22 genes (by external databases) which, in turn,
have also been directly associated with obesity independently by CTD biocurators from the literature, allowing the GO term to be inferred (dotted black
arrow) to the disease. (C) The files for "GO-Disease-Gene Inference Networks" are freely available from CTD's "Data Downloads" page and can be
retrieved in a variety of formats.

doi:10.1371/journal.pone.0155530.g001

Table 1. CTD data content for GO terms inferred to diseases.

Inference set No. inferences No. GO terms No. diseases No. genes

GO-BP to disease 539,120 10,640 4,258 6,570

GO-MF to disease 123,680 3,753 4,187 6,320

GO-CC to disease 90,546 1,314 4,254 6,500

Total 753,346 15,707 4,277 6,766

doi:10.1371/journal.pone.0155530.t001

GO-Disease Inferences at CTD

PLOSONE | DOI:10.1371/journal.pone.0155530 May 12, 2016 5 / 19



disease categories using CTD’s MEDIC ‘slim list’ [16] to reveal the types of diseases that map
to this organelle (Fig 2A). Ranked the most abundant (14% total) were nervous system diseases,
a recognized pathology of several mitochondrial defects [17], followed by genetic inborn dis-
eases (12% total) and metabolic diseases (10% total), which are consistent with the mitochon-
drion being a maternally inherited metabolic workhorse of the cell; cancers are ranked fourth
(8% total), providing information that could be helpful for expanding the field of mitochon-
drion-targeted cancer therapies [18].

As well, users can leverage CTD’s GO-CC inferences to develop new visualization tools. For
example, a schematic cell populated with CTD’s inferred GO-CC localizations would produce
a scalable atlas that allows scientists to take a virtual tour of the cell and explore the disease
landscape in unprecedented ways. Zooming features would allow users to see annotations at
specific intracellular sites, such as the 13 diseases currently inferred to the specific “ER-mito-
chondrion membrane contact site” (GO:0044233) or the nine diseases associated with “RNA
polymerase II transcription repressor complex” (GO: 0090571) found within the nucleus.

Exploring diseases from GO-MF perspective
One potential untapped use of CTD information is in the burgeoning field of drug reposition-
ing (or repurposing): the process of finding a new therapeutic use for a previously tested or
approved pharmaceutical [19]. A variety of different bioinformatics and computational
approaches have been adopted and merged to identify candidates for drug repositioning,
including gene expression arrays, chemical structure similarities, and protein-protein interac-
tion maps [20–24].

CTD’s inferred GO terms that are shared between different diseases are a type of ‘big data’
[25] that also could be exploited in this endeavor. For example, analysis of the inferred GO-MF
terms associated with the top six cancers (Table 2) reveals a shared subset of 210 molecular
functions (Fig 2B). This commonality is not entirely due simply to overlapping genes. In fact,
only six genes (CCND1, EGFR, PIK3CA, PTGS2, TP53, and TYMS) are common to all six can-
cers, accounting for 84 of the GO-MF terms (40%), whereas the remaining 126 shared GO-MF
terms (60%) derive from discrete disease-specific gene sets. Of these 126 common terms, only
15 (12%) describe broad, generic functions (as defined by their low granularity level positions
of 1 or 2 in the GO hierarchy; S3 File), such as “catalytic activity” (GO:0003824; level 1) and
“oxygen binding” (GO:0019825; level 2). The remaining GO terms, however, are more granular
and include 22 terms (17%) at GO level 3, 39 terms (31%) at level 4, and 50 terms (40%) at the

Table 2. Diseases with the greatest number of inferred GO terms (via number of genes).

