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EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The
effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27
cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by
immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were
treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR,
cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and
cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of
proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in
clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited
cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor)
and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2
promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common
malignancy in the oral and maxillofacial region. In China, the
incidence of OSCC is between 36/100,000 and 8.0/100,000,
and the five-year survival rate is 50% [1]. OSCC has a high
local recurrence rate, with the tendency to develop early
lymph node metastasis and late metastasis to the lung, liver,
bone, and other organs [2]. As tumor metastasis is the main
cause of cancer death, the discovery of key regulatory mole-
cules in the process of cancer metastasis and identification
of effective diagnostic markers or therapeutic targets have
become highlighted topics of research.

EPHA2 is a member of the EPH receptor tyrosine kinase
family. It is highly expressed in glioblastoma, ovarian cancer,
and cholangiocarcinoma and is closely related to malignant
tumor progression [3]. Recent studies have shown that

EPHA2 promotes epithelial-mesenchymal transition and cell
migration by enhancing the Wnt/β-catenin signaling path-
way. Likewise, EPHA2 upregulates the expression of
CyclinD1 and promotes cell cycle progression, thereby
enhancing the proliferation of gastric cancer cells [4]. Fur-
thermore, EPHA2 is significantly and frequently mutated in
OSCC [5] and associated with the MAPK/ERK, JAK/STAT,
and mTOR/AKT signaling pathways [6]. Everolimus, also
known as RAD001, is a mammalian target for specific inhib-
itors of rapamycin (mTORC1) [7]. MK2206 is an allosteric
inhibitor of AKT, which can decrease p- (Ser473-) AKT
and p- (Thr308-) AKT in a dose-dependent manner [8].

EPHA2 has been shown to activate the protein kinase B-
mammalian rapamycin target protein (AKT/mTOR) signal-
ing pathway [9], but whether EPHA2 is related to AKT/m-
TOR signaling in OSCC is not clear. This study explored
the effect of AKT/mTOR signaling and EPHA2 on the
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progression of OSCC to provide a theoretical basis for prog-
nostic evaluation and targeted therapy of OSCC.

2. Materials and Methods

2.1. Tissues and Cells. Human OSCC (10 cases) and normal
oral tissue (5 cases) were collected from the Central Hospital
of Wuhan. Human tongue squamous carcinoma Cal-27 cells
were purchased from the American Type Culture Collection
(Rockefeller, Maryland, USA). A frozen tube containing 1ml
of cell suspension was rapidly shaken and thawed in a water
bath at 37°C and mixed with 4ml of Dulbecco’s modified
Eagle medium containing 10% fetal bovine serum (Gibco,
Shanghai, China). The cells were centrifuged for 4min at
1000 rpm, the supernatant was discarded, and 2ml of
medium was added. Then, the cells were cultured overnight,
and the medium was changed on the next day, after which
the cell density was measured. The experiment was approved
by the Ethics Committee of Wuhan Central Hospital and
fully respected the right of informed consent of the subjects
and their families.

2.2. Protocol. The expression of EPHA2 and EPHA4 was ana-
lyzed in OSCC and normal oral tissues. To explore the effect
of EPHA2 on the biological behavior of OSCC cells, the cells
were subjected to overexpression of inhibition of EPHA2. To
verify whether the AKT/mTOR signaling pathway partici-
pated in the mechanism underlying the action of EPHA2,
the AKT inhibitor MK2206 (0.1μmol/L, S1078, Selleck, TX,
USA) and mTOR inhibitor RAD001 (20 nmol/L, 159351-
69-6, Aladdin, Shanghai, China) were added.

