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Predicting missing links in complex 
networks based on common 
neighbors and distance
Jinxuan Yang & Xiao-Dong Zhang

The algorithms based on common neighbors metric to predict missing links in complex networks 
are very popular, but most of these algorithms do not account for missing links between nodes with 
no common neighbors. It is not accurate enough to reconstruct networks by using these methods in 
some cases especially when between nodes have less common neighbors. We proposed in this paper a 
new algorithm based on common neighbors and distance to improve accuracy of link prediction. Our 
proposed algorithm makes remarkable effect in predicting the missing links between nodes with no 
common neighbors and performs better than most existing currently used methods for a variety of real-
world networks without increasing complexity.

As an important branch of network data analysis, predicting missing links in complex network has attracted many 
researchers’ widespread attentions not only because data collected from network platforms is incomplete1,2, but 
also it is helpful to understand evolution of networks3–5, and predict future conflict and individual preferences6,7. 
In principle many evolution models correspond to a link prediction approach. Thus, link prediction can be used 
in revealing hidden information and evaluating the performance of distinct models. Moreover, link prediction 
has been applied to health care and communication field to identify abnormal cases8,9.

The main work in link prediction is to estimate the missing link between two nodes based on current links and 
interactions in networks10. Link prediction discusses missing links and spurious links. In this paper, we focus on 
predicting missing links. Generally, between nodes with very high likelihood scores are considered to be highly 
likely to have missing links. In the past few years, many prediction methods based on topological structure of 
networks have been proposed related to local paths, common neighbors and random walk10–13. In social networks 
two individuals who have more common friends are very likely to be friends in future. Furthermore, community 
methods, hierarchical models and probabilistic methods are also used for link prediction14–19. Recently, informa-
tion theory and spectral method of adjacency matrix have been adopted to find missing links20–22.

The prediction methods based on common neighbors metric10 are very popular due to its simplicity. But with 
single common neighbors metric is not accurate enough to reveal the similarities between nodes and reconstruct 
properly networks, especially there are less common neighbors between nodes in sparse networks. A part of 
missing links could not be predicted because there are no common neighbors between them, but they often play a 
key role to connect different communities, and affect network properties, such as betweenness centrality, average 
distance, congestion and spreading ability. Therefore, it is important to propose an algorithm to predict missing 
links between nodes with no common neighbors.

A lot of real-world networks indicate high clustering properties. There are a large number of short loops. It 
is a good idea to exploit this properties to improve accuracy of link prediction. In this paper, we separate link 
prediction into two parts: predicted links that generate loops of length 3 and predicted links that generate short 
loops of length more than 3. So common neighbors and distance metric are adopted to predict these loops. The 
key question is to estimate the proportion of two parts. A new method is proposed to achieve it. By estimating 
the proportion of missing links between nodes with no common neighbors in total missing links, our algorithm 
makes remarkable effect to predict the missing links between nodes with no common neighbors, and improve 
the accuracy of link prediction. The experimental results show that it can obtain significantly better prediction 
accuracy for a variety of real-world networks than other methods.

School of Mathematical Science, MOE-LSC, SHL-MAC, Shanghai Jiao Tong University, 800 Dongchuan Road, 
Shanghai, 200240, P.R. China. Correspondence and requests for materials should be addressed to X.-D.Z. (email: 
xiaodong@sjtu.edu.cn)

received: 10 May 2016

accepted: 07 November 2016

Published: 01 December 2016

OPEN

mailto:xiaodong@sjtu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:38208 | DOI: 10.1038/srep38208

Results
Data sets Description.  The test data sets of real-world networks in this paper are:

•	 Karate: The test data of Karate club network was collected by Zachary, which indicates the interactions of 34 
members of a university Karate club23.

•	 Dolphins: It is an animal relationship network studied by Lusseau et al. with 62 bottlenose dolphins living in 
Doubtful Sound of New Zealand24.

•	 Polbook: This is a network of books about US politics published around the time of the 2004 presidential elec-
tion and sold by the online bookseller Amazon.com. The network was compiled by Krebs and is unpublished, 
but can be found on Krebs’ website (see http://www.orgnet.com).