Disease No. inferred GO-BP terms (via
genes)

No. inferred GO-CC terms (via
genes)

No. inferred GO-MF terms (via
genes)

Total (via
genes)

Prostatic neoplasm 4,142 (468) 493 (479) 1,136 (465) 5,771 (482)

Breast neoplasm 4,010 (411) 403 (396) 930 (398) 5,343 (420)

Stomach neoplasm 3,103 (272) 386 (278) 731 (273) 4,220 (279)

Lung neoplasm 2,997 (178) 284 (174) 679 (172) 3,960 (178)

Hepatocellular carcinoma 2,854 (217) 311 (217) 805 (215) 3,970 (219)

Autistic disorder 2,805 (234) 317 (232) 641 (226) 3,763 (235)

IGA glomerulonephritis 2,752 (411) 429 (425) 983 (409) 4,164 (432)

Hypertension 2,752 (177) 265 (177) 636 (177) 3,653 (177)

Colorectal neoplasm 2,733 (219) 315 (216) 671 (213) 3,719 (220)

Peripheral nervous system
diseases

2,696 (276) 344 (277) 717 (274) 3,757 (283)

doi:10.1371/journal.pone.0155530.t002
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Fig 2. Exploring diseasemechanisms from a GO perspective. (A) Using inferred GO-CC data, the number of diseases (red
numbers) can be associated with cellular locations, providing an additional level of information for potential, druggable targets.
Interactive cell maps can be annotated with these inferences to allow navigation and exploration. The 1,178 diseases mapping to
the mitochondrion (boxed arrow) were clustered to MEDIC disease categories (pie chart), and the top four categories are
highlighted: nervous system diseases (N), genetic inborn diseases (G), metabolic diseases (M), and cancers (C). (B) The
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higher levels 5 through 9 (S3 File). These more specific terms may help to identify targetable
molecular functions, such as “ubiquitin protein ligase activity” (GO:0061630; level 5), “serine-
type endopeptidase inhibitor activity” (GO:0004867; level 6), and “androgen receptor binding”
(GO:0050681; level 7). Such an analysis suggests that strict reliance on common genes when
comparing diseases might belie biological similarity that exists at the functional level.

Exploring diseases from GO-BP perspective: proof-of-concept
Comparing the inferred GO-BP terms (rather than individual gene sets) associated with two
diseases casts a wider net to identify overlaps between shared biological processes. This infor-
mation can also be used to detect previously unrecognized commonalities between disparate
diseases to discover potential new disease targets for existing pharmaceuticals, identify possible
comorbidities for known diseases, and discern potential side effects for therapeutics.

As a proof-of-concept, we performed a side-by-side comparison of shared inferred GO-BP
terms vs. shared genes for the disease targets of three well-known, repositioned therapeutics:
raloxifene, thalidomide, and sildenafil (Fig 3). For all three cases, the percent overlap of
inferred GO-BP terms was greater than that for their shared genes.

Raloxifene was originally used to treat types of osteoporosis [26], but it has since been suc-
cessfully used for treatment of specific incidences of invasive breast cancer [27]. These diseases
share only nine genes, but have a total of 929 inferred GO-BP terms in common. Of these
GO-BP terms, 500 (54%) derive from the shared genes, whereas the remaining 429 GO-BP
terms (46%) derive from distinct genes. Osteoporosis and breast cancer appear to have a higher
degree of biological similarity based on common biological processes vs. individual genes (Fig
3).

Sildenafil, originally developed as an anti-angina therapeutic by Pfizer, had the surprising
side effect of penile enlargement in volunteers during phase 1 clinical trials, and has since been
successfully re-marketed as Viagra for erectile dysfunction [28]. Thalidomide was initially used
as a sedative for pregnant mothers in the late 1950s, but had disastrous teratogenic conse-
quences to developing babies and was quickly removed from the market [29]. However, in
1965 it was serendipitously found to improve leprosy [30], and now its anti-angiogenesis prop-
erties [31] are recognized as a powerful weapon against tumor development, leading to the
repositioning of the drug as a successful treatment for several types of cancer, most notably
multiple myeloma [32]. Both thalidomide and sildenafil are examples of repositioned pharma-
ceuticals where their primary and secondary disease targets currently have no common genes
in CTD (Fig 3). Interestingly, however, the diseases treated by these pharmaceuticals overlap
with respect to inferred GO-BP terms (11–33% for the thalidomide disease targets and 20–29%
for sildenafil targets), suggesting that shared processes and pathways (and not necessarily
shared genes) can still provide important insight for drug re-evaluation.

