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Experimental and theoretical studies on nanowires have reported
a size-dependence of the Young's modulus in the axial direction,
which has been attributed to the increasing influence of surface
stresses with decreasing wire diameter. Internal interfaces and
their associated interface stresses could lead to similar changes in
the elastic properties. In Kobler et al. [1], however, we reported
results from atomistic calculations which showed for Ag that twin
boundaries have a negligible effect on the Young's modulus.

Here, we present data of density-functional theory calculations
of elastic constants and Young's modulus for defect-free bulk Ag as
well as for bulk Ag containing dense arrays of twin boundaries. It is
shown that rigorous convergence tests are required in order to be
able to deduce changes in the elastic properties due to bulk defects
in a reliable way.
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Specification table
Subject area
 Materials Science

More specific
 Elastic properties of defect-free

subject area
 crystals and with twin boundaries

Type of data
 Tables and graphs

How data was
 Density functional theory calculations

acquired
 using the periodic plane-wave code PWscf

Data format
 Analyzed

Experimental factors
 Not applicable

Experimental
 Not applicable

features

Data source location
 Erlangen, Germany

Data accessibility
 Data are available with this paper
Value of the data
�
 Twin boundaries in bulk Ag have a negligible effect on the Young's modulus.

�
 The importance of rigorous convergence tests in density-functional theory calculations of elastic

properties is shown.

�
 The density of the k-point mesh and the width σ of the broadening scheme, which is used to

determine the occupation numbers, are the most crucial parameters.
1. Computational methods

Density-functional theory (DFT) calculations were carried out with the plane-wave code PWscf of
the Quantum Espresso software package [2], using the Perdew–Burke–Ernzerhof PBE exchange-
correlation functional [3], Vanderbilt ultrasoft pseudopotentials [4] and a plane wave kinetic energy
cutoff of 30 Ry. k-point meshes for Brillouin zone integrations were generated by the Monkhorst–Pack
scheme [5], and the fractional occupation numbers of the electronic states were determined by a
Gaussian broadening [6]. Atomic positions and lattice parameters were relaxed by minimizing the
atomic forces and the stress tensor, with a convergence threshold for the largest residual force and
stress component of 5 meV/Å and 0.1 kbar, respectively.

Bulk second order elastic constants (SOEC) were calculated by finite deformations of the
conventional face-centered cubic (fcc) unit cell with 4 atoms, Cartesian basis vectors and lattice
constant a. The lattice is distorted by applying a small strain ε, which transforms the basis vectors a1,
a2, a3 to the new vectors

ea1; ea2; ea3
� �¼ Iþε

� �
a1; a2; a3ð Þ; ð1Þ

where I is the 3�3 identity matrix. The three independent elastic constants of the cubic lattice C11,
C12 and C44 were determined by using the deformation strains proposed by Mehl et al. [7]:
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The first deformation is a homogeneous volume change, which changes the total energy of the unit
cell by

ΔE xð Þ ¼ 1
2
V0Bx

2þO x3
� �

: ð3Þ
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V0 is the equilibrium volume of the unit cell and B is the bulk modulus. For a cubic lattice B is related
to the elastic constants by

B¼ 1
3
C11þ2C12ð Þ: ð4Þ

The second deformation is a volume conserving orthorhombic strain with energy change

ΔEðxÞ ¼ V0ðC11�C12Þx2þO½x4�; ð5Þ
and the third deformation is a volume conserving monoclinic shear with energy change

ΔE xð Þ ¼ 1
2
V0C44x2þO x4

� �
: ð6Þ

From the bulk modulus B and the difference ΔC ¼ C11�C12 the two elastic constants C11 and C12 are
given by