•	 Word: The data is a network of common adjective and noun adjacencies for the novel “David Copperfield” by 
Charles Dickens, as described by Newman25.

•	 Neural: This data represents the neural network of C. Elegans. The nodes in the original data are not consec-
utively numbered, so they have been renumbered to be consecutive26.

•	 Circuit: Electronic circuits can be viewed as networks in which nodes are electronic components (like capaci-
tors, diodes, etc.) and connections are wires. Our network maps one of the benchmark circuits of the so-called 
ISCAS'89 set (see data set from http://www.weizmann.ac.il/mcb/UriAlon/)27.

•	 Email: This is a network of e-mail interchanges between members of the Universitat Rovira i Virgili (Tarrag-
ona) (see data set from http://deim.urv.cat/~alexandre.arenas/data/welcome.htm)28.

•	 Power: This is an undirected, unweighted network representing the topology of the Western States Power 
Grid of the United States26.

The data sets (1–5) and (8) can be downloaded from Mark Newman’s network data sets: http://www-personal.
umich.edu/~mejn/netdata/. The parameters of networks about the number of nodes N, the number of links m, 
average degree 〈​k〉​, average distance 〈​d〉​, assortativity coefficient r and degree heterogeneity H are listed in Table 1.

Link prediction method.  Two metrics are used to evaluate the accuracy of link prediction methods: AUC 
(areas under the receiver operating characteristic curve)29 and Precision30. Given an unweighted and undirected 
network G =​ (V, E) with vertex set V =​ {v1, v2, …​, vN} and the observed link set E, where the size of E is m. The 
self-loops and multiple links are not allowed. E are randomly divided into two disjoint subsets: the probe set EP 
and the training set ET. EP is used for testing and is viewed as unknown information. ET is viewed as known infor-
mation. A good prediction method should have high AUC value according to the definition of AUC, i.e. the links 
in probe set have higher scores than non-existing links. Precision is computed as the fraction of correct predicted 
links in the top-L ranking lists, where L is the total number of missing links (L =​ |EP|) (see Methods section).

Now G′​ =​ (V, ET) is known, so basic idea in reconstructing network is to add top-L predicted links to G′​ to 
obtain G* =​ (V, E*) so that G* is as close as possible to G. Therefore, a good predicted method can provide trusted 
prediction in the evolution of networks.

In this paper we separate the probe set EP into two subsets: EPc and EPn, which denote link set between nodes 
with common neighbors and link set between nodes with no common neighbors in G′​, respectively, that is,

∩= Γ Γ ≠ ∅ ∈E i j i j i j E{( , ) ( ) ( ) , ( , ) }, (1)P Pc

∩= Γ Γ = ∅ ∈ = −E i j i j i j E E E{( , ) ( ) ( ) , ( , ) } , (2)P P P Pn c

where Γ​(i) denotes the set of neighbors of node i. Let =cr
E

E

Pc

P
 is the proportion of EPc in EP. The test will be 

performed with EP accounting for 10% of the observed link set E, and randomly selects EP to remove every time. 
The results of cr are the average of 20 realizations for each network (see Table 1).

Networks N m c cn cr ′cn 〈d〉 〈k〉 r H

Karate 34 78 0.571 0.859 0.793 0.771 2.408 4.588 −​0.476 1.693

Dolphins 62 159 0.259 0.761 0.710 0.715 3.357 5.129 −​0.044 1.327

Polbook 105 441 0.488 0.959 0.937 0.927 3.079 8.400 −​0.128 1.421

Word 112 425 0.173 0.725 0.694 0.672 2.536 7.589 −​0.129 1.815

Neural 297 2148 0.292 0.945 0.913 0.916 2.455 14.465 −​0.163 1.801

Circuit 512 819 0.055 0.137 0.118 0.115 6.858 3.199 −​0.030 1.259

Email 1133 5451 0.220 0.776 0.734 0.733 3.606 9.622 0.078 1.942

Power 4941 6594 0.080 0.208 0.179 0.176 18.989 2.669 0.003 1.450

Table 1.   Illustration of properties of networks. Parameters are measured in original networks G except ′cn and 
cr in G′​ =​ G −​ EP, where = 10%E