Finally, a fourth example supports a potential rationale for common treatments of type 2
diabetes and Alzheimer disease (AD). A compelling epidemiological and mechanistic link
(focused on insulin and glucose) between these two seemingly disparate diseases has been
recently recognized in the literature [33–35], with some investigators now referring to AD as
“type 3 diabetes” [36]. The possibility to treat AD with a repurposed, existing diabetes medica-
tion is intriguing. Again, CTD provides data suggesting a greater degree of biological overlap
based on common GO-BP terms, as opposed to gene sets, for these two pathologies (Fig 3).

inferred GO-MF terms (blue numbers) for six cancers (red circles) share a subset of 210 molecular functions (blue box), providing
core molecular activities informing commonmechanisms of cancer.

doi:10.1371/journal.pone.0155530.g002
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Exploring diseases from GO-BP perspective: computational generation
of disease-pairs
Based on our examples above, we next developed a computational process to identify compara-
ble diseases using shared inferred GO-BP terms. As noted, in CTD there are currently 4,258
diseases with 10,640 inferred GO-BP terms (Table 1). We systematically compared these 4,258
disease terms against each other to calculate the percent overlap for shared curated genes vs.
shared inferred GO-BP terms for each disease-pair. This resulted in a matrix of 9,063,154 dis-
ease-pair combinations. When analyzed for the greatest number of shared genes and/or
inferred GO-BP terms, the top 100 disease-pairs almost exclusively corresponded to cancer-
related associations: “adenocarinoma-lung neoplasms”, “breast neoplasms-lung neoplasms”,

Fig 3. The potential for shared GO-BP terms vs. shared genes to better inform the repositioning of pharmaceuticals. Three repositioned
therapeutics are shown (blue ovals) with their initial disease target (red) and their subsequent new indication (green), with FDA approval/patent dates
listed. The fourth example (orange oval) is purely hypothetical for a presumptive therapeutic that treats both type 2 diabetes and Alzheimer disease,
based upon the extensive amount of shared GO-BP terms. Venn diagrams show there is a greater amount of overlap for inferred GO-BP versus directly
curated genes for the disease-pairs for each drug, including two therapeutics (thalidomide and sildenafil) for disease-pairs that do not share any genes,
but do share inferred GO-BP terms. Venn circles and percentages are color-coded to match targeted diseases in each example; significance of overlaps
is defined by p-values.

doi:10.1371/journal.pone.0155530.g003
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“neoplasm invasiveness-neoplasm metastasis”, “breast neoplasms-prostate neoplasms”, etc.
This is likely due not only to an inherent underlying similarity for these diseases, but also to the
fact that cancer is the most directly curated disease in CTD [16], and as more genes are curated
to neoplasms, this highly interconnected “cancer network” will continue to grow. While these
cancer disease-pairs are still informative (especially with respect to understanding disease etiol-
ogy and exploring potential new treatment options), we were curious to see what predictions
might still emerge from our analysis by testing the system further. Towards that end, we added
arbitrary filters to reduce the prevalence of already-known disease connections that were popu-
lating the top hits due to overwhelming shared genes (and, consequently, their shared inferred
GO terms).