2.3. Construction of Overexpression and Inhibition Plasmids.
The overexpression EPHA2 plasmid was constructed using
pcDNA3.1 containing Amp resistance (Addgene, LGC Stan-
dards Teddington, UK). The 2931-bp EPHA2 target gene
was amplified using forward (5′-CTAGCTAGCTAGATGG
AGCTCCAGGCA-3′) and reverse (5′-CCGCTCGAGCG
GTCAGATGGGGATCCCC-3′) primers. NheI and EcoRI
enzymes were used to slice and recover the plasmids. The
EPHA2 target gene was connected to the slicing plasmid,
transformed, and sequenced. The EPHA2 inhibition plasmid
was constructed using pSIREN containing Amp resistance
(Addgene, UK). The sense was 5′-GATCCGCGTCATCT
CCAAATACAAGCTTCAAGAGAGCTTGTATTTGGAG
ATGACGCTTTTTG-3′, and the antisense was 5′-AATTCA
AAAAGCGTCATCTCCAAATACAAGCTCTCTTGAAG
CTTGTATTTGGAGATGACGC-3′. Bam HI and EcoRI
enzymes were used to slice and recover the plasmid. The tar-
get gene was connected, transformed, and sequenced. The
overexpression and inhibition plasmids were introduced into
Cal-27 cells by transient transfection using Lipofectamine™
2000. The overexpression groups were oeEPHA2 and oeNC,
and the inhibition groups were shEPHA2 and shNC,
respectively.

2.4. Immunohistochemistry. Tissues at 0.2–0.3 cm were fixed
in 10% formalin for 48 h. The tissues were placed in an
embedding box and dehydrated for 10 h with an automatic

tissue dehydrator. Then, the tissues were embedded in paraf-
fin, placed in a freezer for 1 h, and sectioned at 5μm. The sec-
tions were heated at 65°C for 1 h and immersed twice in
xylene for 15min each. Dehydration at a concentration gra-
dient from 100% to 75% alcohol was carried out, and
0.01M sodium citrate buffer was used for repair for 15min
in 125°C at 103 kPa. After room temperature cooling, the sec-
tions were washed three times with phosphate-buffered
saline (PBS). The sections were then incubated in 3% H2O2
in a humidified box for 10min, blocked with 0.5% bovine
serum albumin for 30min, incubated with primary antibod-
ies overnight at 4°C, and incubated with MaxVision II for
30min at room temperature. Diaminobenzidine (Bioswamp,
Wuhan, China) was added to stain the sections, and when a
color change was observed, the dye solution was washed
and the sections were counterstained with hematoxylin for
3min. Image acquisition was carried out using Leica Applica-
tion Suite (MD1000, Frankfurt, Germany). The antibodies
used were rabbits anti-EPHA2 (1 : 50, PAB35826), rabbit
anti-EPHA4 (1 : 50, PAB35096), and MaxVision™ HRP-
Polymer anti-Mouse/Rabbit IHC kit (1 : 200, PAB160022),
all purchased from Bioswamp (Wuhan, China).

2.5. 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl-2-H-
Tetrazolium Bromide (MTT) Assay. Cells were seeded in
96-well plates at 2 × 103 cells per well. 20μL of MTT
(5mg/mL) solution (Bioswamp, Wuhan, China) was added
to each well, and the cells were incubated for 0, 12, 24, 48,
or 72 h. Then, the medium was removed, and 150μL of
dimethyl sulfoxide (Sigma, CA, USA) was added into each
well. After fully mixing, the optical density was measured at
490 nm using a plate reader (Multiskan FC, Thermo, Massa-
chusetts, USA).

2.6. Wound Healing Assay. Cells were seeded in 6-well plates
at 5 × 105 cells per well. Before cell seeding, a line was drawn
at the bottom of the well plate every 0.5 cm using a marker,
and four lines were drawn in each well. On the next day, a
scratch was made perpendicular to the well using a pipette
tip against a ruler. The cells were washed with PBS, and cul-
ture medium was added to the wells. Photographs were taken
at 0, 24, and 48 h to observe scratch healing. The Image J soft-
ware was used to measure the scratch area and calculate the
cell migration ability. Scratch healing rate = ðscratch area at 0
h – scratch area at 24 hÞ/scratch area at 0 h × 100%.