E

P
. cn: CN coefficient; =cr

E

E

Pc

P
; 〈​d〉​: average distance; 〈​k〉​: average degree; c: 

clustering coefficient; r: assortativity coefficient (see Methods section); =H k

k

2

2
: degree heterogeneity. The 

values of cr and ′cn are the average of 20 realizations to randomly remove EP for each network every time.

http://www.orgnet.com
http://www.weizmann.ac.il/mcb/UriAlon/
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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But for a practical observed network G, link prediction methods are used to predict the possible links in the 
future (network evolution), we only knew roughly the total number of missing links L =​ |EP|, which is consistent 
with other methods in literatures. Therefore, it is key to estimate the proportion of EPc in EP in order to improve 
prediction accuracy under the Precision metric. We define ′cn to evaluate strength of links between nodes with 
common neighbors in G′​ =​ (V, ET) (The corresponding definition is cn for G, and cn is labeled as ​“CN coefficient”​ 
in this paper), which is defined as the fraction of links between nodes with common neighbors in ET, that is,

δ
′ =
∑

∈

∼
<c
E

i j E, ( , ) ,
(3)

n

i j
i j

ij

T
T

δ
=
∑

∈

∼
<c
m

i j E, ( , ) , (4)n

i j
i j

ij

where δij =​ 1, if Γ​(i) ∩​ Γ​(j) ≠​ ∅​, 0 otherwise, and i ~ j denotes node i and j to be adjacent. The results of ′cn and cn 
are listed in Table 1. Between ′cn and cr has low RMSE (root-mean-square error) and high positive correlation 
measured by Pearson correlation coefficient (CC). Furthermore, between cn, cr and clustering coefficient c 
(defined in Methods section) also indicate high positive correlation (see Table 2). Therefore, it is feasible to use ′cn 
instead of cr to estimate the proportion of EPc in EP. Thus, = × ′ = × − ′E L c E L c, (1 )P

n
P

n
c n  in G′​.

There are large number of short loops in real-world networks. In order to illustrate the fact, the distribution of 
“pseudo-distance” will be given. Generally, the distance dij of two nodes i, j is defined as the length of the shortest 
paths between them. dij is infinite if no such path exist. “pseudo-distance” ′dij is defined to be the length of the 
shortest paths between i and j in network G −​ e for a link e =​ (i, j), that is, ′ = ∈ − = ∈{ }d d d G e e i j G, ( , )ij ij ij . 
Let

=
∑ ′ =∼
<

{ }
p

d d

m
, (5)d

i j
i j

ij

which denotes the fraction of links where pseudo-distance is d in total links. In a way it can reveal distance dis-
tribution of missing links in G′​. Figure 1 describes the distribution pd for d =​ 2, 3, 4 and the rest in 8 real-world 
networks, where the distribution of most networks are concentrated in d =​ 2, 3, 4. It is obvious that p2 =​ cn.

On the other hand, these missing links for d ≠​ 2 (links between nodes with no common neighbors) play a 
pivotal role in determining the structure properties of networks. But they are neglected by mostly current existing 
link prediction methods. A single method based on common neighbors could not predict these important miss-
ing links. So we propose in this paper a new prediction method based on common neighbors and distance. The 
score of likelihood is defined as follows:

cr ′cn cn cr c cn cr ′cn
EMSE 0.012 CC 0.999 0.777 0.999

Table 2.   Root mean square error (EMSE) and Pearson correlation coefficient (CC) between cn, ′cn, cr and 
clustering coefficient c in the 8 networks.

Figure 1.  The distributions pd for d = 2, 3, 4 and the rest in 8 real-world networks. 
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where CNij =​ |Γ​(i) ∩​ Γ​(j)| represents the number of common neighbors for node i and j. The above equation 
equals to:
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Since between two nodes is more likely to possess a link if they have more common neighbors, it is not difficult 
to find that it is equivalent to the CN method10 for these pairs of nodes with common neighbors, but distance 
plays an important role in predicting missing links between nodes with no common neighbors because high score 
is obtained by short distance. Our method is summarized in Methods section.