Two filters were applied to reduce the matrix size. First, to avoid the confounding issue of
shared inferred GO-BP terms being due to shared curated genes, we filtered the matrix to only
disease-pairs that did not have any curated genes in common. This reduced the matrix to
4,778,760 disease-pairs with one or more inferred GO-BP terms in common. Next, we
restricted the dataset to disease-pairs wherein each disease (A and B) had 10 or more directly
curated (but discrete) genes, and the number of discrete genes curated to the two diseases had
to be within 10% of each other. Thus, if disease A had 50 curated genes associated with it, then
disease B had to have 45–55 directly curated (but distinct) genes associated with it. This arbi-
trary second filter was to help ensure that the two diseases being compared had a similar scope
of curated content, and removed comparisons between well-characterized diseases (that might
have hundreds of associated genes) with lesser-studied diseases (that might have only a few
associated genes). This reduced the matrix to 2,457 disease-pairs (S4 File; distribution analysis
in S5 File). The overlap of inferred GO-BP terms for these 2,457 disease-pairs identified a vari-
ety of pathologies exclusively on the basis of shared inferred GO-BP terms rather than specific
genes using the strict filters outlined above (Fig 4). Some of the disease-pairs with the greatest
percentage of inferred GO-BP overlap include “brain neoplasms-chronic obstructive pulmo-
nary disease”, “cardiomyopathies-contact dermatitis”, and “ulcerative colitis-coronary artery
disease”, the latter of which has been recently confirmed in the literature [37]. Our method
(using the two filters) represents just one of the many diverse ways that investigators can sort
CTD’s new “GO-Disease-Gene Inference Network” files to explore mechanisms and function-
ality to make connections between seemingly heterogeneous pathologies. Other more relaxed
filtering strategies might permit genes to be shared between the diseases (to boost the similarity
measurement between the disease-pairs), or remove the mandate that there be an arbitrary
10% range between the numbers of genes associated with each curated disease-pair. These
could also provide informative, productive results, as seen in the post hoc analysis of the
already known repositioned pharmaceuticals (Fig 3). Each investigator should design the most
suitable way to interpret, sort, analyze, and explore the disease connections that best fit their
research objectives.

Previously, we reported a computational process that ranks comparable diseases (“Disease-
Comps”) based upon the number of shared genes using a Jaccard-based similarity index [14].
We employed this same statistical method here to generate similarity indices for ranking our
matrix of disease-pairs based upon the number of shared inferred GO-BP terms (in the absence
of shared genes). This strategy provides a unique, complementary approach to finding related
diseases via the standard method of using shared gene lists. Here, we use bipolar disorder as an
example of how this technique provides insights into disease mechanisms. We computed simi-
larity indices for diseases related to bipolar disorder based upon the number of shared inferred
GO-BP terms. One of the top comparable diseases (based on 236 shared inferred GO-BP terms
and no shared genes) was substance-induced psychoses (Fig 5B), which is redolent of psychotic
disorders, the top comparable disease found via 9 shared genes (Fig 5A). Interestingly, many of
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the other comparable diseases found exclusively using inferred GO-BP terms (Fig 5B) were
recently confirmed in the literature as comorbidities or medical conditions in bipolar patients,
including learning disorders [38], stomach ulcers [39], epilepsy [40], and atherosclerosis with
cardiovascular diseases [41], further validating this approach.

Conserved disease mechanisms might not necessarily translate to shared therapies but may
help to explain unintended side effects that share biological mechanisms modulated by a drug.
In this regard, the same methods could be equally useful in predicting alerts for potential side
effects from target treatment. For example, chronic kidney failure and diaphragmatic hernia
were predicted to share similarities with bipolar disorder (Fig 5B). Both of these conditions
have been reported as adverse side effects of lithium [42–43], the most common treatment for

Fig 4. Discovering comparable diseases via shared inferred GO-BP terms. There are 2,457 disease-pairs (blue dots) that do not share any genes,
but do share inferred GO-BP terms. The percentage of overlap between inferred GO-BP terms for disease A (red, x-axis) is graphed against those of
disease B (green, y-axis) to find heterogeneous diseases that are comparable to each other based exclusively on shared biological processes (and no
shared genes). A set of 14 disease-pairs with a high amount of shared overlap for both diseases is indicated (orange dotted box). As an example,
ulcerative colitis (disease A, red) has no genes in common with coronary artery disease (disease B, green), but the two share 398 inferred GO-BP terms,
graphed as 37% for ulcerative colitis and 38% for coronary artery disease. Disease abbreviations: COPD (chronic obstructive pulmonary disease), BCLL
(B-cell lymphocytic leukemia), NAFLD (non-alcoholic fatty liver disease). Note: many disease-pairs have the same coordinates (rounded to 2-digits), and
thus appear as only a single dot on the graph.