C11 ¼ Bþ2
3
ΔC and C12 ¼ B�1

3
ΔC: ð7Þ

For all three deformations a series of total energy calculations was performed for a small set of finite strain
values x. The energy values as function of x were fitted to a polynomial and the elastic constants were
determined from the second derivative of the polynomial at the minimum. Specifically, the bulk modulus
B was calculated by varying the lattice constant a between 7.64 Bohr and 8.04 Bohr in steps of 0.04 Bohr,
which corresponds to strain values between �2.4% and þ2.7%. A polynomial of degree 4 was fitted to the
11 data points. The minimum of the curve gives the equilibrium lattice constant, which was used as
starting point for the calculation of C11�C12 and C44. The deformations proposed by Mehl have the
advantage that the energy is an even function of the strain x. Thus, only positive values for x have to be
considered. For the calculation of C11�C12 the strain parameter x was changed between 0 and þ0.084 in
steps of þ0.012 (8 values) and for the calculation of C44 we used 7 values of x between 0 and þ0.12 in
steps of þ0.02. An even polynomial of degree 6 was fitted to the calculated total energy values.

The Young's modulus E½hkl� was calculated by a similar quastistatic approach as the SOEC. The unit
cell is chosen in such a way that one axis is parallel to the direction ½hkl� of the applied strain and the
two other axes are perpendicular to the first one. Then a set of finite tensile and compressive strains x
is applied and for each strain x the cell vectors perpendicular to the strain direction and the atomic
positions are relaxed (Poisson contraction). From the energy change

ΔE xð Þ ¼ 1
2
V0E½hkl�x

2þO x3
� � ð8Þ

The Young's modulus E½hkl� is calculated by taking the second derivative of a polynomial fitted to the
energy versus strain values.

For the calculation of the bulk value of the Young's modulus E½110� the simplest choice is a 2-atom
tetragonal unit cell with cell vectors along [110], [110], and [001]:
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affiffiffi
2

p
1
0
0

0
B@

1
CA; a2 ¼

affiffiffi
2

p
0
1
0

0
B@

1
CA; a3 ¼ a

0
0
1

0
B@

1
CA: ð9Þ

This cell, however, does not allow to introduce twin boundaries. Therefore, the calculation of E½110� was
repeated for a second, 6-atom orthorhombic unit cell with cell vectors along [101], [121] and [111]:
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The cell contains three atomic layers with ABC stacking along [111], with 2 atoms per plane in the unit cell.
This cell can also be used for calculating Young's modulus E½112�. In a cubic crystal, however, E½110� and E½112�
are equal due to symmetry. It is important to note that for the orthorhombic unit cell the Poisson contraction
gives rise to a tilt of the basis vectors a2 and a3, if a strain is applied in the direction of a1. Thus, the angle
between a2 and a3 has to be relaxed in order to get the correct value for the Young's modulus E½110�.
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Unit cells for the bulk crystal with twin boundaries are derived from the orthorhombic cell, but
with a different number of atomic planes in the [111] direction (a3 axis). Periodic boundary conditions
require that always 2 twin boundaries are included in one unit cell. We used cells with 6, 8 and 10
atomic layers (thus containing 12, 16 and 20 atoms) with stacking sequences of ABC BAC, ABCA CBAC
and ABCAB ACBAC, respectively, in which the twin boundaries are separated by 3a=

ffiffiffi
3

p
, 4a=

ffiffiffi
3

p
,

5a=
ffiffiffi
3

p
¼ 7:18 Å, 9.57 Å, 11.96 Å.

In all cases, the Young's modulus E½110� was calculated by changing the length of a1 between
�0.024 and þ0.030 in steps of 0.06 in units of a=

ffiffiffi
2

p
. This corresponds to applied strains between

�3.4% and þ4.2%. A polynomial of degree 6 was fitted to the 10 total energy values.
2. Results of the DFT benchmark calculations