EP

E Methods Karate Dolphins Polbook Word Neural Circuit Email Power

10%

RA 0.721(78) 0.775(71) 0.899(25) 0.675(38) 0.868(12) 0.552(13) 0.848(11) 0.586(5)

AA 0.711(75) 0.776(71) 0.898(25) 0.677(41) 0.863(12) 0.552(13) 0.849(11) 0.586(5)

Jaccard 0.591(63) 0.770(67) 0.878(25) 0.621(36) 0.792(11) 0.552(13) 0.845(11) 0.586(5)

LHN 0.578(74) 0.751(62) 0.850(26) 0.584(31) 0.727(10) 0.552(13) 0.838(10) 0.586(5)

HDI 0.581(64) 0.772(69) 0.865(23) 0.620(35) 0.781(12) 0.552(13) 0.844(11) 0.586(5)

HPI 0.696(79) 0.754(63) 0.895(26) 0.637(37) 0.808(12) 0.552(13) 0.841(10) 0.586(5)

Sen 0.591(63) 0.770(67) 0.878(25) 0.621(36) 0.792(11) 0.552(13) 0.845(11) 0.586(5)

Sal 0.617(69) 0.765(66) 0.886(25) 0.624(36) 0.800(10) 0.552(13) 0.844(11) 0.586(5)

CN 0.679(72) 0.772(70) 0.889(26) 0.678(42) 0.844(13) 0.552(13) 0.847(11) 0.586(5)

Our 0.725(88) 0.790(60) 0.901(14) 0.693(46) 0.844(10) 0.742(23) 0.880(9) 0.659(10)

20%

RA 0.686(60) 0.753(39) 0.883(18) 0.658(22) 0.845(10) 0.541(10) 0.822(6) 0.571(2)

AA 0.683(59) 0.754(39) 0.881(18) 0.660(22) 0.842(10) 0.541(10) 0.822(6) 0.571(2)

Jaccard 0.597(41) 0.749(37) 0.856(17) 0.609(19) 0.773(9) 0.541(10) 0.819(6) 0.571(2)

LHN 0.588(50) 0.737(36) 0.829(19) 0.583(18) 0.724(8) 0.541(10) 0.813(6) 0.571(2)

HDI 0.590(37) 0.751(38) 0.847(16) 0.609(19) 0.765(9) 0.541(10) 0.819(6) 0.571(2)

HPI 0.662(63) 0.738(35) 0.868(20) 0.623(21) 0.789(10) 0.541(10) 0.816(6) 0.571(2)

Sen 0.597(41) 0.749(37) 0.856(17) 0.609(19) 0.773(9) 0.541(10) 0.819(6) 0.571(2)

Sal 0.613(47) 0.746(36) 0.862(18) 0.611(20) 0.780(10) 0.541(10) 0.818(6) 0.571(2)

CN 0.662(52) 0.740(37) 0.858(17) 0.655(21) 0.824(10) 0.540(10) 0.821(6) 0.571(2)

Our 0.678(71) 0.767(59) 0.885(17) 0.672(20) 0.828(6) 0.698(23) 0.871(6) 0.593(11)

Table 3.   The AUC of different methods under 10% and 20% probe set in 8 networks. The results are the 
average of 20 realizations for each network, and probe set EP will be randomly removed every time. The highest 
value for each network is labeled in boldface. The numbers in the brackets denote the standard deviations. For 
example, 0.721(78) denotes that the AUC value is 0.721 and the standard deviation is 78 ×​ 10−4.

CN sij =​ |Γ​(i) ∩​ Γ​(j)| Sal (Salton) = ∩Γ Γ
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LHN (Leicht-Holme-Newman) = ∩Γ Γ
×

sij
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( ) ( ) AA (Adamic-Adar) = ∑ ∩∈Γ Γsij z i j kz( ) ( )
1