doi:10.1371/journal.pone.0155530.g004
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bipolar disorder. Analysis of shared inferred GO-BP terms for these three seemingly heteroge-
neous diseases identified a subset of 231 common processes (Fig 6). Contextual knowledge of
either these common processes or processes unique to these disorders could provide important
insight into the mechanisms that would explain why lithium is an effective treatment for bipo-
lar disease, but also leads to adverse outcomes of kidney failure or hernia.

Leveraging additional CTD content to generate testable hypotheses
Investigators can use GO-disease inferences in conjunction with CTD curated content in a
variety of applications to construct testable hypotheses about the molecular mechanisms of
diseases.

First, CTD content can elucidate how a drug might treat two seemingly unrelated diseases
(with no shared genes but shared inferred GO-BP terms). For example, thalidomide is used to
treat both leprosy and multiple myeloma. Although these two diseases do not share any genes
in CTD, they do have many shared inferred GO-BP terms (Fig 3), suggesting a potential com-
mon underlying mechanism. There are several possible explanations as to how a chemical
could affect two diseases that have no shared genes. The most obvious is a ‘knowledge gap’,
where the complete set of genes involved in both diseases is not yet known. Other possibilities
are that the drug might target multiple gene products, or that the disease-specific gene sets
might overlap in a molecular network that can be modulated by the same chemical. To test the
latter possibility, we analyzed the 12 genes associated with leprosy (S1 File) and the 31 genes
associated with multiple myeloma (S1 File) using CTD’s Set Analyzer tool to look for common
gene-gene interactions shared between the two sets (Fig 7A). Leveraging this additional infor-
mation in CTD revealed that one of the leprosy-associated genes (PARK2) physically interacts

Fig 5. Complementary approaches to discovering comparable diseases. Bipolar disorder is used as a test case to find comparable diseases
(DiseaseComps) via two methods. (A) One of CTD’s current methods uses shared genes to compute a statistical similarity index that ranks comparable
diseases, and includes psychotic disorders as the top hit for bipolar disorder (green box). (B) An alternative, complementary approach is to use only
shared inferred GO-BP terms to find similar diseases that share biological processes (without sharing genes). Here, substance-induced psychoses
(green box) is highly scored and redolent of psychotic disorders found using genes (connecting green arrow). Interestingly, other heterogeneous
pathologies (red boxes) predicted to be comparable to bipolar disorder have been verified in the recent literature (see text).

doi:10.1371/journal.pone.0155530.g005
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with four genes associated with multiple myeloma (BCL2, BCL2L1, MCL1, and PRAME), pro-
viding a potential molecular nexus through which thalidomide could act on both diseases (Fig
7B). Furthermore, the curated chemical-gene interactions for thalidomide in CTD (Fig 7C)
indicate that this drug decreases the expression of three of these genes (BCL2, BCL2L1, and
MCL1), providing a testable hypothesis as to how one chemical could influence two diseases
that currently share no genes but do share inferred GO-BP terms.

Second, CTD content can help inform the process of drug repositioning by detecting com-
mon molecular events. As an example, one of the top disease-pairs from Fig 4 is “B-cell chronic
lymphocytic leukemia (BCLL)–neuroblastoma”. These two diseases do not share any genes,
but do overlap with 320 inferred GO-BP terms (Fig 8E), suggesting a common molecular
underpinning between the two different cancers, and supporting the hypothesis that drugs that
treat one disease might be reasonable candidates for repositioning as a treatment for the other