2.7. Transwell Assay. Cal-27 cells (1 × 104) were seeded with
serum-free medium on the top chamber of a Transwell
insert, and medium containing serum was added to the bot-
tom chamber. After 48 hours of incubation at 37°C in 5%
CO2, the cells were fixed using 4% formaldehyde and stained
with 0.1% crystal violet. The number of cells that have passed
through the chamber was observed under a microscope and
photographed, and cell migration ability was calculated. For
invasion, a Matrigel filter was placed in the Transwell cham-
ber. Invasive ability was evaluated by counting the number of
cells that passed through the Matrigel filter.

2.8. Hoechst 33258 Assay. Monolayer cells (about 50-80%)
were immobilized with 4% paraformaldehyde for 10min
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and washed twice with PBS in 12-well plates. 0.5ml of
Hoechst 33258 dye solution was added, and the cells were
stained at room temperature for 5min. After five washes with
PBS, cell morphology and apoptosis were observed by fluo-
rescence microscopy (DMIL LED, Leica, Germany).

2.9. Flow Cytometry. Cells in the logarithmic growth phase
were incubated in 6-well plates at 2 × 105 cells/ml. After
48 h of incubation, the cell density was adjusted to 4 × 105
cells/ml. After two washes with PBS, the cells were suspended
in 500mL of PBS, and 5μL of Annexin-FITC and 5μL of
propidium iodide (PI) (BD, NJ, USA) were added to each
well. After fully mixing, the cells were incubated in the
absence of light for 30min at room temperature. Apoptotic
cells were immediately detected by flow cytometry. For cell
cycle detection, 400μL of PI (50μg/mL) was added in the
wells and flow cytometry was performed after mixing at
room temperature for 10min.

2.10. Western Blot. Cells were washed twice with precooled
PBS and lysed at 4°C using radioimmunoprecipitation assay
buffer containing protease and phosphatase inhibitors (Beyo-
time, Shanghai, China). The cells were then heated at 95°C
for 10min and centrifuged at 12000 rpm for 10min, and pro-
tein content was quantified. Lower and upper electrophoresis
gels were prepared at 12% and 5%, respectively, and the pro-
tein solution was denatured in boiling water for 10min. 20μg
of proteins was subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred onto
polyvinylidene fluoride membranes. The membranes were
blocked with 5% skimmed milk powder at room temperature
for 2 h and incubated with primary antibodies overnight at
4°C. After three washes with PBS-Tween 20 (PBST), second-
ary antibodies labeled with horseradish peroxidase (HRP)
were added and the membranes were incubated at room tem-
perature for 1 h, followed by three washes with PBST.
Enhanced chemiluminescent reagent (Millipore, Massachu-
setts, USA) was added, and protein bands were detected in
a fully automatic chemiluminescent analyzer. Antibody
information is listed in Table 1.

2.11. Reverse Transcriptase-Polymerase Chain Reaction (qRT-
PCR). Total RNA was extracted by Trizol. After precipitation
with chloroform, isopropanol, and 75% ethanol, total RNA
was dissolved in 40μL of DEPC water. The RNA was
reverse-transcribed into cDNA using a reverse transcription
kit (TaKaRa, Dalian, China), and the prepared cDNA was
amplified using the SYBR Green PCR kit (KM4101, KAPA
Biosystems, USA). The amplification system was as follows:
10μL of SYBR Green Mix, 5mol of forward primer, 5mol
of reverse primer, 1μL of cDNA, and 8μL of double-
distilled water for a total of 20μL. Reaction procedure is as
follows: 95°C for 3min; 39 cycles of 95°C for 5 s, 56°C for
10 s, 72°C for 25 s; 65°C for 5 s; 95°C for 50 s. The primers
were EPHA2-forward (5′-CTGCTCGCCTGGATT-3′),
EPHA2-reverse (5′-ACGGCTGTGAGGTAGTG-3′),
GAPDH-forward (5′-CCACTCCTCCACCTTTG-3′), and
GAPDH-reverse (5′-CACCACCCTGTTGCTGT-3′).