log

RA (Resource Allocation) = ∑ ∩∈Γ Γsij z i j kz( ) ( )
1

PA (Preferential Attachment) sij =​ ki ×​ kj LP (Local Path) sLP =​ A2 +​ βA3

Table 4.   The computation of link prediction methods. ki is the degree of node i. PA method and LP method 
do not directly relate to common neighbors, but based on local information, where A is adjacency matrix and 
β =​ 0.01.
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Experiment.  In Table 3, the predicted results of different methods under the AUC metric are listed in 8 
real-world networks. Our method is compared with prediction methods based on common neighbors10: CN 
method, Sal (Salton Index), Jaccard Index, Sen (Sφrensen Index), HPI (Hub Promoted Index), HDI (Hub 
Depressed Index), LHN (Leicht-Holme-Newman Index), AA (Adamic-Adar Index) and RA method (Resource 
Allocation Index). For computation in these methods can be seen in Table 4. The results are the average of 20 
realizations for each network under 10% and 20% probe set. Probe set will be randomly removed every time. 
The highest value of AUC for each network is labeled in boldface. The accuracy of our method outperforms other 
methods except Neural network, because this network possesses high cn, high degree heterogeneity and negative 
assortativity. RA index and AA index have similar form, and thus they have nearly same scores. Circuit and Power 
network have low cn, and thus for most methods assign low AUC scores which are approximately 0.5 for this two 
networks. Conversely, our method shows better results due to distance.

In most algorithms, AUC shows slightly downward trend when the proportion of EP in E increases from 10% 
to 20% (see Fig. 2). The main reason is that the decrease of training set ET will result in the number of pairs of 
nodes with common neighbors becoming small, which increases the difficulty of link prediction.

On the other hand, the prediction results under the Precision metric are given in Table 5. Similarly, our method 
noticeably outperforms other methods except Polbook and Power network in E

E

P
 =​ 20%, because Power network 

has low ′cn (or cn), high m and large average distance 〈​d〉​ =​ 18.989. According to Eq. (12) in Power network our 
method need predict too much missing links with large distance (i.e. the presence of few short loops with length 
more than 3), which result in low prediction accuracy than CN method. It should be mentioned that Precision 
indicates the opposite changing trend compared with AUC except Circuit and Power network (They are low ′cn) 
with the increase of EP (see Fig. 3).

The results of most algorithms are better for high ratio of EP than low one for Precision metric. The main rea-
son is that the decrease of training set ET will result in weak n′​ and strong n′​′​ according to the definition of AUC 
(see Methods section), which make negative contributions to AUC. But the increase of probe set EP, the probabil-
ity to obtain relevant items will increase, and it is easier to find the missing links, which is a good explanation for 
this phenomenon. Therefore, in practical application it is necessary to combine two metrics to evaluate accuracy 
of a link prediction method.

Moreover, CN coefficient cn of original network may also affect prediction accuracy. In Fig. 4 AUC metric and 
cn have high positive correlation for almost all methods, but for Precision metric there are only RA, AA, CN and 
our method keeping high positive correlation. The change in probe set has little effect on all methods according to 
AUC metric, but makes great effect on Jaccard, HDI and Sen method according to Precision metric.

Next, we compared our method with other two classic methods PA (Preferential Attachment Index)31 and LP 
(Local Path Index)11, which do not directly relate to common neighbors, but based on local information. Table 6 

Figure 2.  The changes of AUC when E
E

P
 increases from 10% to 20% in 8 real-world networks (a–h).
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indicates the prediction accuracy of LP, PA and our method under the Precision metric with 10% and 20% probe 
set, where our method has the best performance.

The most striking feature of our method is to make remarkable effect to predict missing links between nodes 
with no common neighbors (i.e. the accuracy to find EPn), compared with LP and PA method according to 
Precision metric (see Table 7). The above mentioned methods based on common neighbors cannot find any miss-
ing links between nodes with no common neighbors, and thus we do not list them here. The results indicate that 
LP cannot find any missing links with respect to EPn, and PA method could find a small amount of EPn for certain 
networks because the proportion of EPn in EP is low except Circuit network and Power network. The proportion 
can be calculated by Eq. (12).

The time-consuming of computing distance between all pairs of nodes is at most O(mN) by using BFS 
(Breadth First Search). For a sparse network (m =​ O(N)) the complexity of our method is equivalent to the com-
plexity of CN method.