Since elastic constants are second derivatives of the total energy, DFT calculations have to be very
well converged in order to be able to extract elastic constants in a reliable way (within the limits of the
accuracy of the chosen functional). First, we thoroughly tested the influence of the plane wave basis
set and density cut-off energies. For our choice of these cut-off energies (30 Ry and 120 Ry,
respectively), the elastic constants are well converged within 70.1 GPa. Much more crucial is the
convergence with respect to k-point density and Gaussian smearing parameter σ. An additional
problem arises from the fact that different unit cells have to be used for the calculation of the bulk
value of the Young's modulus and of structures containing twin boundaries, since k-point meshes will
not be equivalent. Therefore, to be able to identify changes in elastic properties due to twin
boundaries, absolute values of elastic constants have to be converged as good as possible. To have an
estimate on how well our calculations are converged and what accuracy for changes in the elastic
constants can be expected, we applied the following 3 step strategy:
(1)
 First, the bulk second-order elastic constants (SOEC) are calculated and we examine their
convergence with respect to the k-point mesh and the Gaussian smearing parameter σ.
(2)
 Then we perform direct calculations of the bulk Young's modulus (using both, the tetragonal and
orthorhombic unit cell) by quasistatic tensile tests. The results of both calculations are compared
to the analytical value of the Young's modulus as given by the SOFCs. In cubic crystals, the Young's
moduli E½110� and E½112� are identical and are related to the SOEC by

E½110� ¼ E½112� ¼ 4
2C11

ðC11�C12ÞðC11þ2C12Þ
þ 1

C44

� ��1

: ð11Þ

The variation between the three approaches indicates how well our calculations are converged.
The deviation will be used as an estimate for the error margin that we have to take into account
for our results of the Young's modulus.
(3)
 Finally, twin boundaries are introduced in the orthorhombic unit cell and quasistatic calculations of
the Young's modulus are performed. The results are compared to the bulk values obtained in step (2).
The results for step (1) are shown in Fig. 1 and Table 1. k-point grids were always of the Monkhorst–
Pack type with divisions of (n, n, n) of the three basis vectors of the reciprocal lattice. Fig. 1 shows the
typical behavior for the convergence of properties with k-point density n: the larger the Gaussian
smearing parameter σ, the faster the k-point convergence, but the k-point-converged result depends on
the value of σ. This is most obvious for the elastic constant C12. However, for our choices of σ of 0.005,
0.010 and 0.015 Ry the deviation from the σ¼0 limit is less than 0.1 GPa for all elastic constants. Table 1
summarizes the results of the elastic constants for the different smearing values σ together with the k-
point density, which is required for obtaining convergence within an accuracy of 70.1 GPa. Obviously,
for elastic properties a much denser k-point mesh than for the calculation of energy differences (for
example, surface and interface energies) are required.

In Table 1 also the experimental values for the SOEC at 0 K and 300 K are given. The DFT calculations
underestimate the elastic constant by up to 20%. This is typical for the PBE functional and other



Table 1
k-point density required for a given Gaussian smearing parameter σ for obtaining converged second order elastic constants
within 0.1 GPa for bulk Ag.

σ (Ry) k-points a (Bohr) C11 (GPa) C12 (GPa) C44 (GPa)

0.015 28 7.8290 113.0 82.5 41.9
0.010 32 7.8287 113.1 82.5 42.0
0.005 40 7.8287 113.1 82.6 41.9

Exp [8,9], 300 K 7.7183 124.0 94.0 46.5
Exp [8,10], 0 K 7.6902 131.5 97.3 51.1

Table 2
Results for the direct quasistatic calculation of the Young's modulus E½110� for bulk Ag using either the tetragonal or
orthorhombic unit cell. Values are compared to the analytic result from the SOEC. Differences are more than 1 GPa (σ¼0.015 Ry,
k-point mesh with n¼28) and about 0.3 GPa (σ¼0.010 Ry, k-point mesh with n¼32). This represents a good estimate for the
numerical accuracy of the calculated Young's modulus.