2.12. Statistical Analysis. All data were analyzed using the
SPSS19.0 statistical software (IBM, NY, USA) and expressed
as the mean ± standard deviation. Comparisons between
groups were performed by one-way analysis of variance. P
< 0:05 indicates statistical significance.

3. Results

3.1. Abnormally High Expression of EPHA2 and EPHA4 in
Human Oral Squamous Cell Carcinoma. The expression of
EPHA2 and EPHA4 in 10 cases of human OSCC was abnor-
mally high compared with that in the 5 cases of normal oral
cell tissues, as revealed by immunohistochemistry
(Figure 1), and the difference was statistically significant
(P < 0:05).

3.2. EPHA2 Overexpression and Knockdown Plasmids Were
Successfully Constructed and Transfected into Cal-27 Cells.
The expression of EPHA2 was detected by qRT-PCR and
Western blot (Figure 2). The results showed that the expres-
sion of EPHA2 was significantly increased in the oeEPHA2
group (P < 0:01) and significantly decreased in the shEPHA2
group (P < 0:001), suggesting that EPHA2 overexpression
and knockdown were successful in Cal-27 cells.

3.3. Effect of EPHA2 Overexpression on Cal-27 Cell
Proliferation Was Reversed by AKT/mTOR Inhibitors. The
effect of EPHA2 on the proliferation of Cal-27 cells was
examined using MTT assay (Figure 3). EPHA2 overexpres-
sion significantly promoted the proliferation of Cal-27 cells
at 24, 48, and 72 h (all P < 0:001), while EPHA2 knockdown
significantly inhibited the proliferation of Cal-27 cells at 24,
48, and 72 h (all P < 0:001). After MK2206 and RAD001
treatment, the effect of EPHA2 overexpression on the prolif-
eration of Cal-27 cells was reversed.

3.4. Effect of EPHA2 Overexpression on Migration and
Invasion of Cal-27 Cells Was Reversed by AKT/mTOR
Inhibitors. The migration of Cal-27 cells was detected by
scratch assay at 0, 24, and 48 h. EPHA2 overexpression sig-
nificantly promoted cell migration (Figure 4(a)) at 24 and
48 h (P < 0:05 and P < 0:001), but MK2206 and RAD001
reversed the effect of EPHA2 and inhibited Cal-27 cell migra-
tion (Figure 4(b)) at 48 h (P < 0:001), but not RAD001 treat-
ment at 24 h. Similarly, the migration of Cal-27 cells
(Figure 5(a)) was detected by Transwell assay at 24 and
48 h, and the results were consistent with those of the scratch
assay. In addition, Transwell assay (Figure 5(c)) showed that
EPHA2 overexpression and knockdown significantly pro-
moted and inhibited the invasion of Cal-27 cells, respectively,
and the effect of EPHA2 was counteracted by MK2206 and
RAD001. Overexpression of EPHA2 also significantly
enhanced the activity of invasive pseudopod-related proteins
Krp1, WASP-B, and Lasp1 (P < 0:001), while MK2206 had
the opposite effect but not RAD001 (Figure 4(c)) on Krp1
and Lasp1 in the oeEPHA2 group.

3.5. EPHA2 Knockdown Promoted Cell Cycle Blockage and
Apoptosis. Flow cytometry was performed to detect changes
in cell cycle after 48 h. EPHA2 knockdown significantly
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increased the proportion of cells in the G1 phase (P < 0:001)
and decreased those in S and G2 (P < 0:001), but EPHA2
overexpression only increased the G1 phase (P < 0:05)
(Figure 6(a)). After MK2206 and RAD001 treatment, the
proportion of cells in the G1 phase was significantly
increased (P < 0:01) by shEPHA2, whereas that in the S
phase was markedly decreased (P < 0:01 and P < 0:001), indi-
cating that cell cycle blockage by shEPHA2 was inhibited by
MK2206 and RAD001. Western blot showed that EPHA2
knockdown downregulated the cell cycle-related proteins

CyclinD1/A (Figure 6(b)). In addition, apoptotic cells were
detected by flow cytometry after 24 hours. EPHA2 knock-
down significantly promoted the apoptosis of Cal-27 cells
(P < 0:001), while EPHA2 overexpression inhibits it
(P < 0:05). MK2206 and RAD001 reversed the antiapoptotic
effect of EPHA2 knockdown on Cal-27 cells, but RAD001 did
not reverse the effect of EPHA2 overexpression on apoptosis
(Figure 7(b)). Moreover, Hoechst 33258 staining showed that
EPHA2 knockdown induced worse cell morphology than
shNC, and EPHA2 overexpression showed the oppose trend.