Discussion and Conclusion
In the past few years, many link prediction algorithms have been proposed, but most of the algorithms do not 
account for missing links between two nodes with no common neighbors. Generally, to predict these missing 
links between nodes with no common neighbors are very difficult because they account for low proportion in 
missing links, but they have significance in determining network structure and network properties. We proposed 
in this paper a new algorithm based on common neighbors and distance to improve prediction accuracy, which 
separates link prediction into two parts: predicted links that generate loops of length 3 (missing links between 
nodes with common neighbors) and predicted links that generate short loops of length more than 3 (missing 
links between nodes with no common neighbors). By estimating the proportion of missing links between nodes 
with no common neighbors in total missing links, our algorithm makes remarkable effect to predict missing links 
between nodes with no common neighbors. For other methods based on common neighbors cannot find any 
missing links between nodes with no common neighbors. A series of experimental results indicate that prediction 
accuracy of our proposed method is better than most existing currently used methods for a variety of real-world 
networks. The complexity of this method is almost same as that of CN method. Moreover, there are two rules: (i) 
With the increase of probe set, experimental results indicate that the changing trend of scores according to AUC 
metric is not consistent with Precision metric for most algorithms and networks. Thus, it is necessary to combine 
two metrics to evaluate the accuracy of a link prediction method. (ii) The between AUC metric and cn has high 
positive correlation.

On the other hand, the questions of link prediction have not been solved completely. For example, how to eval-
uate superiority of a link prediction method except current metrics. Because a good prediction method should 
not only take into account prediction accuracy, but also pay attention to network properties. Furthermore, it is 
important how to choose a suitable link prediction method according to the feature of network as there is no 

EP

E Methods Karate Dolphins Polbook Word Neural Circuit Email Power

10%

RA 0.154(109) 0.123(73) 0.185(55) 0.054(27) 0.103(17) 0.012(9) 0.143(12) 0.028(9)

AA 0.132(125) 0.128(81) 0.172(53) 0.068(39) 0.105(20) 0.012(9) 0.158(13) 0.031(8)

Jaccard 0.004(16) 0.087(58) 0.122(46) 0.002(4) 0.021(10) 0.031(18) 0.074(9) 0.016(2)

LHN 0.007(22) 0.017(30) 0.077(48) 0.001(5) 0.000(1) 0.007(9) 0.004(3) 0.009(2)

HDI 0.000(0) 0.083(64) 0.105(45) 0.002(7) 0.023(8) 0.020(12) 0.075(9) 0.020(1)

HPI 0.171(91) 0.022(25) 0.142(52) 0.011(9) 0.007(4) 0.012(9) 0.013(4) 0.030(3)

Sen 0.004(16) 0.087(58) 0.122(46) 0.002(4) 0.021(10) 0.031(18) 0.074(9) 0.016(2)

Sal 0.000(0) 0.075(57) 0.120(39) 0.000(0) 0.021(10) 0.015(15) 0.056(8) 0.015(2)

CN 0.143(73) 0.135(57) 0.148(46) 0.063(32) 0.099(20) 0.058(21) 0.149(15) 0.069(18)

Our 0.221(95) 0.227(55) 0.188(46) 0.193(33) 0.141(19) 0.075(17) 0.225(17) 0.079(4)

20%

RA 0.160(76) 0.156(38) 0.280(22) 0.092(33) 0.150(12) 0.007(4) 0.174(9) 0.022(3)

AA 0.155(78) 0.161(43) 0.278(32) 0.102(31) 0.155(14) 0.007(4) 0.188(9) 0.023(2)

Jaccard 0.028(50) 0.131(53) 0.157(34) 0.014(17) 0.043(10) 0.027(13) 0.097(5) 0.013(4)

LHN 0.015(23) 0.027(25) 0.089(27) 0.001(3) 0.002(2) 0.027(12) 0.012(3) 0.010(3)

HDI 0.045(47) 0.159(47) 0.138(35) 0.017(18) 0.050(10) 0.018(7) 0.113(7) 0.018(4)

HPI 0.145(70) 0.018(14) 0.192(36) 0.006(6) 0.006(2) 0.015(7) 0.012(2) 0.027(3)

Sen 0.028(50) 0.131(53) 0.157(34) 0.014(17) 0.043(10) 0.027(13) 0.097(5) 0.013(4)

Sal 0.023(42) 0.108(47) 0.158(33) 0.009(12) 0.036(9) 0.025(11) 0.071(8) 0.013(4)

CN 0.200(59) 0.226(44) 0.243(59) 0.107(30) 0.146(13) 0.047(9) 0.163(16) 0.085(5)