Fig 6. Potential biological processes-of-action for lithium. The drug lithium is a common therapeutic (T) for bipolar disorder (green arrow), but chronic
use in patients has also been reported to cause (M) adverse reactions, such as kidney failure and congenital diaphragmatic hernia (red arrows).
Assuming the drug works through modulation of biological processes (gray cloud), we used Venn analysis to compare the number of inferred GO-BP for
these three outcomes (colored circles). Currently, there are 231 inferred GO-BP terms (p < 0.001) shared that might represent some of the critical
biological processes modulated by lithium treatment; a random selection of some of these shared terms is listed (blue subset).

doi:10.1371/journal.pone.0155530.g006
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disease. Using CTD’s VennViewer tool, we retrieved the chemicals that have a therapeutic rela-
tionship to these diseases (Fig 8A and 8B). Two of the chemicals (arsenic trioxide and cyclo-
phosphamide) were curated from the literature as potential therapies for both diseases in CTD
(Fig 8B, Venn intersection, blue arrow). Since BCLL and neuroblastoma significantly overlap
with respect to inferred GO-BP terms, the 39 chemicals currently associated with neuroblas-
toma (Fig 8B, green Venn subset) are potential candidates to also treat BCLL. We leveraged the
additional curated content in CTD to help prioritize these 39 chemicals. Using the VennViewer
tool again, we found that arsenic trioxide interacts with 2,785 genes, cyclophosphamide inter-
acts with 637 genes, and the two chemicals overlap with respect to 277 shared genes with

Fig 7. Leveraging CTD content to build a molecular nexus. (A) Leprosy and multiple myeloma (MM) are both treated by the drug thalidomide, but the
diseases do not currently share any genes in CTD. CTD’s Set Analyzer tool can be used to determine whether the disease-specific gene sets function in a
common pathway by: selecting “Genes” (top arrowhead), entering the non-overlapping 43 gene symbols for the two diseases, and then selecting
“common gene-gene interactions” (bottom arrowhead). (B) The resulting interaction network can be customized as a graph using the “Pathway View”
icon; genes are displayed as circles and their genetic interactions are represented as gray lines. Here, the graph reveals that one leprosy-specific gene
(PARK2; red circle) physically interacts with four MM-specific genes (BCL2, BCL2L1, MCL1, and PRAME; green circles with orange borders). Note: for
simplicity, only the relevant genes are shown in the interaction network. (C) Leveraging the curated chemical-gene interactions found on CTD’s page for
“Thalidomide” (upper right-hand screenshot) reveals that the drug decreases the expression (blue arrows) of three of the genes (BCL2, BCL2L1, and
MCL1) that interact with the leprosy-specific PARK2.

doi:10.1371/journal.pone.0155530.g007
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which they both interact (Fig 8C). Assuming that a therapeutic drug works by interacting with
gene product(s), then this 277-gene set can be leveraged as a molecular milepost to rank the 39
test drugs based upon the extent of their interactions (Fig 8D). Four of the 39 chemicals inter-
act with more than 50% of the 277 genes, prioritizing them as perhaps better initial candidates.
Among this top set are the well-studied platinum-containing cancer drug cisplatin and the
novel compound JQ1 (a small molecule inhibitor of bromodomain-containing proteins) that
has shown promise against a multitude of other diseases, including cancers [44]. Furthermore,

Fig 8. Leveraging CTD content to prioritize drugs for repositioning. B-cell chronic lymphocytic leukemia (BCLL) and neuroblastoma are diseases
that currently do not share any known genes in CTD, but do share 320 inferred GO-BP terms, suggesting molecular similarity (see Fig 4). (A) Diseases
can be compared using CTD’s VennViewer tool by selecting “Disease” analysis (top arrowhead), inputting the two disease terms, choosing to compare
curated chemical associations (middle arrowhead), and adding a filter to retrieve only therapeutic interactions (bottom arrowhead). (B) The resulting Venn
diagram identified two chemicals (arsenic trioxide and cyclophosphamide) that each have a curated therapeutic relationship with both diseases, as well
as 28 chemicals specific to BCLL (which could potentially be repositioned for neuroblastoma; red box), and 39 chemicals specific to neuroblastoma
(which could now be repositioned for BCLL; green box) (C) Arsenic trioxide and cyclophosphamide treat both diseases and both chemicals interact with a
set of 277 genes (blue Venn circles), information which can be leveraged to help rank the test drugs. (D) The 39 therapeutic drugs for neuroblastoma with
potential repositioning towards BCLL (green names on y-axis) were queried in CTD to see howmany of the 277 genes interact with each test drug (x-
axis). Four of the 39 test drugs interact with more than 50% of the 277 genes (blue dotted box). (E) Venn diagrams summarize how BCLL and
neuroblastoma do not currently share any genes in CTD, but do share 320 inferred GO-BP terms (based upon CTD’s new GO-Disease inference
dataset), and that 307 of these 320 GO-BP terms are annotated to the 277-gene set used to rank the test drugs for potential repositioning.