Table 1: Antibody information.

Antibody Species Brand Cat. no Dilution

EPHA2 Rabbit Bioswamp, China PAB35096 1 : 1000

CyclinA Rabbit Abcam, UK AB53699 1 : 1000

CyclinD1 Rabbit Abcam, UK AB40754 1 : 2000

Krp1 Rabbit Bioswamp, China PAB39436 1 : 1000

WASP-B Rabbit Abcam, UK AB68182 1 : 1000

Lasp1 Rabbit Bioswamp, China PAB33726 1 : 1000

AKT Rabbit Abcam, UK AB8805 1 : 1000

p-AKT Rabbit Abcam, UK AB38449 1 : 1000

mTOR Rabbit Abcam, UK AB32028 1 : 2000

p-mTOR Rabbit Abcam, UK AB84400 1 : 1000

4EBP1 Rabbit Abcam, UK AB131453 1 : 1000

p-4EBP1 Rabbit Abcam, UK AB75767 1 : 1000

S6K Rabbit Abcam, UK AB32529 1 : 5000

p-S6K Rabbit Abcam, UK AB59208 1 : 1000

GAPDH Rabbit Bioswamp, China PAB36264 1 : 10000

Goat anti-rabbit IgG Goat Bioswamp, China SAB43711 1 : 10000
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Figure 1: EPHA2 and EPHA4 were highly expressed in human OSCC tissue. (a) EPHA2 and (b) EPHA4 expression were detected by
immunohistochemistry (scale bar = 50 μm) and analyzed by SPSS19.0. n = 5 for normal oral tissue and n = 10 for human OSCC tissue. P <
0:05 indicates significant difference.
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In addition, shEPHA2 induced cell apoptosis compared to
shNC, while MK2206 and RAD001 treatment reversed the
effect of EPHA2 overexpression on Cal-27 cell apoptosis
and morphology.

3.6. EPHA2 Overexpression Enhanced the Activity of
AKT/mTOR Signaling Pathway. EPHA2 overexpression sig-

nificantly upregulated the activity of proteins in the AKT/m-
TOR signaling pathway, including p-AKT, p-mTOR, p-
WASP-B, p-4EBP1, and p-S6K. EPHA2 knockdown had
the opposite effect and inhibited the activity of AKT/mTOR
signaling. In addition, MK2206 and RAD001 effectively
reversed the effect of EPHA2, which verifies the regulatory
role of EPHA2 on AKT/mTOR signaling (Figure 8).
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Figure 2: mRNA and protein expression of EPHA2 were analyzed in Cal-27 cells subjected to overexpression and knockdown of EPHA2. (a)
Western blot detection of protein expression of EPHA2. (b) qRT-PCR analysis of mRNA expression of EPHA2. Control, Cal-27 cells; shNC,
Cal-27 transfected with empty pSIREN vectors; shEPHA2, Cal-27 transfected with pSIREN-shEPHA2; oeNC, Cal-27 transfected with empty
pcDNA3.1 vectors; oeEPHA2, Cal-27 transfected with pcDNA3.1-EPHA2. n = 3. ∗∗P < 0:01 and ∗∗∗P < 0:001 indicate significant difference.
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Figure 4: Detection of Cal-27 cell migration and invasive pseudopod-related proteins. (a) The migration of Cal-27 cells was assessed at 0, 24,
and 48 h by scratch assay (scale bar = 50 μm). (b) Cell migration was detected after MK2206 and RAD001 treatment (scale bar = 50 μm). (c)
Statistical analysis of scratch healing rate (%). n = 3. ∗P < 0:05 and ∗∗∗P < 0:001 indicate significant difference. (d) Western blot detection of
invasive pseudopod-related proteins Krp1, WASP-B, and Lasp1. n = 3. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 indicate significant difference.
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4. Discussion