Our 0.292(101) 0.256(64) 0.252(44) 0.231(32) 0.203(15) 0.056(11) 0.255(5) 0.060(4)

Table 5.   The Precision of different methods under 10% and 20% probe set in 8 networks. The results are the 
average of 20 realizations for each network, and probe set EP will be randomly removed every time. The highest 
value for each network is labeled in boldface. The numbers in the brackets denote the standard deviations. For 
example, 0.154(109) denotes that the Precision value is 0.154 and the standard deviation is 109 ×​ 10−4.



www.nature.com/scientificreports/

7Scientific Reports | 6:38208 | DOI: 10.1038/srep38208

absolutely good method for all networks. Link prediction has been extended to weighted and directed version32–35. 
It can also predict signed links with positive and negative relationships in social networks, and predict spurious 
interactions15,36,37. Whether it is possible to modify our method to deal with them. All are a long-standing chal-
lenge work.

Methods
Metrics.  AUC is defined as:

=
′ + . ′′

.AUC n n
n
0 5

(8)

Figure 3.  The changes of Precision when E
E

P
 increases from 10% to 20% in 8 real-world networks (a–h).

Figure 4.  Pearson correlation coefficient of different methods for prediction accuracy metrics vs. cn under 
10% and 20% probe set in 8 networks. (a) The correlation coefficient of different methods for AUC metric vs. 
cn. (b) The correlation coefficient of different methods for Precision metric vs. cn.
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A link prediction method provides an ordered list of scores of all links in U −​ ET (scores represent the likeli-
hood of missing links), where U is a universal set for −N N( 1)

2
 links. At each time, we will randomly select a link in 

U −​ E and a link in probe set EP to compare their scores. After comparison of n times, there are n′​ times the links 
in EP having higher scores and n′​′​ times they have same scores. The degree to which the score exceeds 0.5 repre-
sents how better the method performs than pure chance.

Another metric to measure accuracy is Precision, which is computed as follows:

=P L
L

, (9)
r

where Lr is relevant links (i.e. generally, we take the top-L links as the predicted links according to scores, and 
there are Lr links in the probe set EP (L =​ |EP|)). Thus, the higher Precision value means the higher accuracy.

Our link prediction method.  Given an undirected and unweighted network G =​ (V, E) with vertex set 
V =​ {v1, v2, …​, vN} and the observed link set E, where the size of E is m. The self-loops and multiple links are not 
allowed. In order to evaluate the performance of an algorithm, a certain proportion links in G will be randomly 
selected to constitute probe set EP, and the rest links constitute training set ET (ET ∪​ EP =​ E, ET ∩​ EP =​ ∅​). We sep-
arate EP into two subsets: EPc and EPn denote respectively link set between nodes with common neighbors and 
link set between nodes with no common neighbors ∪ = + = =E E E E E E L( , )P P P P P Pc n c n . EPc  and EPn  
are calculated using Eqs (11 and 12) because EP is used for testing and is viewed as unknown information. 
According to computation of sij (Eq. (13)) to obtain the scores for all non-exist links U −​ ET, sort the list of scores 
in non-increasing order. Then select top- EPc  links between nodes with common neighbors and top- EPn  links 
between nodes with no common neighbors from U −​ ET to constitute predicted links.

Networks
EP

E PA LP Our
EP

E PA LP Our

Karate

10%

0.068(82) 0.175(140) 0.221(95)

20%

0.118(70) 0.177(88) 0.292(101)

Dolphins 0.020(29) 0.133(70) 0.227(55) 0.025(31) 0.199(47) 0.256(64)

Polbook 0.044(32) 0.172(44) 0.188(46) 0.088(25) 0.221(39) 0.252(44)

Word 0.082(43) 0.083(31) 0.193(33) 0.150(32) 0.102(30) 0.231(32)

Neural 0.054(18) 0.099(18) 0.141(19) 0.098(9) 0.145(14) 0.203(15)

Circuit 0.002(4) 0.005(7) 0.075(17) 0.003(3) 0.020(8) 0.056(11)

Email 0.018(7) 0.136(11) 0.225(17) 0.029(5) 0.175(10) 0.255(5)

Power 0.001(1) 0.042(2) 0.079(4) 0.002(1) 0.045(6) 0.060(4)

Table 6.   The Precision of LP, PA and our method under 10% and 20% probe set in 8 networks. The results 
are the average of 20 realizations for each network, and probe set will be randomly removed every time. The 
highest value is labeled in boldface. The numbers in the brackets denote the standard deviations. For example, 
0.068(82) denotes that the Precision value is 0.068 and the standard deviation is 82 ×​ 10−4.