doi:10.1371/journal.pone.0155530.g008
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it is interesting to note that 307 of the 320 (96%) inferred GO-BP terms shared between BCLL
and neuroblastoma from the outset are also directly annotated to the 277-gene set (Fig 8E).

Summary and Future Directions
We describe CTD’s new resource of 753,000 inferences between 15,700 GO terms and 4,200
diseases. This novel dataset (freely available as a downloadable file and integrated into our pub-
lic web application) provides unique insight into identifying common mechanisms of human
diseases, potential drug repositioning, side-effect alerts, and putative comorbidities. We dem-
onstrate the utility of this resource with numerous examples.

Inferred GO-CC terms can be used to map disease concepts to cell regions (such as the 778
diseases inferred to targetable plasma membrane complexes and the 1,178 diseases inferred to
the mitochondrion), and new visualization strategies can use this information to design inter-
active maps to explore pathologies from a sub-cellular viewpoint. Using inferred GO-MF
terms, we identify 126 shared molecular functions for six common cancers, leading to potential
strategies for designing drugs to target multiple tumor types. A computational comparison of
inferred GO-BP terms predicts over 2,400 highly similar disease-pairs based exclusively on
shared GO terms, many of which we later confirmed in the literature. Leveraging curated con-
tent already in CTD, we demonstrate how thalidomide could potentially treat multiple diseases
that currently do not share any known genes, but do significantly overlap with inferred GO-BP
terms. Finally, we illustrate how CTD web-based analysis tools can quickly identify, rank, and
prioritize 39 drugs (that are current treatments for neuroblastoma) as candidates for reposi-
tioning against B-cell chronic lymphocytic leukemia, with cisplatin and JQ1 as two lead
compounds.

Going forward, the extent and content of this dataset will continue to grow with each
monthly update at CTD. Importantly, GO terms are also currently used by CTD biocurators to
curate phenotypes [6] and exposure outcomes in a new exposure module [45]. Thus, the “GO-
to-disease” resource reported here will provide further ways to connect information used by
diverse researchers, allowing seamless data links between GO annotations, inferred diseases,
phenotypes, and exposure science.

Supporting Information
S1 File. Disease and GO term data for repositioned drugs. Inferred GO-BP terms retrieved
for diseases treated by the repositioned drugs raloxifene, thalidomide, sildenafil, and for hypo-
thetical drug against Alzheimer disease and type 2 diabetes.
(XLS)

S2 File. Contingency tables. Contingency tables used to determine the significance of overlap
for Venn diagrams.
(PDF)

S3 File. Inferred GO-MF terms for six cancers. All inferred GO-MF terms for six cancers and
the 210 inferred GO-MF terms shared by all six cancers: breast neoplasms, hepatocellular carci-
noma, colorectal neoplasms, lung neoplasms, prostatic neoplasms, and stomach neoplasms.
(XLS)

S4 File. List of 2,457 disease-pairs and their statistical metrics. The 2,457 disease-pairs with
their individual number of genes, number of overlapping genes, number of inferred GO-BP
terms, and number of overlapping inferred GO-BP terms. Statistical metrics include similarity
indices, unadjusted p-values, and Bonferroni adjusted p-values.
(XLSX)
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