EPHA2, a member of the EPH family, plays an important
role in tumorigenesis, angiogenesis, and intercellular adhe-
sion [10]. Its expression is closely related to the degree of
esophageal cancer differentiation and regional lymph node
metastasis and is negatively related to clinical survival rate
[11]. EPHA2 is highly expressed in breast [12], colorectal
[13], esophageal [14], and prostate cancer [15]. In ovarian
cancer, higher EPHA2 expression corresponds to more
aggressive tumors. In turn, higher microvessel density in
tumors signifies greater tumor malignancy [16]. In addition,
overexpression of EPHA2 can regulate the proliferation,
migration, invasion, and morphology of gastric cancer cells

by upregulating TCF4, CyclinD1, and c-Myc in the Wnt/β-
catenin signaling pathway [17]. It has been found that the
positive expression of EPHA2 in OSCC was significantly
higher than that in normal tissues, and EPHA2 expression
at different clinical and pathological stages also showed sig-
nificant differences, indicating that EPHA2 may be involved
in the occurrence of OSCC [5]. EPHA2 binds to its ligand
Ephrin A1 in normal tissues and acts on intracellular signal
transduction molecules, regulates information transduction,
and maintains cell-to-cell adhesion. However, EPHA2 can-
not bind to its ligand efficiently in cancer tissues, resulting
in abnormal EPHA2 signal transduction and cancer cell
adhesion. It is easy to dissociate because of its low affinity
and increased invasiveness, thus promoting the infiltration
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Figure 5: Transwell assay of Cal-27 cell migration and invasion. (a) The migration of Cal-27 cells was detected at 24 and 48 h (scale bar = 50
μm), with or without MK2206 and RAD001 treatment. (b) The number of migrating cells was statistical analyzed. (c) The invasion of Cal-27
cells was detected at 24 and 48 h (scale bar = 50 μm), with or without MK2206 and RAD001 treatment. (d) The number of invading cells was
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Figure 6: EPHA2 knockdown promoted cell cycle blockage in Cal-27 cells. (a) Cell cycle was examined by flow cytometry with or without
MK2206 and RAD001 treatment. (b) Western blot detection of cell cycle-related proteins CyclinA and CyclinD1. n = 3. ∗P < 0:05, ∗∗P <
0:01, and ∗∗∗P < 0:001 indicate significant difference.
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and metastasis of cancer tissues [18–20]. Our study first ver-
ified the abnormally high expression of EPHA2 and EPHA4
in OSCC, and the difference was statistically significant. By
examining the proliferation, migration, invasion, and apo-
ptosis of Cal-27 cells subjected to EPHA2 overexpression
and knockdown, we found that EPHA2 overexpression
inhibited G1 phase blockage by upregulating the expression
of CyclinD1 and CyclinA. EPHA2 also promoted cell migra-
tion and invasion by upregulating the expression of invading
pseudopod-related proteins (Krp1, WASP-B, and Lasp1). It
has been proved that EPHA2 promotes the migration and

invasion of human OSCC, but the mechanism underlying
the effect of EPHA2 on the biological behavior of OSCC cells
remains unclear.

The AKT/mTOR signaling pathway controls many
important cellular biological processes in tumorigenesis and
development, including maintenance of protein synthesis,
cell survival, growth, metastasis, apoptosis, metabolism,
angiogenesis, and cell cycle regulation. Studies have sug-
gested that AKT/mTOR inhibition suppresses the prolifera-
tion, migration, and survival of cancer cells while
strengthening the immune surveillance of tumors by
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Figure 7: EPHA2 knockdown promoted the apoptosis of Cal-27 cells. (a) Evaluation of Cal-27 cell morphology and apoptosis by Hoechst
33258 staining (scale bar = 50 μm). (b) Flow cytometry detection of Cal-27 cell apoptosis. n = 3. ∗P < 0:05 and ∗∗∗P < 0:001 indicate
significant difference.
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preventing immunosuppressive pathways from activating
and enhancing the innate immunity against tumors [21–23].