Networks
EP

E PA LP Our
EP

E PA LP Our

Karate

10%

0.05(224) 0(0) 0.353(207)

20%

0.064(116) 0(0) 0.351(169)

Dolphins 0(0) 0(0) 0.267(129) 0.004(19) 0(0) 0.265(70)

Polbook 0(0) 0(0) 0.432(104) 0(0) 0(0) 0.427(47)

Word 0(0) 0(0) 0.430(54) 0.003(9) 0(0) 0.410(36)

Neural 0(0) 0(0) 0.441(25) 0.005(8) 0(0) 0.457(20)

Circuit 0.002(5) 0(0) 0.081(17) 0.004(3) 0(0) 0.059(12)

Email 0.001(2) 0(0) 0.340(21) 0.004(4) 0(0) 0.335(9)

Power 0(1) 0(0) 0.059(5) 0(0) 0(0) 0.047(3)

Table 7.   The Precision of different methods to predict missing links between nodes with no common 
neighbors under 10% and 20% probe set in 8 networks. Precision =​  L

E
r
Pn

Pn
, which denotes the proportion of 

relevant links in the probe set EPn. The results are the average of 20 realizations for each network, and probe set 
EP will be randomly removed every time. The highest value for each network is labeled in boldface. The numbers 
in the brackets denote the standard deviations. For example, 0.064 (116) denotes that the Precision value is 0.064 
and the standard deviation is 116 ×​ 10−4. The previous mentioned methods based on common neighbors 
cannot find any missing links between nodes with no common neighbors, and thus we do not list them here.
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δ
′ =
∑

∈

∼
<c
E

i j E, ( , ) ,
(10)

n

i j
i j

ij

T
T

= × ′E L c , (11)P
n

c

= × − ′E L c(1 ), (12)P
n

n

where Γ​(i) denotes the set of neighbors of node i. δij =​ 1, if Γ​(i) ∩​ Γ​(j) ≠​ ∅​, 0 otherwise, and i ~ j denotes node i 
and j to be adjacent.

∩
=

+
=











+
Γ Γ ≠ ∅

s
CN

d

CN
i j

d
otherwise

1
1

2
, ( ) ( ) ,

1 , ,
(13)

ij
ij

ij

ij

ij

where CNij =​ |Γ​(i) ∩​ Γ​(j)| is the number of common neighbors of node i and j. dij is the distance between i and j. 
The Precision metric in Eq. (9) can be written as follows:

=
+P L L
L

, (14)
r
p

r
pc n

where Lr
pc, Lr

pn denote relevant links between nodes with common neighbors and relevant links between nodes 
with no common neighbors, respectively. Similarly, to predict future missing links for a current observed network 
G, ′cn is replaced by cn as follows:

δ
=
∑

∈

∼
<c
m

i j E, ( , ) , (15)n

i j
i j

ij

which is the proportion of links between nodes with common neighbors in link set E.

Parameters.  The local clustering coefficient c(i) of a node i is defined as the probability that two distinct 
neighbors of i are connected38.

=
−

c i
E

k k
( )

2
( 1)

,
(16)

i

i i

where |Ei| denotes the number of links that actually exist between ki nodes, and c(i) =​ 0 if ki =​ 0, 1. The clustering 
coefficient c of a network is the average of all nodes:

=
∑

.∈c
c i

N
( )

(17)
i V

Assortativity of network is called as assortative mixing, which refers to the tendency of network nodes to joint 
other nodes preferentially with similar or opposite properties39:

=
−
−

r S S S
S S S

,
(18)

e 1 2
2

3 1 2
2

where = ∑ = = ∑ = ∑ = ∑ ∼
<

S k m S k S k S k k2 , , , 2i i i i i i e i j
i j

i j1 2
2

3
3 .
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