Unit cell k-points σ (Ry) E½110� (GPa) quasistatic E½110� (GPa) from SOEC

Tetragonal 24 0.015 81.7 79.0
Tetragonal 28 0.015 81.0 79.2
Tetragonal 32 0.010 79.7 79.4

Orthorhombic 24 0.015 81.6 79.0
Orthorhombic 32 0.010 79.2 79.4

Fig. 1. Convergence of the Ag bulk elastic constants with respect to the k-point mesh and the Gaussian smearing parameter σ.
Calculations were performed with the conventional 4-atom cubic unit cell.
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functionals based on the generalized-gradient approximation (GGA). In the local density approximation
(LDA), on the other hand, elastic constants are overestimated by up to 20% [11]. However, this
uncertainty of DFT calculations (the dependence of the results for SOEC on the choice of functional) is not
crucial for our aim: we are not interested in the absolute values of elastic properties, but only in the
change of the Young's modulus after the introduction of twin boundaries.

The results of the direct, quasistatic calculations of the bulk value of the Young's modulus E½110� in step
(2) are summarized in Table 2. k-points for the tetragonal and orthorhombic unit cells were also chosen
according to the Monkhorst–Pack scheme. In Table 2 the number of divisions n, however, refers to an
approximately equivalent (n, n, n) k-point mesh for the conventional 4-atom cubic unit cell with lattice
constant a. The lattice vectors of the tetragonal and orthorhombic unit cells have lengths of a=

ffiffiffi
2

p
,



Table 3
Results for the direct quasistatic calculation of the Young's moduli E½110� and E½112� for the orthorhombic unit cell with two twin
boundaries.

Layers k-points σ (Ry) Twin: E½110� (GPa) Twin: E½112� (GPa) Bulk: quasistatic E½110� (GPa) Bulk: from SOEC E½110� (GPa)

6 28 0.015 80.5 79.7 81.0 79.2
8 28 0.015 80.6 79.9 81.0 79.2

10 28 0.015 80.3 79.8 81.0 79.2

6 32 0.010 77.9 – 79.2 79.4
8 32 0.010 78.2 – 79.2 79.4

10 32 0.010 78.3 – 79.2 79.4
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corresponding reciprocal basis vector, rounded to the next larger integer number, were used.
For a Gaussian smearing of σ¼0.015 Ry the SOEC were well converged for a k-point density of 28 and

24 (see Fig. 1). For this σ-value and the k-point mesh with n¼28, however, the Young's modulus E½110�
calculated by quasistatic tensile test still deviates by 1.8 GPa from the analytic value calculated from the
SOEC (see Table 2). For a better agreement between direct calculation and analytic result from SOEC for
E½110�, σ has to be lowered to 0.010 Ry and the k-point density has to be increased to n¼32. With the
settings of σ¼0.015 Ry and the k-point mesh of n¼28 the error margin of the DFT calculations is more
than 1 GPa, for σ¼0.010 Ry and the k-point mesh with n¼32 the numerical uncertainty is reduced to
about 0.3 GPa.

In Table 3 the calculated Young's moduli for the orthorhombic unit cells with twin boundaries are
compared to their corresponding values for the defect-free bulk. For the calculations with σ¼0.015 Ry
and the k-point mesh with n¼28 the results for E½110� for cells with and without twin boundaries are
within our estimated error margin. For these settings the unit cells with twin boundaries were also
strained in [112]-direction, which is the actual orientation of the nanowires in the experiments of Ref.
[1], but no significant difference between E½110� and E½112� is observed.

For the more accurate settings with σ¼0.010 Ry and a k-point mesh with n¼32, the Young's
modulus E½110� is systematically smaller for cells with twin boundaries than the bulk value, and E½110�
decreases systematically with increasing twin boundary density. However, even for the highest
density of twin boundaries, in which twin boundaries are separated by only 3 atomic planes, the
change in E½110� is less than 2% compared to the bulk. This can be taken as an upper limit for the
modification of Young's modulus due to twin boundaries in Ag.
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