It has been reported that EPHA2 promotes malignant
tumor progression by enhancing the AKT/mTOR signaling
pathway. In cholangiocarcinoma, overexpression of EPHA2
enhanced AKT/mTOR signaling, thereby promoting the prolif-

eration of CHO-CK cells in vitro and tumorigenicity in vivo
[23]. In breast cancer, phosphorylated EPHA2 activated AKT
through PI3K to participate in trastuzumab resistance [9]. In
cervical cancer, EPHA2 activated AKT in a RhoG-dependent
manner to promote the survival of HeLa cells [24]. In addition,
AKT can reverse-regulate p-EPHA2 to promote malignant
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Figure 8: EPHA2 overexpression enhanced the activation of AKT/mTOR signaling. Western blot detection of the expression of EPHA2 and
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proliferation of cancer cells. Studies have shown that AKT pro-
motes themigration and invasion of glioma and prostate cancer
cells by enhancing the phosphorylation of serine 897 of EPHA2
[25]. In this study, Cal-27 cells were treated by MK2206 and
RAD001. Only the AKT inhibitor reversed the effect of EPHA2
on G1 phase blockage, suggesting that EPHA2 promoted the
proliferation and cell cycle of Cal-27 cells by enhancing
AKT/mTOR signaling. CyclinD1 plays an important role in
the regulation of cancer cell cycle [26], which is regulated by
AKT/mTOR signaling. Our study found that inhibition of
AKT/mTOR signaling antagonized the promotion of CyclinD1
and CyclinA expression in Cal-27 cells induced by EPHA2
overexpression, indicating that EPHA2 enhanced the expres-
sion of CyclinD1 and CyclinA in Cal-27 cells by enhancing
AKT/mTOR signaling, thereby promoting cell cycle progres-
sion. Moreover, EPHA2 overexpression promoted the migra-
tion and invasion of Cal-27 cells by upregulating the
expression of invasive pseudopod-related proteins. MK2206
reversed the expression of invasive pseudopod-related proteins,
but RAD001 did not affect Krp1 and Lasp1 in the oeEPHA2
group. This may indicate that AKT but not mTOR activation
was involved in the effect of EHPA2 on invasive pseudopod-
related proteins. Theremay be other pathways involvingmTOR
activation affecting the invasion of Cal-27 cells.

Studies have shown that mTORC1 and mTORC2, two
forms of mTOR, are regulated by different signal transduction
pathways. mTORC1 is located downstream of AKT and
directly regulates gene transcription through phosphorylation
of ribosomal protein S6 kinase 1 (S6K1), 4EBP1, and its down-
stream target Mcl-1 [27], RNA splicing, and protein synthesis,
while the downstream product S6K1 regulates AKT by nega-
tive feedback. mTORC2 is located upstream of AKT and reg-
ulates cell growth, survival, and migration by phosphorylating
AKT and kinases in the AGC family [28]. At the same time, it
regulates AKT via positive feedback [29]. In this study, we
found that overexpression of EPHA2 upregulated p-AKT
and p-mTOR and promoted the activation of downstream
proteins p-WASP-B, p-S6K, and p-4EBP1, whereas EPHA2
knockdown had the opposite effect. The effect of EPHA2
was inhibited by MK2206 and RAD001.

In conclusion, EPHA2 promotes the proliferation of Cal-
27 cells, inhibits cell apoptosis, and promotes cell migration
and invasion by enhancing the AKT/mTOR signaling path-
way. Our findings offer a new idea of individualized treat-
ment with AKT/mTOR inhibitors with EPHA2
overexpression for OSCC patients.
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